- 1 **Title:** Enlightening human B-cell diversity
- 2 **Authors:** Irene Soleto-Fernández¹, Rodrigo Jiménez-Saiz^{1,2,3}, Yolanda R. Carrasco¹
- ¹Department of Immunology & Oncology, Centro Nacional de Biotecnología (CNB)-
- 4 CSIC, Madrid, Spain
- ²McMaster Immunology Research Centre (MIRC), Department of Pathology &
- 6 Molecular Medicine, McMaster University, Hamilton, ON, Canada
- ³Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- 8 Correspondence to: Irene Soleto-Fernández, Department of Immunology and
- 9 Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- 10 **E-mail address:** isoleto@cnb.csic.es
- 11 Keywords: B cells; human; mass cytometry; single cell; multi-omic; cell atlas
- **Abbreviations:** Ig, immunoglobulin; SHM, somatic hypermutation;
- Since their discovery in the 60s', B cells have been extensively studied because of their
- unique and critical role in immunoglobulin (Ig) production. In addition, B cells contribute
- to other aspects of the immune response via antigen presentation to T cells and cytokine
- production. Despite the intensive study of B cells, its classification in different subsets
- based on surface markers remained controversial.
- Historically, B cells in the periphery (i.e., blood, secondary lymphoid organs) were
- 19 classified according to their maturation stage and the Ig isotype expressed in 5
- 20 populations: transitional, naive, non-switched memory, switched memory and plasma
- 21 cells. Importantly, this classification does not reflect precisely functional aspects (i.e.,
- 22 metabolism, cell signaling, tissue of origin), and in some cases the markers used to
- 23 identify B-cell subsets were faulty. For example, CD27 was long considered a classical
- 24 marker of memory B cells and associated with somatic hypermutation (SHM), however
- some memory B cells lack CD27 expression. In this context, B-cell biologists were
- demanding to update the criteria used to classify B cells and the inclusion of novel
- 27 functionality markers, which has been possible with the advent of single cell multi-omics.
- 28 Glass et al. developed a new strategy for human B-cell classification using mass
- 29 cytometry. They analyzed the expression of 351 markers on B cells from 4 different
- 30 tissues (tonsils, lymph nodes, peripheral blood and bone marrow) and defined 12
- populations based on the 98 markers that were expressed by B cells (**Figure 1**). This new
- 32 classification defines the B-cell maturation stage and also informs of the functional and
- metabolic profile. After a massive analysis, they showed that 10 of these 12 populations
- were detected in peripheral blood (frequency $\geq 1\%$) and could be distinguished with a
- combination of 8 markers (CD45, CD19, CD38, CD73, CD45RB, CD27, CD11c and
- 36 CD95).²
- 37 Among these 8 markers, CD45RB was shown to be useful for the identification of
- memory B cells. Indeed, its expression, in combination with that of CD27, correlated
- better with the degree of SHM than CD27 alone. The use of CD45RB for memory B cell
- 40 identification might solve the discrepancies draining from the CD27-based classification.²

- 41 Furthermore, the authors updated the classification of memory B cells showing 6 different
- 42 populations. Within them, the CD19^{hi} CD11c⁺ subset was previously reported as relevant
- in autoimmunity and infection.³ Moreover, they established CD95 as a new marker for a
- B cell subset. The CD95⁺ memory B cell subset showed a high response after stimulation,
- 45 indicating that these cells are effector memory B cells.²
- Of the 4 tissues studied, they found that only CD39⁺ B cells were tissue specific. This
- population, exclusive of the tonsils, appeared to be memory B cell precursors due to the
- 48 expression of memory-related markers such as CD11c. However, according to the
- 49 literature, CD39⁺ B cells were considered as regulatory B cells.⁴ In addition, the authors
- 50 did not find innate B1 cells, being a population widely characterized in humans.⁵ In spite
- of the extensive marker analysis performed in this work and the new B-cell classification
- 52 proposed, these discrepancies ensure further studies.
- A central feature of this study is that it enables the cytometric identification of 10 B-cell
- subsets in peripheral blood with 8 surface markers. It opens the possibility to a large
- number of 8-10 color flow cytometry users, to work with this updated B-cell subset
- 56 classification routinely. Consequently, one may expect to see in the near future the
- 57 application of this updated B-cell classification for the analysis of B cells in different
- 58 human pathologies including allergic diseases.
- The identification of 6 subsets of memory B cells in humans by Glass et al.² may be
- particularly relevant in food allergy, where IgG⁺ memory B cells are thought to play a
- critical role in the maintenance of IgE immunity, both in mice and humans. ⁶ The analysis
- of allergen-specific IgG⁺ memory B cells with this new classification may advance our
- understanding of the IgE memory reservoir in food allergy. However, this will require the
- use of more sophisticated flow cytometry staining methods, beyond 8 colors, in order to
- 65 incorporate allergen-specificity and bona fide Ig identification of memory B cells and
- 66 plasma cells.^{7,8}
- 67 Lastly, it has been recently reported a substantial presence of IgE-expressing cells in
- 68 human mucosal sites including the stomach and duodenumin peanut allergic patients.⁹
- 69 Clonally related IgE⁺ and non-IgE-expressing cell frequencies in tissues suggest local Ig
- switching, including transitions between IgA and IgE isotypes. The similarity of antibody
- sequences specific for the peanut allergen Ara h 2 was shared between patients, which
- 72 indicates that common Ig genetic rearrangements may contribute to pathogenesis. These
- data support the notion that the gastrointestinal tract serves as a reservoir of IgE⁺B lineage
- 74 cells in food allergy. Therefore, it seems relevant to apply this approach, not only to
- 75 peripheral blood, but to human gastrointestinal biopsies of food allergic patients even
- 76 though it presents a considerable logistical challenge.⁶

- Figure 1. Human B cells from blood, lymph nodes, tonsils and bone marrow of healthy
- 83 donors were comprehensively analyzed by mass cytometry.² The expression of 351
- surface molecules was assessed, 98 of which were expressed by human B cells. This
- analysis enabled the identification of 12 unique subsets of B cells, 10 of which were
- detected in peripheral blood (bottom left box) and 2 were exclusively detected in tonsils
- and lymphoid tissue (bottom right box). In addition, the isotype usage, VDJ sequence,
- 88 metabolic profile, biosynthesis activity and cell signaling of the different B cell subsets
- was determined. VDJ, variable, diversity and joining gene segments.
- 90 **Conflict of interest**: The authors have no conflict of interest to declare.
- 91 **Financial support**: ISF is supported by a grant (RTI2018-101345-B-I00) from the
- 92 MCIU/AEI/FEDER EU to YRC. RJS is funded by the Severo Ochoa Program (AEI/SEV-
- 93 2017-0712).
- 94 **Authorship**: The authors approved the final version of the manuscript as submitted and
- agreed to be accountable for all aspects of the work.
- 96 Acknowledgements: The authors want to thank Dr. Anna Globinska for graphical
- 97 abstract design.

98 99

100

102

101

References

- 10. Wu YC, Kipling D, Dunn-Walters DK. The relationship between CD27 negative and positive B cell populations in human peripheral blood. *Frontiers in immunology*. 2011;2:81.
- 106 2. Glass DR, Tsai AG, Oliveria JP, et al. An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity. *Immunity*. 2020;53(1):217-232 e215.
- Winslow GM, Papillion AM, Kenderes KJ, Levack RC. CD11c⁺ T-bet⁺ memory B cells:
 Immune maintenance during chronic infection and inflammation? *Cellular immunology*.
 2017;321:8-17.
- Figueiró F, Muller L, Funk S, Jackson EK, Battastini AM, Whiteside TL. Phenotypic and functional characteristics of CD39(high) human regulatory B cells (Breg).
 Oncoimmunology. 2016;5(2):e1082703.
- 5. Kageyama Y, Katayama N. Ontogeny of human B1 cells. *International journal of hematology*. 2020;111(5):628-633.
- Jimenez-Saiz R, Bruton K, Koenig JFE, Waserman S, Jordana M. The IgE memory reservoir in food allergy. *J Allergy Clin Immunol.* 2018;142(5):1441-1443.
- Jimenez-Saiz R, Ellenbogen Y, Bruton K, et al. Human BCR analysis of single-sorted, putative IgE(+) memory B cells in food allergy. *J Allergy Clin Immunol*. 2019;144(1):336-339 e336.
- Hoof I, Shamji MH, Andersen PS. Reply. *Journal of Allergy and Clinical Immunology*. 2020;146(2):457-458.
- Hoh RA, Joshi SA, Lee JY, et al. Origins and clonal convergence of gastrointestinal IgE(+)
 B cells in human peanut allergy. *Sci Immunol.* 2020;5(45):eaay4209.