The new LNG-releasing IUS: a new opportunity to reduce the burden of unintended pregnancy.

Authors:
Ignacio Cristóbal1,2, José-Luis Neyro3 and Iñaki Le	extit{te}4,5

Affiliation:
1Obstetrics and Gynaecology Department, La Zarzuela Hospital, Madrid (Spain)
2Francisco de Vitoria University, Madrid (Spain)
3Obstetrics and Gynaecology Department, Cruces University Hospital, EHI-UPV, Bilbao (Spain)
4Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Araba (Spain)
5Vasc Country University, Vitoria (Spain)

Author for correspondence: Ignacio Cristóbal

Address:
Hospital La Zarzuela,
C/ Pleyades 25,
28023 Madrid, Spain
Condensation

Long-acting reversible contraceptive methods (LARC) have been widely recommended to avoid unintended pregnancy at any age. The new intrauterine device Jaydess®, with the lowest levonorgestrel content and size, is specially suited to address contraceptive needs of young women, especially when considering their nulliparous status.
Abstract

Unintended pregnancies still remain a worldwide public health problem. They have received much attention in adolescents given the strong impact they have on their present and future lives. On the other side, as women join the labour market, young women wishing to delay maternity are also especially vulnerable. Studies have revealed a pattern of use of contraceptive methods that is likely to increase this risk. Methods of long-acting reversible contraception (LARC), among which cooper and levonorgestrel-releasing intrauterine devices (IUD and IUS) are the most common, have been widely recommended to avoid unintended pregnancy at any age. Despite this, the use of these devices is very limited. Several barriers to their wide spread use have been identified, which specially affect a higher use by nulliparous women. A new levonorgestrel-releasing IUS containing only 13.5 mg of levonorgestrel (IUS12), recently marketed as Jaydess® in Europe, which provides a smaller size, a shorter duration of action, and a lower hormonal content compared to Mirena®, along with a similar efficacy and safety profile, may offer a long-term option that better addresses the needs of nulliparous women. Evidence on the risk of unintended pregnancies in young women –with a special emphasis in Europe—, barriers associated with a lower-than-desirable use of LARC methods –especially intrauterine devices (IUD and IUS)—, and the potential benefits of the new IUS12 including changes in bleeding pattern, safety and user satisfaction –especially with respect to nulliparous and adolescents— are reviewed here. Evidence supports that IUS12 may offer a LARC option that better addresses the needs of these women.

Key words: Contraception; Contraception behaviour; Contraception, Barrier; Family planning service; Intrauterine devices; unintended pregnancies; levonorgestrel.
Introduction: the burden of unintended pregnancy

Unintended pregnancies persist in today’s society as a worldwide public health problem, still affecting 55 out of 1,000 women, despite the reduction observed in the last years concurrent with an increased use of contraceptive methods (1, 2). Estimates in Europe are dramatic, with 44% of the nearly 13.2 million pregnancies taking place among women aged 15–44 years being unintended (1). Besides the health consequences for the mother, unintended pregnancies have social and economic consequences for both, the women and their families (3), and may also have serious consequences on the child (3–6).

Among women at a higher risk of unintended pregnancy, adolescents have received much attention given the strong impact that pregnancies have on their present and future lives (7, 8). Data up to the late 90s reveal that the level of adolescent pregnancy varies by a factor of almost 10 across developed countries, with many Eastern European countries, similarly to the USA, having the highest teen pregnancy rates (70 per 1,000 or more) (9, 10). As a result, in the past decade teenage pregnancy has become a key policy area in several industrialized countries.

In a Pan-European survey conducted in 2006 among 11,490 women aged 15–49 years from 14 European countries (11), optimal mean age for becoming pregnant was relatively high, reaching as much as 27.6 years in Spain. This revealed another vulnerable group that has emerged after women have joined the labour market, i.e. those wishing to delay their first maternity.

Reasons underlying unintended pregnancy

Unintended pregnancies may result from several factors. Once accessibility to contraception
is ensured, cultural, educational, political or socioeconomic issues may affect the use of contraceptive methods. In our setting, where accessibility to contraception is generally easy, still 21–30% of women in the above-mentioned Pan-European study (11) and 23% of women from another study conducted among ~12,000 women from 5 European countries (12), reported using “no method”. However, how many of these women were sexually active remains unknown. Among women using any method in these studies, 18% and 6% respectively reported using unreliable methods of contraception such as cap/diaphragm and natural or withdrawal methods. These studies also revealed that oral contraception was the most widely used method, reaching rates as high as 49% of women in France. Other methods highly dependent on user adherence that require proper use, such as condoms, were also popular, with rates that doubled the average in countries like Spain (39% vs. 17%). This observed pattern of contraception is important since most unintended pregnancies have been shown to result from inconsistent or incorrect use of user-dependent methods, rather than from method failure (13).

Strategies to reduce unintended pregnancies

Besides improving sexual education and accessibility to contraceptive methods, the above-mentioned studies evidence a clear need to increase the use of more effective contraceptive methods. Methods of long-acting reversible contraception (LARC)—these include hormone implants, injectable drugs, copper intrauterine devices (IUDs) and the levonogestrel-releasing system (IUS)—, whose effectiveness is user-independent, have been widely recommended to reduce the rates of unintended pregnancies (14-16) in both older women and adolescents (17). While offering long-term protection, return to fertility is possible as soon as wished, allowing to plan pregnancies. LARC are suitable for a wide range of women, with virtually no contraindications (18). Despite this, these methods are scarcely used by 10% of women in
Europe, with IUDs and the IUS being the most popular ones (8% of all users) (11). The limited use of LARC has been attributed to several reasons, among them the reluctance of healthcare professionals to offer them to women as a result of inadequate guidance about eligibility and training. Eligibility concerns regarding IUDs and IUS involve especially young women given their nulliparity status (2, 19). These include the belief that uterine insertions are more difficult and complicated, with increased perforation risk and pain, and a higher risk of expulsion and of pelvic inflammatory disease (PID) and subsequent infertility. Other concerns such as the increased risk of ectopic pregnancies or changes in bleeding patterns are not related to parity but still constitute a deterrent for nulliparous women.

Overcoming these barriers by informing and educating healthcare professionals is fundamental (2, 19). However, improvement in contraceptive technology is still needed to better fit the special characteristics of young nulliparous women. No breakthroughs in intrauterine contraception have occurred in the last decade.

A new IUS aiming at meeting special nulliparous needs

A new recently LNG-releasing IUS (IUS12), marketed as Jaydess® (except in the USA, marketed as [Skyla®]), with a smaller size compared to its predecessor Mirena® (IUS20) and a lower LNG content, may offer a LARC option that better addresses the needs of nulliparous women. The new IUS has a 30x28-mm T-shaped polyethylene frame (the smallest in the market) and a reservoir containing 13.5 mg of LNG, a quarter of the content in Mirena® (52 mg). Although with an initially in vitro daily release rate of LNG of 12 µg, the in vivo delivery rate has been shown to be 14 µg/day, decreasing to 10 µg/day in the first 60 days and then gradually over 3 years (licensed period of use) to 5 µg/day (20). Adequate LNG contents of IUS12 and IUS 16 (same-sized IUS containing 19.5 mg of LNG and releasing 16 µd/day)
were tested in a 3-year phase II study where their efficacy and safety were compared to that of IUS20. Although the study was not powered to establish the Pearl Index (number of pregnancies per 100 women-years) or to demonstrate non-inferiority with respect to IUS20, the results showed that the three IUS shared similar efficacy and safety profiles (21). The efficacy of IUS12 was established in a large 3-year phase III, multicentre, randomized, prospective clinical trial, conducted among 2,884 women (39% nulliparous) aged 18–35 years where it was compared to IUS16 (22). The 3-year Pearl Index for IUS12 was 0.33 and 0.31 for IUS16, with no significant differences in pregnancy rates across individual years. This failure rate was as low as that reported for IUS20 at one year (0.2)(23) or at five years (1.1–5.5)(24, 25). The 3-year cumulative failure rate for both IUS was 0.9% and 1.0%, respectively. The contraceptive efficacy was not significantly affected by age, parity status or body weight (26). Moreover, no differences were found between the adjusted and unadjusted Pearl Index, as a result of not needing the women’s contribution to method compliance.

Mechanism of action

Similarly to IUS 20 and despite the lower hormone contents, IUS12 mainly exerts its contraceptive effect by thickening the cervical mucus, which impedes the passage of sperm through the cervical canal (20). The high concentration of LNG in the endometrium also down-regulates the endometrial oestrogen and progesterone receptors, leading to a strong antiproliferative effect (20). The high concentration at the uterine cavity is in opposition to the low concentration in serum observed, estimated to be around 162 pg/mL seven days after placement and declining afterwards to reach mean concentrations of 59 pg/mL after 3 years (20). The gradual LNG release is responsible for the relative low and non-fluctuating hormone serum concentration compared to that reached with other hormone methods (27-31) (fig. 1).
In accordance with the minimal LNG systemic exposure, IUS12 has a low impact on ovulation: Ovulation was documented in all IUS12 users in the phase II study during the time periods analysed (21). As with IUS20, with a higher LNG content, fertility is expected to be unaffected after use of the device, with endometrium recovering quickly and normal ovulations being again restored (32). In a European randomized multicentre study, 96% of women in whom IUS20 was removed became pregnant within the first year (33).

Duration of action

IUS12’s duration of action is shorter than any other IUD/IUS (3 years), which may address the short- to medium-term maternity wishes of many women. This fact was evidenced in the Pan-European study, where 26% of women using the LNG-IUS reported having used the last IUS for 3–4 years before having it replaced or removed, suggesting that they probably had it removed it to have children and then used it again after this break (11, 34).

Easiness of insertion and pain

In the phase III study, placement was successful at the first attempt for ≥ 95% of women, being performed without dilation in most of them (> 90%), regardless of parity (Table 1). Placements were reported as generally easier, and placement-related discomfort was lower in women who had previously had a vaginal delivery than those who had not (nulliparous or women who had had a Caesarean section delivery). In any case, placement was rated as ‘easy’ in ≥ 84% of nulliparous women (26). As reported with the IUS20 (35), risk of perforation was low, and also regardless of parity, with no complete perforation being reported with any of the two IUS devices tested, and only one partial perforation with IUS16. Crude incidence of total or partial perforation was 0.03% (26).
Pain was rated as ‘none’ or ‘mild’ in 41.8% of nulliparous women, in 72.8% of parous women who had had a Caesarean section delivery, and in 81.9% of parous women who had had a vaginal delivery (26). It should be noted that nulliparous women had received local and oral anaesthesia before the procedure in a higher proportion compared to the other women (14.5% vs. 4.5%, and 48.6% vs. 21%, respectively) (Table 1), reflecting the concern of healthcare professionals in this sense (26). The phase II study demonstrated that placements of IUS12 were significantly easier and less painful compared to IUS20, showing also a trend in nulliparous women (21). In view of this evidence, the smaller size of the IUS12 and of the inserter tube may make it suitable for nulliparous women, as well as for those with a smaller uterine cavity, or both (36). As a novelty, IUS12 has a silver ring visible on ultrasound, allowing the confirmation of right placement when needed (32).

Risk of expulsion

The risk of expulsion of the IUS12 in the phase III study was low (although it was higher in the first 12 months) regardless of parity (26). Expulsions were significantly more frequent in parous compared to nulliparous women (4.9 vs. 2.6 cumulative risk at 3 years, respectively). A higher 1-year IUD/IUS expulsion rate in parous vs. nulliparous women has also been observed in the large US-based Contraceptive CHOICE project (37), while others have reported similar expulsion rates at 1 year (38).

Changes in bleeding patterns

This frequent undesirable effect is one of the main causes for IUDs/IUS removal. Irregular bleeding and spotting are common in the first months of IUS use, with a reduction in the number of bleeding or spotting days being observed over time with IUS12, the largest number occurring between the first and second 90-day reference periods (21). More spotting-only days than bleeding days have been reported in all reference periods (21, 22).
Incidence of amenorrhoea is lower with the IUS12 compared to IUS20, occurring in approximately 6% of women during the first year of use, which increases up to 12% after three years (Table 2)(32). A shorter and less frequent bleeding, and a lower tendency to amenorrhoea, was observed with IUS12 vs. IUS16 in the phase III study (39). Discussing bleeding preferences when providing contraception advice is fundamental, as many women may dislike amenorrhoea as they associate it with a loss of fertility and/or femininity or with pregnancy (40). These feelings are highly dependent on cultural and religious backgrounds. For instance, in a study conducted in Finland reduction of bleeding with IUS20 was associated with a higher satisfaction with the method, with amenorrhoeic women reporting satisfaction rates as high as 100% (41).

Satisfaction with bleeding pattern changes with IUS12 has shown to be high, with ~77% of women reporting being ‘satisfied’ or ‘very satisfied’, and only ~4.8% of women discontinuing because of bleeding changes (22). A recent randomized, multicentre, phase III profiling study comparing IUS12 with combined oral contraception (COC, 30 μg ethinyl estradiol and 3 mg drospirenone) conducted among 560 women aged 18–29 years (~75% nulliparous) also showed a considerable percentage of IUS12 users who reported being ‘very satisfied’ or ‘somewhat satisfied’ with their bleeding pattern (63.1% and 70.0%, respectively) (42). This was so despite the decline over time in the number of bleeding or spotting days experienced, leading to 13.5% of women with amenorrhoea vs. 0.5% of women taking COC after 18 months (43). Irregular bleeding was reported in 21.8% of women using IUS12 and 7.5% of women using COC (43). Another randomized, multicentre, two-arm, open-label phase III study conducted among 759 women aged 18–35 years using either IUS12 or an etonogestrel subdermal implant during 12 months has also reported higher satisfaction rates with IUS12, with almost twice as many women in the IUS12 group as in the etonogestrel implant group.
being ‘very satisfied’ or ‘somewhat satisfied’ with their bleeding pattern at the end of the study period. At this time, the mean number of bleeding days (excluding spotting) was lower with IUS12, while the percentages of women with amenorrhea and prolonged bleeding were higher with the etonogestrel implant (44).

Safety

Despite the low systemic exposure to LNG with IUS20, progestin-related adverse events are still observed in some users (25). The much lower dose of the IUS12 is expected to reduce these undesirable side effects. In the phase II study, frequency of overall adverse events was in fact lower with IUS12 (66.5% vs. 72.4% with IUS20). Progestin-related adverse events like headache, acne or seborrhea, which are among the most common with IUS12 (32), showed also a lower frequency compared with IUS20 (21) (Table 3). Ovarian cyst was the only drug-related adverse event that was the most frequently observed in all IUS users in the phase II study, with a great dose-dependent increase of the incidence (5.9% with IUS12 up to 22.0% with IUS20, P < 0.0001) (21). This was also confirmed in the phase III study, where the incidence of ovarian cyst was significantly lower with the IUS12 with respect to IUS16 (7.7% vs. 13.8%, respectively) (Table 3)(22). It should be noted that reported cysts included cysts > 3 cm in diameter, regardless of symptoms, which is likely to overestimate the clinical importance of this adverse event. Similarly, given that the presence of progestin-related adverse events was investigated at each visit, their frequency might be higher than when spontaneously reported (21). Removal due to adverse events was only slightly lower with IUS12 than with IUS20 (15% vs. 17%, respectively) (21).

In the phase III study, acne and ovarian cysts were the most frequent adverse events (10.1% and 7.7%). Incidence of acne showed no relation with progestin content (22). Severe adverse
events included perforations and ectopic pregnancies, being reported by 0.6% of women in the IUS12 group and by 1.0% of women in the IUS16 group. During the 3-year period, 21.9% and 19.1% of women respectively, discontinued the use of the device due to any adverse event (22). Adverse event-related discontinuation rates were slightly more frequent among nulliparous women (Table 4). Of the total amount of women in the IUS12 group, 57% completed the study, although the desire to become pregnant before the end of the study was a major reason for discontinuation (26).

The above-mentioned phase III study that compared IUS12 and COC showed that the incidence of drug-related adverse events was higher among IUS12 users (36.6% vs. 15.3% with COC) due to the relatively higher incidence of acne (9.4% vs. 0.4%) and ovarian cyst (5.7% vs. 0.0%). Abdominal pain was also more frequent (5.0 vs. 0.0%). No differences were found in the percentage of women discontinuing the study due to any adverse event (8.9% vs. 8.8%) (43).

Dysmenorrhoea

Dysmenorrhoea improved during the 3-year study period, both in the phase II and in the phase III studies, with no differences among the three IUS (21, 39). In the phase III study, mean days of dysmenorrhoea (any severity) decreased from 14.5 ± 14.1 days at month 1 to 4.3 ± 6.3) days at month 12 (39), being one of the main added values of this new IUS.

Satisfaction

Overall, 95% of women at the phase III study reported being ‘very satisfied’ or ‘somewhat satisfied’ with the IUS, with ~80% of them expressing their wish to continue using the device after the study (22). The phase III study comparing IUS12 and COC also reported high
overall satisfaction rates (> 80%) during the 18-month follow-up, with 66.2% of IUS12 users expressing their wish to continue using the device after study completion, compared to 48.8% of women taking COC (42).

Other concerns associated with the use of IUS/ IUDs

Among the 2,884 women participating in the phase III study, the percentage of women suffering PID with IUS12 and IUS16 was also low, and even lower among nulliparous women: 0.1% vs. 0.6% in the parous women group (P = 0.099). In any case, given the serious consequences of PID, including infertility, patients should be fully evaluated for risk factors associated with PID. OMS eligibility criteria for contraception gives a ‘category 1’ (no restriction) to the use of LNG-IUS in women with a history of PID if she had a subsequent pregnancy, while a ‘category 2’ (advantages generally outweigh risks) to women with no subsequent pregnancy or with a current episode of PID (18).

With respect to the risk of ectopic pregnancy, its incidence over the 3-year period was very low, and independent of parity: 0.4% in the nulliparous group, and 0.3% in the parous group (P = 0.7440)(22). This rate is lower than that observed in women using no method and similar to that described for other IUDs/IUS (45-47).

IUS12 in adolescents

A single-arm, 12-month phase III study of IUS12 was conducted in 36 centres in eight European countries with the aim of specifically analysing the effectiveness of IUS12 in postmenarcheal adolescents (12–17 years). IUS12 was shown to be highly effective in this population, with no pregnancies taking place during the study period. According to the known bleeding profile of the IUS12, these adolescents generally experienced shorter, less frequent
bleeding and a reduction in dysmenorrhea over time during use. IUS12 was generally well tolerated, with no new or unexpected safety events being associated with its use. IUS12 was associated with high levels of user satisfaction, with more than 80% of women completing the study. Insertions were rated by investigators as ‘easy’ in 94.4% of cases, and most women (>50%) reported no more than ‘mild’ pain during insertion (48).

The importance of information and advice
Lack of awareness of IUD/IUS is also an important barrier to the use of these methods (49-51). In a study where attitude towards IUDs/IUS was analysed, positive attitude significantly increased after a brief educational intervention focusing on benefits and risks, cost-efficacy issues and possible adverse events. Importantly, women were also allowed to physically interact with the device, and a demonstration of how the IUD was inserted and removed was also given (52, 53). The relevance of providing enough information has also been highlighted in another study conducted in Finland among 17,914 IUS users, where information received at the time of insertion strongly correlated with increased user satisfaction (54).

Conclusion
Summarizing, the new IUS Jaydess®, with a lower LNG content and a smaller size compared to Mirena®, is associated with easier and less painful placement while keeping a similar efficacy, independently of age or parity. The lower LNG systemic exposure is associated with a lower frequency of overall adverse events including progestin-related events and a lower frequency of amenorrhoea. IUS12 has also shown to significantly reduce dysmenorrhoea. Few women discontinue the use Jaydess® due to progestin-related adverse events or changes in bleeding patterns. Other concerns such as the risk of PID or the incidence of ectopic pregnancy are very low. Level of satisfaction is very high, with 95% of women reporting
being ‘very satisfied’ or ‘somewhat satisfied’. Compared to other IUDs/IUS, Jaydess® may be better suited for young women, including nulliparous women. Its 3-year maximum duration of use provides flexibility regarding family planning, while its smaller size may be of benefit when cervical canals are tighter and/or when uterine cavities are smaller.
Table 1. Placement success rates, use of dilation and administration of pain medications by parity status (IUS12 and IUS16 groups combined) (26).

<table>
<thead>
<tr>
<th>Parity status</th>
<th>Nulliparous (N = 1,130)</th>
<th>Caesarean section only (N = 357)</th>
<th>Previous vaginal delivery (N = 1,397)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placement successful at first attempt, %</td>
<td>95.0</td>
<td>96.1</td>
<td>96.9</td>
</tr>
<tr>
<td>Placement successful at second attempt*, %</td>
<td>94.0 (47/50)</td>
<td>92.3 (12/13)</td>
<td>97.7 (42/43)</td>
</tr>
<tr>
<td>Women in whom placement was performed without dilation, %</td>
<td>90.8</td>
<td>93.8</td>
<td>97.6</td>
</tr>
<tr>
<td>Women who were administered local anaesthesia, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before the procedure</td>
<td>14.5</td>
<td>5.9</td>
<td>4.5</td>
</tr>
<tr>
<td>When the procedure proved difficult</td>
<td>0.5</td>
<td>0.0</td>
<td>< 0.1</td>
</tr>
<tr>
<td>When the procedure proved painful</td>
<td>0.3</td>
<td>0.0</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Women who were administered anaesthesia, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before the procedure</td>
<td>48.6</td>
<td>24.1</td>
<td>21.0</td>
</tr>
<tr>
<td>When the procedure proved difficult</td>
<td>4.3</td>
<td>06</td>
<td>1.1</td>
</tr>
</tbody>
</table>

*Subgroup who required a second attempt
Data taken from Nelson A. et al. 2012 (26)
Table 2. Frequency of amenorrhoea, and of infrequent, frequent and prolonged bleeding up to 3 years with IUS12 (32).

<table>
<thead>
<tr>
<th></th>
<th>First 90 days</th>
<th>Second 90 days</th>
<th>End of year 1</th>
<th>End of year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amenorrhoea</td>
<td>< 1%</td>
<td>3%</td>
<td>6%</td>
<td>12%</td>
</tr>
<tr>
<td>Infrequent bleeding</td>
<td>8%</td>
<td>19%</td>
<td>20%</td>
<td>22%</td>
</tr>
<tr>
<td>Frequent bleeding</td>
<td>31%</td>
<td>12%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Prolonged bleeding*</td>
<td>59%</td>
<td>17%</td>
<td>9%</td>
<td>3%</td>
</tr>
</tbody>
</table>

*Women with prolonged bleeding may have also been included in one of the other categories (excluding amenorrhoea)
Table 3. Summary of adverse events considered to be possibly treatment-related reported by at least 3% of IUS12 users in both, the phase II and phase III studies* and in Mirena® users in the phase II study† (21, 22).

<table>
<thead>
<tr>
<th>Adverse event by MedDRA, n (%)</th>
<th>Phase II study</th>
<th>Phase III study (N = 1,432)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IUS12 (N = 239)</td>
<td>Mirena® (N = 254)</td>
</tr>
<tr>
<td>Progestin-related</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>28 (11.7)</td>
<td>44 (17.3)</td>
</tr>
<tr>
<td>Nausea</td>
<td>13 (5.4)</td>
<td>17 (6.7)</td>
</tr>
<tr>
<td>Altered mood</td>
<td>34 (14.2)</td>
<td>25 (9.8)</td>
</tr>
<tr>
<td>Oedema</td>
<td>10 (4.2)</td>
<td>17 (6.7)</td>
</tr>
<tr>
<td>Acne</td>
<td>65 (25.9)</td>
<td>72 (28.3)</td>
</tr>
<tr>
<td>Seborrhoea</td>
<td>16 (6.7)</td>
<td>20 (7.9)</td>
</tr>
<tr>
<td>Breast pain</td>
<td>15 (6.3)</td>
<td>18 (7.1)</td>
</tr>
<tr>
<td>Breast discomfort</td>
<td>46 (19.2)</td>
<td>57 (22.4)</td>
</tr>
<tr>
<td>Bleeding-related</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysmenorrhoea</td>
<td>12 (5.0)</td>
<td>11 (4.3)</td>
</tr>
<tr>
<td>Vaginal haemorrhage</td>
<td>9 (3.8)</td>
<td>4 (1.6)</td>
</tr>
<tr>
<td>Infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vulvovaginal candidiasis</td>
<td>10 (4.2)</td>
<td>6 (2.4)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian cyst**</td>
<td>14 (5.9)</td>
<td>21 (8.6)</td>
</tr>
<tr>
<td>Abdominal distention</td>
<td>33 (13.8)</td>
<td>4 (1.6)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>13 (5.4)</td>
<td>14 (5.5)</td>
</tr>
</tbody>
</table>

MedDRA: Medical Dictionary for Regulatory Activities terminology.
*Or by at least 3% in one of the studies when not reported in the other one.
†Differences in adverse events incidence between both IUS12 may be due to differences in reporting.
** Cysts described as abnormal, non-functional, and/or > 3 cm in diameter regardless of the presence or absence of associated symptoms.
Table 4. Completion and discontinuation rates of IUS12 by parity status.

<table>
<thead>
<tr>
<th>Completion and discontinuation rates by reason, %</th>
<th>Parous (N = 1,754)</th>
<th>Parous (N = 1,754)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1 completion rate, %</td>
<td>78.8</td>
<td>83.1</td>
<td>NE</td>
</tr>
<tr>
<td>Cumulative 3-year completion rate, %</td>
<td>54.3</td>
<td>59.0</td>
<td>NE</td>
</tr>
<tr>
<td>Cumulative 3-year completion rate by reason, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reasons unrelated to adverse events*</td>
<td>19.6</td>
<td>21.7</td>
<td>0.3510</td>
</tr>
<tr>
<td>Adverse events†</td>
<td>26.1</td>
<td>19.2</td>
<td>0.0025</td>
</tr>
<tr>
<td>Changes in menstrual bleeding pattern†</td>
<td>5.2</td>
<td>4.5</td>
<td>NE</td>
</tr>
</tbody>
</table>

Adapted from Nelson, A. et al 2012 (26)
NE: not evaluated
*Include withdrawal of consent, protocol deviation, death, lost to follow-up, pregnancy, and “other reasons”
†These subjects are a subset of women who discontinued the use of the device “due to adverse events”
Figure 1. Schematic comparison of plasma hormone concentrations for different methods of contraception (27-31).
References

29. Kuhnz W, al-Yacoub G, Fuhrmeister A. Pharmacokinetics of levonorgestrel in 12 women who received a single oral dose of 0.15 mg levonorgestrel and, after a washout phase, the same dose during one treatment cycle. Contraception 1992; 46(5): 443-54.

42. Buhling KJ, Rybowski S, Roth K, Rosen K. A multicentre, randomised, open-label, Phase III profiling study comparing a low-dose levonorgestrel intrauterine system with

