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New multi-reference, global ab initio potential energy surfaces are reported for the

interaction of Xe atoms with OH radicals in their ground X2Π and excited A2Σ+

states, together with the non-adiabatic couplings between them. The 2A′ excited

potential features a very deep well at the collinear Xe–OH configuration whose min-

imum corresponds to the avoided crossing with the 1A′ potential energy surface.

It is therefore expected that, as with collisions of Kr+OH(A), electronic quenching

will play a major role in the dynamics, competing favorably with rotational energy

transfer within the 2A′ state. The surfaces and couplings are used in full three-

state surface-hopping trajectory calculations, including roto-electronic couplings, to

calculate integral cross-sections for electronic quenching and collisional removal. Ex-

perimental cross-sections, measured using Zeeman quantum beat spectroscopy, are

also presented here for comparison with these calculations. Unlike similar previous

work on the collisions of OH(A) with Kr, the surface-hopping calculations are only

able to account qualitatively for the experimentally observed electronic quenching

cross-sections, with those calculated being around a factor of two smaller than the

experimental ones. However, the predicted total depopulation of the 2A′ (quenching

plus rotational energy transfer) agrees well with the experimental results. Possible

reasons for the discrepancies are discussed in detail.
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I. INTRODUCTION

Electronically adiabatic and non-adiabatic collisions of the OH(A2Σ+) (referred to here-

after as OH(A)) radical have been of considerable interest for a number of years.1–11 Apart

from the relevance of OH to atmospheric chemistry,12–15 the family of OH(A) + Rg systems

(Rg = rare gas) is a widely studied prototype for collisions of an open-shell diatomic radical

that is amenable to high-level theory.2,10,16 In addition, collisions with the heavier rare gases

(Kr and Xe) provide an opportunity to study electronic quenching, and its interactions with

electronically adiabatic processes, in a simple three-atom system. OH–Xe hydrogen-bonded

systems are also of interest in studies of more complex organic molecules that contain the

hydroxyl group and which are submerged in an Xe gas matrix. Ildiz et al.17 studied the

influence of the Xe matrix on the OH vibrational modes for several organic molecules and

calculated interaction energies for a series of complexes containing -OH–Xe bonding.

In contrast to previously studied systems such as OH(A) + He/Ar,3–7,10 where the crossing

between the excited A2Σ+ and ground X2Π potentials is located high on the repulsive wall,

the OH(A) + Kr/Xe systems display conical intersections that are accessible at thermal

collision energies.8,11,18 For OH(A) + Kr, there is a region of significant coupling to the

ground state close to the most attractive part of the excited-state potential energy surface

(PES), in the near-linear HO–Kr configuration,8 and it is expected that the same or an even

more pronounced feature will happen for the OH(A) + Xe system.

This paper presents a set of new PESs for the interaction of xenon with OH(X2Π) (here-

after, OH(X)) comprising one symmetric 12A′ state and one antisymmetric 12A′′ state. A

third, excited PES, which correlates asymptotically with OH(A)+Xe, and for which the PES

is symmetric under Cs symmetry, 22A′, is also reported. The electrostatic coupling between

the diabatic surfaces is also presented here. These form a natural extension of our previous

work on the OH(X,A) + Kr system.8,10,11 In the case of collisions with Xe, the electronic

quenching is even more efficient, with cross-sections on the order of ≈ 20 Å2 as compared

with ≈ 8 Å2 in the collisions with Kr.1

These surfaces and couplings will be used for dynamical calculations of integral cross-

sections for electronic quenching in OH(A) + Xe, as well as theoretical rotational-state dis-

tributions for the quenched OH(X) products, using a recently developed three-state surface-

hopping trajectory model that includes roto-electronic couplings.11 Quenching cross-sections
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will also be measured experimentally and compared to the results of these calculations in

order to gauge the accuracy of the potentials and dynamical theory presented here.

To our knowledge, the present OH(A) + Xe PES is the first that has been reported in

the literature, but PESs for OH(X) + Xe have recently been published by Gilijamse et al.19

That work also reported crossed molecular beam experimental studies of OH(X) + Xe colli-

sions. Collisions with the ground electronic state of OH were also investigated in the 300 K

regime by Paterson and coworkers with a focus on angular momentum depolarization.20,21

Sarma et al.22 also performed joint theoretical and experimental crossed molecular beam

studies to generate differential cross-sections for OH(X)+Xe scattering at a collision energy

of 483 cm−1.

This paper is organized as follows. Section II presents the details of the ab initio cal-

culations and describes the main features of the PESs and couplings. The methods for

dynamical calculations and experimental measurements of cross-sections are then set out in

Section III. After this, Section IV compares experimental and theoretical results for elec-

tronic quenching and the state distributions of quenched OH(X) products, and the paper is

concluded in Section V.

II. AB INITIO CALCULATIONS

To perform scattering calculations on the OH(A,X) + Xe system, we need information

about the PES correlating asymptotically with the OH(A)+Xe state, 22A′, the two PESs

correlating with the ground OH(X)+Xe state, 12A′ and 12A′′, and the non-adiabatic coupling

between the two adiabatic surfaces of the same A′ symmetry. To calculate these PESs,

we have applied a multi-reference approach by selecting reference wavefunctions in state-

averaged multi-configuration self-consistent field calculations (SA-MCSCF),23 followed by

the internally contracted multi-reference configuration interaction method24 with single and

double excitations, and the Davidson correction25 that accounts for higher excitations and

lowers the effects of size-inconsistency in the MRCI method (MRCISD+Q). The interaction

energies are calculated without the basis set superposition error correction and are defined by

subtracting the asymptotic total energy from total energies at given geometry. In addition

to the non-adiabatic coupling, we have also calculated transition matrix elements of the

Cartesian components of the electronic orbital angular momentum operator, L̂, between the
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OH(A)+Xe and OH(X)+Xe adiabatic electronic states (see Section II D). All electronic

structure calculations are performed with the MOLPRO suite of programs.26

A. Geometries, basis sets and quasi-diabatization

We describe the geometry of the Xe–O-H complex using Jacobi coordinates. The inter-

molecular vector, R, joins the center of mass of the OH molecule and the Xe atom. The

Jacobi angle, θ, is defined as the angle between R and the OH diatomic vector, r, with

θ = 0◦ for the Xe–H-O collinear geometry. For all calculations, the OH monomer is kept

rigid at the equilibrium geometry of the A 2Σ+ state, re = 1.012 Å.27 Calculations were

performed for 76 intermolecular R distances in the range between 2.3 a0 and 50 a0 and the

angular grid for the θ variable consisted of 19 values (every 10◦). Additional angular grid

points at θ = 0.5, 5, 125, 145, 165, 175, 179◦ were invoked to sample the anisotropy near the

1A′ − 2A′ state crossing in more detail.

The OH molecule is placed along the z-axis of the Cartesian coordinate system and the

Xe atom rotates on the xz-plane, with the y-axis perpendicular to the triatomic plane. The

singly occupied πx and σz orbitals of OH in the A state, which are symmetric with respect to

the reflection operation in the xz plane, belong to the A′ representation of the Cs symmetry

group.

In all ab initio calculations, we used the augmented, correlation-consistent quadruple-zeta

basis set with a 28-electron-core pseudo-potential (denoted aug-cc-pvqz-PP) of Peterson et

al. for the Xe atom28 and the augmented, correlation-consistent aug-cc-pvqz basis set of

Dunning for the O and H atoms.29

The πx orbital is one of the components of the doubly-degenerate ground OH(X) state

and σz defines the excited OH(A) state. These two electronic configurations, in the presence

of the Xe atom, will belong to the same symmetry representation, A′, and will be coupled

non-adiabatically. We have used a quasi-diabatization method,30 as implemented in the

MOLPRO program,26 to calculate mixing angle and the diabatic off-diagonal coupling term,

Hxz, and two diagonal diabats, Hxx and Hzz. We use the method of the largest overlap

with the reference orbitals that are taken at the collinear geometry for θ = 180◦, where the

adiabatic and diabatic states coincide and are allowed to cross. The 12A′′ adiabatic PES

coincides with the Hyy diabat since it is the only one of such symmetry among the electronic
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states considered here.

B. Fitting of the PESs

We fitted the diabatic and adiabatic potentials and off-diagonal coupling matrix elements

to analytical representations for use in quantum and quasi-classical dynamical calculations.

The diagonal diabatic Hxx, Hyy, and Hzz PESs and adiabatic 12A′, 22A′, and 12A′′ PESs

have been expanded in a Legendre expansion by solving a system of linear equations to

generate discrete sets of ab initio data using the linear least-square method:

V (R, θ) =
15∑
λ=0

vλ(R)Pλ0(cos θ) . (1)

The off-diagonal diabatic Hxz PES is expanded in the associated Legendre Pλ1(cos θ) func-

tions:

Hxz(R, θ) =
15∑
λ=1

vxzλ (R)Pλ1(cos θ) . (2)

The Pλ1 associated Legendre functions ensure that the diabatic coupling vanishes at θ = 0◦

and θ = 180◦.

The radial expansion coefficients, vλ(R), of each PES are then fit using the Reproducing

Kernel Hilbert Space method31 with radial kernel parameter n = 2 and a long-range extrapo-

lation radial kernel characterized with C6/R
6 asymptotics. The Fortran routines of the PESs

developed in this work are available for download from the Supplementary Information.

C. Features of the potential energy surfaces

In Table I, we show a comparison of the minima featured on the OH(X)+Xe and

OH(A)+Xe MRCISD+Q PESs calculated in this work with those of the previously published

OH(X)+Xe PES of Gilijamse et al.19 and previous theoretical results of the OH(A)+Xe PES

of Singh and Heaven32 (presented at conference in Columbus, OH in 2009). The values of

the minima on our OH(X)+Xe PES are qualitatively similar to those of Gilijamse et al.,19

however, it should be noted that the OH diatomic distance used in their calculations corre-

sponds to re of the X2Π state, whereas the value used in this work corresponds to re of the

A 2Σ+ state. The OH(X)+Xe minima are one to three orders of magnitude smaller than

those on the excited OH(A)+Xe PES. The global minimum occurs for the Xe–O-H collinear
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geometry (θ = 180◦) in the excited 2A′ PES. It is around 1.52 eV deep with respect to the

OH(A) + Xe asymptotic limit and is found fairly close to the O atom, at 4.15 a0. The local

minimum at the other collinear (Xe–H-O(A)) geometry (θ = 0◦) is four times shallower,

with a well depth of 0.38 eV, and is located at Re = 5.55 a0.

In Fig. 1, we show radial cuts of the MRCISD+Q adiabatic PESs of A′ symmetry (dashed

lines) and the resulting diabatic PESs in nearly collinear configurations (solid lines). In the

top panel, θ = 10◦, which is close to the Xe–H-O collinear geometry and, in the bottom

panel, θ = 170◦, which is close to the opposite Xe–O-H geometry. The diabatic crossing

occurs roughly in the middle of the global minimum of the OH(A)+Xe PES, whereas there

is no diabatic crossing (at least at the repulsive energies shown in the plot) for the Xe–H-

O geometry. This is very similar finding to our previous diabatic PESs obtained for the

OH(A,X)+Kr coupling system8. In comparison to OH(A)+Xe, the global minimum of the

OH(A)+Kr PES is approximately half as deep, and the diabatic A/X crossing is shifted to

a smaller distance (Rc ≈ 3.8 a0) in comparison to OH(A,X) + Xe (for which Rc ≈ 4.2 a0).

Fig. 2 shows 3-D surface plots of the Hxx and Hzz diabatic PESs, oriented to expose

more clearly the region of the diabatic crossing, which extends around 30◦ from the global

minimum at θ = 180◦. The surface and contour plots of the off-diagonal diabatic coupling,

Hxz, are shown in Fig. 3. In this figure, we also show the Xe atom approaching the O-end of

the OH(A) radical towards the region of the A/X state crossing, where the coupling becomes

much stronger for slightly bent geometries around the θ = 180◦ minimum. For the Xe–O-H

collinear geometry, the Hzz diabatic PES, corresponding to the upper OH(A)+Xe system, is

crossed by the repulsive walls of the diabatic Hyy and Hxx PESs well below the Xe–O-H(A)

asymptote, in the middle of the global minimum of the Hzz diabat (see the bottom panel

of Fig. 1). The presence of the very deep well in the Xe–O-H collinear arrangement makes

the crossing energetically accessible. The other crossing for the Xe–H-O collinear geometry

lies much higher in energy, well outside current experimental access. We refer the reader

to the work of Lehman et al.8 for details on the diabatization method used here on the

OH(A,X)+Xe electronically coupled system.
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D. Coupling of the potential energy surfaces

At present, only two of the system-specific electrostatic and roto-electronic coupling ma-

trix elements have been calculated for the OH+Xe system: ⟨2A′|Lx|1A′′⟩ and ⟨2A′|Lz|1A′′⟩.

A comparison of the calculated elements for the OH+Kr and OH+Xe systems suggests that

the as yet uncalculated elements for OH+Xe might be estimated by applying a shift in R,

the Rg–OH separation, relative to those already obtained for OH+Kr. As such, the peak in

intensity of the shifted coupling matrix elements with respect to R then coincides well with

that of the conical intersection between the OH+Xe PESs. Fig. 4 presents cross-sectional

plots of the 2A′ and 1A′ PESs, and a selection of the matrix elements that couple them,

for the OH+Xe system. In the figure, the elements in bold are the result of taking the

faintly-colored elements for OH+Kr and shifting them in R. Fig. 5 shows all the calculated

and estimated coupling matrix elements used in the theoretical calculations for the OH+Xe

system presented here.

Ideally, it would have been preferable to use all the relevant matrix elements explicitly

calculated for the Xe-OH system. However, it proved impossible to calculate the matrix

elements of the product of electronic angular momentum operators in conjunction with the

28-electron core pseudo-potential (aug-cc-pvqz-PP). All those matrix elements involving L2

were incorrectly returned as zero. Nevertheless, as will be shown in Section IV A, the results

obtained including the L2 matrix elements were essentially the same as those obtained

neglecting them.

III. OH(A) + Xe COLLISION DYNAMICS: METHODS

A. Theoretical methods

As in our previous work,3–5,7,10,18,33–35 the notation used here is as follows. In all cases,

vectors are represented by bold italic symbols (j), and the corresponding quantum numbers

by italics (j).

The nuclear rotational angular momentum of OH is labeled R(R′), where primes denote

quantities after a collision, and is equivalent to N(N ′), the OH rotational angular momen-

tum excluding nuclear and electron spin. This is the case because OH(A), being a 2Σ+ state,

has zero electronic orbital angular momentum and, for this reason, N is perpendicular to
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the OH bond vector, r. Under the Hund’s case (b) coupling scheme, the nuclear spin of

OH, S, couples to N (N ′) to form j(j′), the total angular momentum of OH (excluding

nuclear spin), where j = N + S. Since OH(A) is a doublet state (S = 0.5), j = N ± 0.5,

giving rise to two spin-rotation levels that are labeled f1 (j = N +0.5) and f2 (j = N −0.5).

Finally, including the orbital angular momentum of the triatomic system, ℓ(ℓ′), gives the

total angular momentum of the system, J .

B. The TSH-QCT method

Non-adiabatic trajectory surface hopping36 quasi -classical trajectory (TSH-QCT) calcu-

lations were run on the OH(X,A)+Xe potentials using the fewest switches surface hopping

method of Tully.37 Two kinds of calculations were performed: a two-state model, in which

trajectories are propagated over the 12A′ and 22A′ potentials (ignoring 12A′′), as used in our

recent work on OH + Kr;8,18 and a full three-state model, including all the potential energy

surfaces involved in this system (12A′, 12A′′ and 22A′) and the electronic and roto-electronic

couplings between them.11 Full details of the two methods used are presented in Refs. 8 and

18 and Ref. 11, respectively, and so only a brief summary will be given here.

Approximately 104 − 105 trajectories were run for each initial rotational state, N . The

O–H bond length was held constant (rigid rotor behavior) throughout the integration by the

method of Lagrangian multipliers, as the potentials used here were calculated at a fixed rOH.

At the end of each trajectory, the final vector angular momentum of OH, N ′, was converted

to a quantum number, N ′, via |N ′| = ~
√

N ′(N ′ + 1), and N ′ was binned to the nearest

integer (using histogram binning). Trajectories for which N ′ was in the range N ± 0.5 were

considered elastic.18

A further correction for the assignment of final rotational states results from the con-

sideration of the different bond lengths in OH(X) and OH(A), with values of 0.970 Å and

1.012 Å,27 respectively. The OH(X) products of electronic quenching are assigned a final

quantum state, N ′′, by equating the rotational energies in the two electronic states,

N ′′
X = −1

2
+

√
1

4
+

N ′′
A
2

xr

+
N ′′

A

xr

, (3)

with xr = BX/BA = (rA/rX)2, the ratio of the rotational constants in the two electronic

states, which takes a value around 1.08.27 The corrected N ′′
X is binned to a quantum number,
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N ′′, as above.

In ‘fixed-energy’ calculations, the collision energy was 0.039 eV, which corresponds to the

mean thermal energy at 300 K and to the calculations performed in our previous work on

OH(A) + Kr.8,18,35 The maximum impact parameter, bmax, was set to 6.5 Å, such that all

inelastic (and elastic depolarizing) collisions were included, and the impact parameter, b, for

each trajectory was sampled according to bi = (ξ)1/2 bmax, where ξ is a random number in

the (0,1) range. Electronic quenching cross-sections were calculated in the usual way,8,18,35

σQ = πb2max

NQ

Ntot

, (4)

where NQ is the number of trajectories out of the total, Ntot, that undergo quenching.

Also presented in this paper are cross-sections for total removal from a given spin-rotation

level (N, j) in OH(A), which are the sum of the cross-sections for electronic quenching, σQ,

and rotational energy transfer, σj =
∑
j′ ̸=j

σjj′ . For this purpose, quasi -open-shell σj are

calculated using the tensor opacity formalism described in detail previously.3,6,7

‘Continuous-energy’ calculations were also run, in which the collision energy for each

trajectory was randomly and uniformly sampled from the range 0.001–0.125 eV, as described

in Refs. 35, 38–40. For these continuous-energy calculations, bmax will vary with the collision

energy, Et. Since electronic quenching is a barrierless process, a Langevin capture-type

model41 is chosen for the behavior of bmax(Et): the quenching cross-section should vary as

E−0.5
t and, also, σQ ∼ [bmax(Et)]

2, implying that bmax(Et) ∼ E−0.25
t . By running relatively

small batches of trajectories at a series of fixed collision energies, the function bmax(Et) was

fitted to the form

bmax(Et) = A + B × E−z
t , (5)

where A = 5.8 Å; B = 2.8 Å·(eV)z, and z = 0.2. bmax is in Å and Et is in eV. The weight

of each trajectory is given by38–40

wi =
b2max(Et)

D2
, (6)

where D is taken as the value of bmax(1 meV). Note that the value of D is not important as

it will cancel out in Eq. (7).

The thermal (Maxwell-Boltzmann average) quenching rate constant can be written di-

rectly as33

kQ(T ) =
πD2(E2 − E1)

Ntot

NQ∑
i=1

wiPMB(E
(i)
t |T )v

(i)
rel , (7)
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where PMB(Et|T ) is the Maxwell-Boltzmann distribution of energies at temperature T , and

v
(i)
rel is the relative velocity of the i-th trajectory. This rate constant can be turned into a

thermal (flux-averaged) cross-section for electronic quenching, σQ, by simply dividing by the

relative velocity, ⟨vrel(T )⟩. This is the quantity that is compared to experiment, as opposed

to σQ(T ) ≡ ⟨σQ⟩ (see Section III C).

The symmetry labels 1A′ and 1A′′ for the potentials refer to reflection symmetry in the

three-atom plane, defined by the R and r Jacobi vectors, and, as such, are not the same

as the Λ-doublet levels, ΠA′ and ΠA′′ , which refer to reflection symmetry in the plane of

rotation of OH (in the high-j limit).42 Therefore, trajectories ending on the 1A′ PES after

quenching do not necessarily populate ΠA′ . Similarly, transitions from 2A′ → 1A′′ may not

appear in the ΠA′′ Λ-doublet of the OH(X2Π).

In recent papers by Perkins et al.11 and Jambrina et al.,43,44 a conceptually simple method

has been proposed to extract the population of the Λ-doublet states from the cross-section

on the 12A′ and 12A′′ PESs. Only a brief account will be shown here; the interested reader

is referred to Ref. 43 for details.

Flux conservation implies that the sum of the cross-sections on the two Λ-doublet states

should be equal to the sum of the their values on each of the two competing PESs:

σ[ΠA′ ] = WA′ σ(A′) + (1−WA′′)σ(A′′) , (8)

σ[ΠA′′ ] = (1−WA′)σ(A′) + WA′′ σ(A′′) . (9)

σ(A′) and σ(A′′) refer to the cross-section calculated on the A′ PES or A′′ PES, respectively,

and σ[ΠA′ ] and σ[ΠA′′ ] are the respective cross-sections populating the two Λ-doublet levels.

The weighting coefficients in Eq. (8), WA′ and WA′′ , connect the results on a given PES

and the assignment to one of the Λ-doublet product states. As shown in Ref. 43, these

coefficients are related to the dihedral angle, θuj′ , between the OH(2Π) molecular rotational

plane and the plane defined by the three atoms. j′ denotes the product rotational angular

momentum, which classically is perpendicular to the diatom plane of rotation, and u stands

for the vector normal to the three-atom plane defined by diatom internuclear vector, r, and

the relative recoil velocity, k′.11

The weights WA′ and WA′′ can be obtained by averaging cos2 θj′u over one rotational

period for calculations on the A′ and A′′ PESs, and over the ensemble of trajectories leading
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to a specific final state:

WA′ = ⟨⟨cos2 θj′u⟩rot⟩A′ , (10)

WA′′ = ⟨⟨cos2 θj′u⟩rot⟩A′′ . (11)

It has been shown that the average value of the square cosine of θj′u, ⟨cos2 θj′u⟩rot, is related

to the projection of j′ on the products recoil direction, k′, through the expression:43

⟨cos2 θj′u⟩rot = 1−
∣∣cos2 θk′j′

∣∣1/2 , (12)

such that

WA′ = 1− ⟨cos2 θk′j′⟩1/2 ≈ 1−
[

2

3
a
(2)
0 +

1

3

]1/2
, (13)

in which a
(2)
0 , the alignment moment of j ′ with respect to k′, which is the average value of

the second degree Legendre polynomial, ⟨P2(cos θk′j′)⟩, has been calculated on the A′ PES.

An identical expression holds for WA′′ when a
(2)
0 is calculated on the A′′ PES.

The advantage of Eq. (13) is that cos2 θk′j′ can be calculated asymptotically without

needing to average over rotational periods. The weights are then determined by averaging

over the ensemble of trajectories that lead to a given final state. In addition, Eq. (13) shows

that the k′-j′ correlation relates the Λ-doublet populations to reactivity on the A′ and A′′

PESs.

Negative values of a
(2)
0 , close to its lower limit, −1/2, correspond to j ′⊥k′ and | cos θk′j′| ≈

0, while positive values, close to one, imply that j ′||k′. According to Eq. (13), a
(2)
0 ≈ +1

are associated with weight factors close to zero; that is, products on the A′ PES would

appear as the Π(A′′) Λ-doublet state and vice versa. When a
(2)
0 ≈ −1/2, the weight factor

tends to 1, and products on the A′ PES would correspond to the Π(A′) Λ-doublet state

(and equivalently for the A′′ PES). Since the reaction stereodynamics is closely linked to the

collision mechanism, it is then possible to trace the relative population of Λ-doublet states

to reaction mechanisms and possibly to specific features of the PESs involved.

C. Experimental methods

As in our previous work,3–5,10,18,34,35 Zeeman quantum beat spectroscopy, a form of po-

larized laser-induced fluorescence, was used to measure rates for electronic quenching and
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total removal from a given (N, j) level of OH(A) at a temperature of 300 K. Only the loss

of population is dealt with in this paper; polarization is left for a future paper.45

Ground state OH radicals were produced from the photolysis of nitric acid by 193 nm,

pulsed, unpolarized excimer laser radiation.46,47 Helium carrier gas was bubbled through a

2:3 mix of 98% sulfuric acid and 70% nitric acid, with the sulfuric acid serving to reduce

the vapor pressure of water.1,48 From similar procedures in the literature, HNO3 is believed

to make up 3-5% of the flow.1,46,48–50

The helium/acid mix was flowed through a stainless steel vacuum chamber at a mass

flow rate of 2 to 3 sccm (standard cm3 per minute), with a separate flow of Xe collider,

adjustable from 3 to 10 sccm. These flows were kept as low as possible to avoid using too

much expensive Xe gas, but high enough to ensure a fresh volume was probed on each

laser shot. After a delay of 10–30µs to allow the nascent OH(X) radicals to translationally

thermalize through collisions, they were excited to specific (N, j) levels of the A2Σ+ state

by counter-propagating pulsed, tunable Nd:YAG-pumped dye-laser radiation on the (0,0)

band of the OH(A←X) transition (around 306 nm). The linear polarization of this laser

radiation was improved using a Glan-Taylor prism, and switched between polarization that

was parallel and perpendicular to the fluorescence detection direction on alternate shots

using a photoelastic modulator. The purity of this polarisation was found to be better than

95% on exit of the chamber. All of the experiments described here were performed without

a magnetic field present. The center of the vacuum chamber was shielded with µ-metal to

null the Earth’s magnetic field, as well as other stray fields, and checked with a Hall probe.

The spontaneous fluorescence from OH(A) was focused onto the entrance slits of a

monochromator, preceded by a Glan-Taylor linear polariser. Low resolution could be selected

to measure fluorescence from all final rotational levels of OH(A) and so obtain electronic

quenching cross-sections, or emission from a single spin-rotation state could be measured to

obtain total removal cross-sections. The resolved fluorescence was collected by a photomul-

tiplier tube and the resulting signal was sent to an oscilloscope and PC. As in our previous

studies, the response time of the system described here was tested and found to be less than

20 ns.35
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D. Data analysis

As described in the previous section, fluorescence traces were recorded with the probe-

laser polarisation parallel to the detection direction (I∥) and perpendicular to it (I⊥). As

no magnetic field was used in these experiments, the sum I∥ + 2I⊥ contains no polarization

contribution and is sensitive to the decay in population only.35 The summed fluorescence

signal, I(t), is fitted to a single exponential for the first 100 ns, this short time being chosen

to avoid the effects of secondary collisions, as shown in Fig. 6:

I(t) = A e−(k0+k1[Xe]) t . (14)

In this equation, k0 is the inverse of the fluorescence lifetime and k1 is the rate constant

either for electronic quenching, kQ (in the case when the fluorescence is not resolved), or

total removal, kQ + kj (when emission from a single (N, j) state is resolved). These rate

constants are converted into absolute, thermally averaged (300 K) cross-sections by dividing

by the mean thermal relative velocity:

σQ =
kQ
⟨vrel⟩

. (15)

Errors are given as one standard deviation of repeated results to allow for comparison with

literature data.1

IV. OH(A) + Xe COLLISION DYNAMICS: RESULTS AND DISCUSSION

A. Electronic quenching

Experimental cross-sections for electronic quenching of OH(A) by Xe are presented in

Fig. 7 and Table II and are compared to data for OH(A) + Kr8,35 and to literature data.1

The agreement with the data of Hemming et al. is seen to be excellent, and there is no

observable difference between the quenching cross-sections for the f1 and f2 spin-rotation

manifolds.

A fall in the magnitude of the quenching cross-sections with increasing rotation is observed

for both OH(A) + Kr and OH(A) + Xe. As N increases, collisions en route to the deep

linear Rg–OH well – low on the repulsive wall in the case of OH(A) + Kr,8,11 and near the

bottom of the well for OH(A) + Xe – where the crossing takes place, are deviated, especially
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at high impact parameters that become less effective with increasing rotation. Because

the strongly coupled region is more accessible for OH(A) + Xe than for OH(A) + Kr, the

quenching cross-sections are larger and also extend to higher N , remaining non-zero out to

the highest rotational states measured. It is important to note that the reduced masses of

the OH(A) + Kr and OH(A) + Xe systems are too similar for kinematic effects to play much

of a part in the differences between these two systems.

Fig. 8 compares the experimental OH(A) + Xe quenching cross-sections with theoreti-

cal values calculated using the potentials and couplings presented in this paper. The two

panels show calculations that were run at a fixed collision energy (left) or using a Maxwell-

Boltzmann distribution of energies at 300 K (right). In the left panel, a comparison is also

made between the results of fixed-energy calculations that were run using the two-state and

three-state models discussed in Section III B. Notably, the three-state data shown in the

panel on the left were generated from a model that included only the ⟨2A′|Lx|1A′′⟩ and

⟨2A′|Lz|1A′′⟩ roto-electronic coupling matrix elements that were calculated specifically for

the OH+Xe system. The three-state calculation results shown in the panel on the right

were generated from a model that included these calculated roto-electronic coupling matrix

elements as well as the remaining elements that were estimated from those of OH+Kr.

A consideration of the fixed-energy data reveals that the three-state model (which includes

the 1A′′ electronic state for the first time) results in more quenching than that predicted

by the two-state model. However, both models severely underestimate the magnitude of

experimental quenching. In contrast to what is observed in the case of OH(A) + Kr,8,11

using a continuous distribution of collision energies (rather than a single, fixed collision

energy) results in noticeably increased electronic quenching and improved agreement with

experiment for OH(A) + Xe, especially for low rotational quantum numbers. It is important

to determine the extent to which the increase in the magnitude of the calculated quenching

cross-sections seen between the left- and right-hand panels of Fig. 8 is due to the use of

a distribution of collision energies or the inclusion of a greater number of coupling matrix

elements in the TSH calculations. To that end, Fig. 9 presents a comparison of quenching

cross-sections for the OH(A)+Xe system that were generated from calculations run using:

a fixed-collision-energy, three-state model that included only the calculated ⟨2A′|Lx|1A′′⟩

and ⟨2A′|Lz|1A′′⟩ roto-electronic coupling matrix elements; a variable-collision-energy, three-

state model that included only the calculated ⟨2A′|Lx|1A′′⟩ and ⟨2A′|Lz|1A′′⟩ roto-electronic
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coupling matrix elements; and a variable-collision-energy, three-state model that included

both the calculated roto-electronic coupling matrix elements and the remaining elements

that were estimated from those of OH+Kr. The data reveal that, for N = 2 and N = 8, the

increase in the magnitude of the quenching cross-section can be attributed almost entirely

to the use of the variable-collision-energy (rather than the fixed-collision-energy) algorithm.

For these states, the quenching cross-section remains virtually constant upon the subsequent

addition of the remaining coupling matrix elements. For the N = 4 and N = 6 states, both

the use of the variable-collision-energy algorithm and the inclusion of additional matrix

elements lead to an increase in the magnitude of the quenching cross-section, however, the

former factor is seen to be the more significant.

Fig. 10 shows the dependence of σQ (from calculations run using the most complete

three-state model) on collision energy and reveals that quenching is most prevalent in low-

energy collisions that mainly sample the more attractive part of the potential energy surface,

where coupling is stronger. On the other hand, high-energy collisions, which preferentially

sample the repulsive potential wall, tend to result in less quenching. In addition, low-energy

trajectories are more likely to be trapped in the deep well of the 2A′ PES in the Xe–O-

H geometry than those with higher energy collision energy. In any case, the data further

emphasize the importance of carrying out a proper averaging of σQ over the collision energy if

the full extent of the electronic quenching that is observed experimentally is to be accounted

for by theoretical calculations.

Even for the most complete, three-state, variable-collision-energy theoretical model, the

calculated quenching cross-sections still underestimate the experimental data, and fall off

too quickly with increasing N . Reasons for the discrepancy between theory and experiment

are more likely to lie on the theoretical side, given the good agreement between the present

experimental results and data previously recorded elsewhere.1 Spin-orbit coupling is not

included in the semiclassical theory used here, and it would be interesting to see how much

difference this would make to the results – it is predicted to be a somewhat more important

effect for OH(A) + Xe than for OH(A) + Kr. The molecular OH(X) spin-orbit splitting in

Xe-OH will be (R, θ)-dependent and may vary significantly close to the A-X crossing at the

θ = 180◦ geometry. This coupling might be an additional source of electronic quenching

flux, but in our semi-classical dynamical model it has been neglected. A further source of

the disagreement is the approximate nature of the electronic structure and dynamical calcu-
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lations performed here – the potentials and electrostatic couplings were obtained assuming

that the 1A′′ surface was uncoupled to the two PESs of A′ symmetry (the A′′ and A′ surfaces

would be coupled by the spin-orbit interaction), with roto-electronic couplings incorporated

into the theory afterwards.

Fig. 11 shows the experimental cross-sections for total removal (the sum of electronic

quenching and rotational energy transfer) as a function of the initial rotational number, N ,

for the f1 and f2 states (left and right panels, respectively). These results are compared

with QM and QCT adiabatic calculations for rotational energy transfer on the upper 2A′

PES, and with total removal data obtained from the three-state TSH model. Interestingly,

but probably not unexpectedly, QM and QCT adiabatic calculations for rotational energy

transfer (RET) on the upper 2A′ PES account fairly well for the experimental total removal

in spite of the fact that no quenching can take place in these particular theoretical models.

This seems to indicate that, in single-surface calculations, trajectories that visit the well on

the 2A′ surface and that would otherwise experience crossing to 1A′ or 1A′′ instead give rise

to RET. In turn, the sum of the quenching and RET cross-sections predicted by the three-

state TSH model also agrees fairly well with the experimental total removal data and with

the adiabatic RET calculations – even though, as shown earlier, quenching cross-sections are

underestimated in the TSH model. Therefore, it seems that the TSH method predicts the

correct number of trajectories that enter the Xe–OH well; however, the ratio of how many

trajectories end up on the 1A′ and 1A′′ PESs after quenching to how many remain on the

2A′ PES (eventually giving rise to OH(A)+Xe inelastic scattering) is incorrect. This may

suggest an error in the couplings, rather than in the potentials themselves, or a failure of

the TSH-QCT model to fully account for quenching.

It is important to bear in mind that some of the coupling matrix elements used in the

most complete model discussed here were estimated from those of OH+Kr, although the

results obtained with only the Lx and Lz matrix elements (which were calculated specifically

for OH+Xe) do not differ much from those including estimates of the remaining couplings

elements. Therefore, it would be desirable to calculate and implement a full set of roto-

electronic coupling matrix elements, and geometry-dependent spin-orbit coupling matrix

elements, for OH+Xe into the variable-collision-energy, three-state TSH QCT algorithms.
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B. OH(X) product state distributions

As well as the cross-sections for electronic quenching, it is also possible to study the

product state distributions from non-adiabatic collisions. To that end, the rotational and

Λ-doublet state distributions of the OH(X) products of quenching provide a wealth of infor-

mation about the conical intersection region and passage through it.8,9

As already described in Section III B, Jambrina et al. have presented a methodology by

which the reaction products on a given PES of symmetry A′ or A′′ can be related to the

respective Λ-doublet states of the open-shell diatomic product that are populated after the

collision.43 Specifically, a trajectory terminating on one of the two PESs can be assigned with

different weights to each of the two Λ-doublet states.44 In the present case, it is found that

the rotational momentum vector of OH(X) after the collision is strongly polarized perpen-

dicularly to the recoil velocity (cartwheel motion). Therefore, the polarization parameter

a
(2)
0 is close to −1/2 for trajectories terminating on the two PESs. As it happens, for the

OH(A)+Xe system, the rotational plane of the OH radical coincides with the OH–Xe tri-

atomic plane to a large extent. Hence, the respective weights, WA′ and WA′′ , are close to

one, which implies that, for the most part, A′ → ΠA′ and A′′ → ΠA′′ . This is well illustrated

in Fig. 12 which shows that the rotational distributions calculated for trajectories ending on

the A′ and A′′ are fairly similar to those obtained by assigning those same trajectories to the

Λ-doublet states, and that the weight factors are nearly independent of the final rotational

state. This result is hardly surprising considering that the 1A′ and 1A′′ are degenerate

at 180◦, which is where the crossing takes place. A sudden release of energy occurs after

quenching, and a torque is consequently imparted to the outgoing OH fragment for which

the plane of rotation remains the same as the three-atom plane. Such behavior is similar

to that found in the quenching of OH+Kr,11 but is in stark contrast to that experimentally

observed and calculated for the O(3P )+D2 reaction,43 or that calculated for the O(3P)+N2

or the O(3P)+HCl reactions,44 which exhibit a very significant ‘transfer’ of population from

the A′′ PES to the ΠA′ Λ-doublet.

Although not measured experimentally in the work reported here, it is helpful to de-

termine a quantitative measure of preferential Λ-doublet population, as predicted by TSH

QCT calculations, by determining the degree of electron alignment (DEA). This is defined
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as

DEA =
σN ′′(ΠA′)− σN ′′(ΠA′′)

σN ′′(ΠA′) + σN ′′(ΠA′′)
. (16)

Positive values of the DEA (that range between 0 and +1) imply a preference for population

of the ΠA′ Λ-doublet (and, in this case, also for the 1A′ PES); negative values (that range

between 0 and −1) imply a preference for population of the ΠA′′ Λ-doublet.

Fig. 13 shows the OH(X) product rotational-state distributions of OH(A)+Xe trajectories

whose initial state on the 2A′′ excited PES are the indicated OH(A, N) rotational levels.

The top and middle panels represent the cross-sections for specific OH(X, N ′′) rotational

levels of the ground electronic state in the ΠA′ and ΠA′′ Λ-doublet states, respectively.

These calculations were run using the most complete, variable-collision-energy, three-state

TSH model. The bottom panel shows the DEA calculated from Eq. (16) for the indicated

OH(X, N ′′)← OH(A, N) transitions.

As is the case for quenching collisions of OH+Kr,8 for OH+Xe the OH(X) quantum state

population distributions for the two Λ-doublet manifolds are rotationally hot, reflecting the

strong torques experienced by the OH molecules on passage through the conical intersection.

It can also be expected that the vast majority of collisions terminate in OH(X, v′′ = 0), as

is the case for the measured vibrational distribution for OH+Kr. In general, notice that

the rotational-state distribution in the ΠA′′ Λ-doublet is markedly broader than that in

ΠA′ (see Fig. 13). This is due to the fact that the ΠA′′ Λ-doublet is mainly populated

by trajectories on the 1A′′ PES resulting from roto-electronic coupling mechanisms. In

contrast, the ΠA′ Λ-doublet is mainly populated by trajectories ending on the 1A′ PES,

which is connected to the 2A′ PES by electrostatic and roto-electronic couplings. The result

is a sharp peak at intermediate N ′′ and a predominance for populating ΠA′ in the 20–30 N ′′

interval, irrespective of the initial rotational state, N , on the 2A′ PES, as can be seen in

lower panel of Fig. 13. The integral cross-section falls as N increases, reflecting the trend

shown by the non-adiabatic quenching data discussed earlier. Note that as N increases, the

mean value of the ground-state rotational quantum number also becomes larger, a trend

which is seen for both the ΠA′ and ΠA′′ Λ-doublets.
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V. CONCLUSIONS

New, multi-reference ab initio potential energy surfaces for the interaction of OH(X)

and OH(A) with Xe have been presented, together with the couplings between them. The

OH(A)+Xe 2A′ PES, like the corresponding OH(A)+Kr potential reported previously,35 has

very deep attractive wells in both linear configurations, with the Xe–OH interaction being

as strong as a chemical bond. However, the potential displays extensive angular anisotropy,

with strong repulsion in side-on geometries. The OH(A) + Xe PES also has a longer range

than the OH(A)+Kr PES of Ref. 35.

The ground state OH(X) + Xe potentials, 1A′ and 1A′′, agree closely with those of Ref. 19,

and are much less attractive than the excited state PES. The strongest attraction on the

1A′ and 1A′′ PESs is of the order of hundreds of wavenumbers (rather than 12300 cm−1

for Xe–OH(A)) and appears in the Xe–HO geometry, with an additional shallower well in

T-shaped configuration on the 1A′ PES.

At geometries corresponding to attractive Xe–OH(A) well on the the 2A′ PES, the

Xe–OH(X) potential is strongly repulsive. In the linear configuration, the ground 2A′ and

excited 1A′ potentials have a conical intersection, with the crossing being avoided away from

linearity. This intersection is located close to the bottom of the Xe—OH(A) well, making

it more accessible than the analogous feature of the OH(A)+Kr PES. On passing through

the conical intersection, the complex falls down the steeply repulsive part of the OH(X)+Xe

potential, resulting in translationally and rotationally hot radicals. There is also a strong

correlation between the ground-state PESs, 1A′ or 1A′′, on which a given trajectory finishes

after the crossing and the Λ-doublet state, ΠA′ or ΠA′′ , which are populated.

Cross-sections for electronic quenching and total removal from a given (N, j) state have

been measured experimentally for OH(A) + Xe and compared to surface hopping QCT calcu-

lations that include all three 2A′, 1A′ and 1A′′ potentials with electronic and roto-electronic

couplings. Good agreement is seen between theoretical and experimental total removal cross-

sections, but theory underestimates the true extent of quenching, particularly at low N . It

is, therefore, recommended that future studies will pay special attention to the couplings

between the potentials reported here. It would also be of interest to calculate the geometry-

dependent spin-orbit coupling matrix elements. These matrix elements have been neglected

thus far in our semi-classical dynamic model and might provide an additional source of
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quenching flux. This is a topic that would deserve future investigation. A further origin

of the observed discrepancies may lie on the fact that calculations have been carried out

assuming that OH can be described a rigid rotor; although this assumption is adequate for

adiabatic calculations, it might be a poor approximation in the case of hopping between

different PES.

A future companion work to this paper will focus on rotational energy transfer and colli-

sional depolarization of OH(A) + Xe, with particular emphasis on the competition between

electronically adiabatic and non-adiabatic collision pathways.

SUPPLEMENTARY MATERIAL

See the Supplementary Material for the Fortran routines of Xe-OH diabatic and adiabatic

PESs and associated L̂2 and L̂ transition matrix elements. The following files are provided

in Potential_energy_surface.tar archive:

1. xeoh_x_1Abis_mrcisdq_avqzpp_pes_fit.f: Diabatic Xe-OH Hyy = 1A′′ MRCISD+Q

Potential Energy Surface fit routine.

2. xeoh_x_a_adiabats.f: Xe-OH 1A′, 2A′ adiabatic PESs and Hxx, Hzz and H12 PES

fit routine.

3. pes_evaluate.f: Example routine to print out the Xe-OH PES values on a grid or

(R, θ) in units of bohr and degrees with output energies in cm−1.

4. Xe-OH-PESs.output: Example output file from from the pes_evaluate.f routine.

5. interpol.f: Interpolation function.

6. XeOH_X_A_Lxx_Mat_El_shift.dat: Transition matrix elements of the L̂x operator in

atomic units.

7. XeOH_X_A_Ly2_Lx2_Mat_El_shift.dat: Transition matrix elements of L̂2
y and L̂2

x op-

erators in atomic units.

8. XeOH_X_A_Lz2_LxLz_Mat_El_shift.dat: Transition matrix elements of L̂2
z and L̂xL̂z

operators in atomic units.
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9. XeOH_X_A_Lxyz_Mat_El.dat: Transition matrix elements of L̂x, L̂y and L̂z operators

in atomic units.

10. xeoh_lmatrix.f90: Fortran 90 file for interpolating transition matrix elements for

use in QCT-TSH scattering.

11. README.txt: File with above information and example of compilation of pes_evaluate.f

routine.
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OH(X) + Xe θ / ◦ Re / a0 Emin / cm−1

MRCISD+Q This work 0 7.60 -200.5

180 7.40 -106.6

A′ 80 6.70 -180.0

RCCSD(T) Ref. 19 0 7.60 -202.5

180 7.40 -117.8

A′ 84 6.44 -224.4

OH(A) + Xe θ / ◦ Re / a0 Emin / cm−1

MRCISD+Q This work 0 5.55 -3028

180 4.15 -12258

MRCISD+Q Ref. 32 0 5.20 -2324

180 4.25 -11900

TABLE I. Comparison of the minima of the OH(X) + Xe PES obtained in this work with PES of

Gilijamse et al.19 Global (θ = 180◦) and local (θ = 0◦) minima of the OH(A) + Xe PES obtained in

this work are also compared with the values obtained by Singh and Heaven32. Note that the values

of Singh and Heaven are calculated for the distance corresponding to the equilibrium bond length

of OH(X), 0.97 Å. All energies are expressed relative to the asymptotic limit of the corresponding

electronic state.
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σQ / Å2

N f1 f2 Hemming1 TSH-QCT

0 22(1) – – 18

1 28(3) – – –

2 28(1) 30(1) – 24

3 27(8) 28(2) – 24

4 – 32(3) – 20

5 30(1) 32(3) – 16

6 – 21(2) 25(1) 14

7 25(1) – – 12

8 – 25(2) – 10

9 – 26(1) – 7

10 22(4) 18(1) 22(2) 6

11 – – – 4

12 – – – 2

13 – – 16(1) –

14 – – – 1

15 – – 12(1) 1

TABLE II. Cross-sections for electronic quenching of OH(A) by Xe under thermal conditions

(300K). The three-state TSH-QCT calculations were performed using a 300K Maxwell-Boltzmann

average over a continuous range of collision energies (0.005− 0.125 eV). The error bars (indicated

in brackets on the experimental data) were determined using one standard deviation of repeated

results. Note that the spin-rotation level employed by Hemming et al. was not specified in their

paper.1
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FIG. 1. The Hxx (OH(X) + Xe, solid red line) and Hzz (OH(A)+Xe, solid blue line) MRCISD+Q

diabatic potential energy curves, relative to the OH(A)+Xe asymptote, are represented as a func-

tion of the Jacobi distance R for the nearly collinear OH–Xe (top panel) and HO–Xe (bottom

panel) geometries. The red and blue dashed lines show the 1A′ and 2A′ electronically adiabatic

potential curves. The 1A′′ = Hyy adiabatic curve practically overlaps with the Hxx diabat and is

not shown for clarity.
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FIG. 2. Surface plots, relative to the OH 2Σ+ +Xe asymptote, for the Hxx (red, lower surface) and

Hzz (light green, upper surface) diabatic MRCISD+Q PESs as function of (R, θ) Jacobi coordi-

nates. Values of θ = 0◦ and θ = 180◦ correspond to collinear O-H–Xe and H-O–Xe arrangements,

respectively.
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Xe

FIG. 3. Surface and contour plots representing the Hxz diabatic coupling MRCISD+Q PES. The

coupling vanishes at the collinear geometries and changes sign at a nearly perpendicular geometry.

The sphere and arrows represent the approaching Xe atom to the region of the diabatic PESs

where quenching process takes place in the vicinity of the Jacobi angle θ ∈ [140− 180◦], where the

crossing between Hxx and Hzz diabats takes place, as shown in Fig. 2.
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FIG. 4. Comparison of the 2A′ and 1A′ adiabatic PESs, and a selection of matrix elements that

couple them, for the OH+Xe system, taken at a Jacobi angle of θ = 175◦. The matrix elements in

bold color are the result of taking the faintly-colored elements for OH+Kr and shifting them in R.
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FIG. 5. Orbital electronic angular momentum matrix elements for OH+Xe in the near-linear

Xe–O-H geometry (θ = 175◦) as a function of the Jacobi coordinate R. The matrix elements

⟨2A′|Lx|1A′′⟩ and ⟨2A′|Lz|1A′′⟩ have been specifically calculated for Xe+OH, while the remainder

have been estimated from the corresponding elements for Kr+OH. The label ‘Im’ indicates that

the imaginary part of the matrix element is plotted. Note the difference in the ordinate scales.
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FIG. 6. Experimental, summed fluorescence decays for OH(A) + Xe, excited on the R branch to

N = 9, j = 8.5. Black dashed lines: experimental data; red solid lines: exponential fit to first

100 ns after laser peak. Left: 100mTorr Xe; center: 300mTorr Xe; right: 500mTorr Xe.
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FIG. 7. Experimental electronic quenching cross-sections for OH(A) + Kr from Ref. 8 (left) and

OH(A) + Xe (right). Red triangles: f1, blue triangles: f2, black squares: Hemming et al (Ref. 1.

Note the difference in the ordinate scales.
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FIG. 8. Electronic quenching cross-sections for OH(A) + Xe. Red triangles: f1 experimental;

blue triangles: f2 experimental; black squares: Hemming et al. experiments. Open symbols are

theoretical data (green: two-state TSH-QCT; black: three-state TSH-QCT), using diamonds to

represent fixed-collision-energy calculations (0.039 eV, left panel) and circles for calculations that

sample a continuous collision energy range (300K, right panel).
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FIG. 9. Electronic quenching cross-sections for OH(A) + Xe. Data are shown from calculations

that were run using: a fixed-collision-energy (0.039 eV), three-state model that included only the

calculated (⟨2A′|Lx|1A′′⟩ and ⟨2A′|Lz|1A′′⟩) roto-electronic coupling matrix elements (blue striped

bars); a variable-collision-energy (300K), three-state model that included only the calculated roto-

electronic coupling matrix elements (red striped bars); and a variable-collision-energy (300K),

three-state model that included both the calculated roto-electronic coupling matrix elements and

the remaining elements that were estimated from those of OH+Kr (solid green bars).
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FIG. 10. Excitation functions (dependence of cross-section on collision energy) for electronic

quenching of OH(A) + Xe, calculated using three-state TSH-QCT (300K) summed over final N ′′

rotational states but resolved in the final Λ-doublet states. Left: initial N = 2. Right: initial

N = 8.
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FIG. 11. Cross-sections for rotational energy transfer and total removal (sum of electronic quench-

ing and RET cross-sections) for OH(A) + Xe. Left panel: from f1 (j = N +1/2) states (red trian-

gles). Right panel: from f2 (j = N − 1/2) states (blue triangles). Green open circles connected by

dashed-line: three-state TSH-QCT calculations that sample a continuous range of collision energies

(300K). Black solid circles connected by a solid line: QCT adiabatic calculations on the 2A′ PES.

Magenta solid circles connected by a short-dashed line: QM calculations on the 2A′ PES. Note

that the last two calculations ignore the existence of quenching.
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FIG. 12. Left panel: Product rotational-state distributions resulting from OH(A2Σ+, N=2,8) +

Xe → OH(X2Π, N ′′) + Xe transitions terminating on the 1A′ (red) and 1A′′ (blue) PESs. Right

panel: product rotational-state distributions for quenched OH(A)+Xe trajectories that began in

the N = 2 and N = 8 initial rotational states of OH(A) and terminated in each of the ground-state

Λ-doublets of OH(X).
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FIG. 13. Upper and middle panels: Theoretical rotational-state-resolved cross-sections, σNN ′′ , for

the non-adiabatic transfer of population for OH(A, N) + Xe→ OH(X, N ′′) + Xe transitions. The

cross-sections are further resolved in the terminal Λ-doublet (ΠA′ or ΠA′′). Note the difference in

the ordinate scales of the upper and middle panels. Lower panel: DEA for the same transitions.
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