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Abstract: The aim of this study was to analyse the effect of an individual training programme
based on the tensiomyography results in the contractile properties of the knee flexor muscle with
football players. Thirty-four subjects were recruited and assigned to an experimental (EG) or control
group (CG). The contraction time and the muscle displacement measured by tensiomyography
were assessed on two occasions: pre-time (middle of the competitive season, January) and post-
time 8 weeks later. The training programme aimed to improve muscle tone and explosiveness
according to the individual needs of each player. There was a significant interaction between time
(assessment points) × group (EG vs. CG) × muscle in multivariate analysis. The findings confirmed
that mechanical and neuromuscular characteristics changed over time and varied with the individual
training programme (EG vs. CG) and the muscle being analysed. The 90◦ change of direction worsens
the execution time in the control group and is maintained in the experimental group. The individual
training programme, based on the tensiomyography results, showed improvements in the contractile
properties in the muscles. Football coaches could use the programme to improve neuromuscular
characteristics that improve performance and reduce the risk of muscle injury.
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1. Introduction

Football is a multifaceted team sport that requires well-developed speed, agility,
balance and power to be played at an elite level [1]. In addition to possessing high levels
of physical fitness, knowledge about the game and a good decision-making process are
the key abilities [2]. The analyses show that football players cover 9 to 12 km during a
match; of this, 8% to 12% is high-intensity running or sprinting [3]. The modern game is
characterised by dynamic movements, such as short and long sprints, impulsive reactions,
and quick changes of direction (COD) [4]. COD ability is a multifactorial skill, which,
in its performance, depends on neuromuscular coordination, leg muscle strength and
power [4] and straight sprinting speed [5]. During the COD, it is necessary to execute
eccentric force rapidly to decelerate and develop the concentric strength to accelerate in the
new direction [4]. The study of Jones et al. [6] found that COD correlates with eccentric
knee-flexor strength and maximal eccentric lower-body strength.

Football players must satisfy a given neuromuscular demand at different intensities;
this is the reason neuromuscular performance can be considered as the ability of the system
to functionally control movements through proper coordination of muscular force and
endurance via muscle recruitment pattern, proprioceptive feedback and reflex activity [7].
Impairments in neuromuscular performance can potentially increase injury risk [8]. Neuro-
muscular injury prevention training has been shown to reduce the risk of lower extremity
injury [8]. Neuromuscular performance parameters, such as thigh, hip and trunk muscle
strength, as well as postural control, are the main modifiable risk factors for lower extremity
injuries in different populations [9].
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Additionally, there is enough evidence to consider that muscle strength and balance
are fundamental aspects in the prevention of lower body injuries in football players. In this
regard, in the study by Lehance et al. [10], it was observed that out of 57 players, 36 had
suffered a previous injury of some relevance to the lower limb, and of these 36 players,
23 still showed significant muscle imbalances: bilateral concentric asymmetry, eccentric
asymmetry and asymmetry in the flexor/quadriceps ratio in both eccentric and concentric
contractions. Focusing on avoiding these imbalances and strengthening the musculature
can help prevent injuries. A high number of intense high-speed actions require the ham-
strings to perform in a position of extreme stretch. The predominant hamstring injury
mechanism in football occurs during high-speed running, deceleration or acceleration
efforts [11]. The myotendinous junction of the long head of the biceps femoris (BF) is
most commonly injured [12]. This means that significant muscle strength imbalances may
increase muscular discomfort and result in high injury risk [13].

The neuromuscular system of football players is one of the most important factors
in their competitive performance [14], and its characteristics can be assessed by means of
tensiomyography (TMG). TMG is a non-invasive technique that by means of a portable
device, can measure the properties of individual superficial muscles by recording the
isometric muscle contraction induced externally by electrostimulation [15]. TMG can
provide information about the muscle fibre-type composition, muscle tone, muscle fatigue
and muscle imbalance and asymmetries [16]. This is relevant because it is necessary to
conduct regular physiological monitoring of players to assess the effectiveness of training.
However, monitoring of this kind requires knowledge of a player’s initial status, since
these reference values of physical and physiological condition are known to change as the
season progresses [17].

We have found no studies in which strength training based on TMG data has been
compared to traditional training in football players. The aim of this study was to analyse
the effect of the intervention programme, based on the TMG results, on improving the
contractile properties of the knee flexor muscles (biceps femoris and semitendinosus), in
the time of the COD 90◦ test in football players and on hamstring injuries.

2. Materials and Methods
2.1. Subjects

The sample comprised 34 male football players, divided into two groups. All players
have more than 10 years of football training experience. The experimental and control
groups were teams in the Spanish second division “B”. The teams were trained around 8 to
10 h per week in season, depending on the competition calendar (one or two games per
week). After being informed of the benefits and risks of the purpose and testing procedures,
subjects signed a written informed consent form before participation. The present study
was approved by the local research ethics committee, in accordance with the Declaration of
Helsinki.

2.2. Design and Procedure

A comparative experimental study was conducted to assess in-season changes in the
mechanical and neuromuscular characteristics of knee flexor muscles (biceps femoris—BF
and semitendinosus—ST) and the time in the 90◦ COD test. For the two clubs, the first
assessment was conducted in their club’s medical facilities in the second week of January.
The second assessment was 8 weeks later under the same conditions. The two assessments
were performed before the training session, and there were 20 h between the TMG test and
the last training session.

The results of this first TMG assessment were used to develop individual training
programmes for each player only in the experimental group. The objectives of the training
were to improve the muscle tone and explosiveness of the muscles that were deficient.
Muscle displacement values indicate muscle tone, and contraction time indicates explosive-
ness. These parameters vary according to muscle group, sport, age and the athlete’s own
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repeated data. Although muscle displacement (Dm) values between 4 and 7 mm are often
accepted [18], it also depends on the muscle measured. Above these data indicates lack
of muscle tone or fatigue and below stiffness or overload [18,19]. As for the contraction
time (Tc), some studies have referred to adequate Tc data between 20 and 30 ms [20]; above
these data may also indicate fatigue [21].

The individual training programme plan (Figure 1) was performed at the beginning
of each training session after the warm-up and was carried out for 8 weeks. The players
performed four to five exercises, and the load was increased every week, with a volume of
2–4 sets of ten repetitions. In cases where there was a deficit of explosiveness, the speed of
execution of the exercises was maximal. The recovery time between sets was 1 min and
1.5 min if they required maximum execution speed. There are some of the individualized
exercises that were carried out: focusing on the semitendinosus: Nordic curl, Single-leg
bridge, prone leg curl; and focusing on the biceps femoris: glute-Ham rise, single-leg
bridge with straight leg in suspension, single-leg bridge with straight leg [22]. After the
individualised program, which lasted between 15 and 20 min, the experimental group
continued with their usual physical and tactical training.
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The control group did not perform any specific training based on tensiomyography
assessments. During the 8 weeks that the experiment lasted, they only did their usual
training.

2.3. Tensiomyography Assessment

TMG was used to measure the radial muscle belly displacement (mm) and the time
contraction (Tc) in milliseconds of the long head of the BF and the semitendinosus (ST),
knee flexor muscles. Measurements were taken under static and relaxed conditions. The
knee flexor muscles were measured with the subject in the prone position and the knee
joint fixed at an angle of 150◦ by means of a specially designed wedge cushion [23]. All
measurements were taken by two researchers with expertise in the use of TMG, with more
than 7 years of experience: one in charge of controlling the intensity and frequency of
the electrical stimulus, and the other in charge of directing the placement of the sensor
and the participant’s status in a static and relaxed position. The TMG assessments were
performed once the subject had been in a relaxed supine position for 5–8 min [23]. Electrical
stimulation was applied with a pulse duration of 1 millisecond (ms) and an initial current
amplitude of 30 milliamps (mA), which was progressively increased in 5 mA steps until
reaching 110 mA (maximal stimulator output) or until the muscular response did not
change despite increasing the intensity of the stimulus [24]. Consecutive stimuli were
separated by a rest period of 10 s. Measures of radial muscle belly displacement were
acquired by means of a digital displacement transducer (GK 30, Panoptik d.o.o., Ljubljana,
Slovenia) set perpendicular to the thickest part of the muscle belly. The thickest part
of the muscle belly was determined visually and through palpation during a voluntary
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contraction. The self-adhesive electrodes (5 × 5 cm, Cefar-Compex Medical AB Co., Ltd.,
Malmö, Sweden) were placed symmetrically at a distance of 5 cm from the sensor [25].
The positive electrode was positioned above the measurement point and proximally, while
the negative electrode was placed below this point and distally. The electrical stimulus
was produced by a TMG-S2 (EMF-FURLAN & Co. d.o.o., Ljubljana, Slovenia) stimulator.
Each measurement involved recording the following parameters of involuntary isometric
contraction produced by the electrical stimulus: maximum radial muscle belly displacement
(Dm) in millimetres; time contraction (Tc) as the time in milliseconds from 10% to 90% of
the muscle displacement (Dm).

2.4. Change of Direction Assessment

The COD sprint of 90◦ test (COD 90◦) was carried out on a synthetic plain and indoor
floor (Taraflex, Madrid, Spain). The time spent in the sprints was measured with photoelec-
tric cells connected to a telemetry power system using a stopwatch with a precision up to
the millisecond (Racetime2, Microgate, Bolzano, Italy).

The COD 90◦ tests(Figure 2) were assessed using a 10-metre sprint: five metres straight
ahead, a turn of 90◦ and then five metres to the finish line, one sprint to the left side and a
second one to the right side, with a 2 min rest interval between attempts. The front foot
was placed 0.5 metres before the first timing gate, and subjects started voluntarily, so the
reaction time was eliminated. We recorded the total time of completing the COD sprintway,
and the best result of the two attempts of each sprinting side was selected for the statistical
analysis [26].
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2.5. Statistical Analysis

In order to verify the normal distribution of the data, a Shapiro–Wilk test was con-
ducted. The variables which had missed any value, were replaced by linear interpolation
method [27]. Due to their distribution, variables that did not have a normal distribution
were transformed using a logarithmic transformation. A Shapiro-Wilk test was reconducted
to verify the normal distribution of the variables. Mean and standard deviation were calcu-
lated for descriptive analysis. A two-way MANOVA was performed. Three factors were
defined: time factor (pre- and post- training), muscle factor (BF and ST) and group factor
(EG and CG). When a significant F-value was achieved, a Bonferroni post hoc procedure
was performed [28]. Small (<0.06), medium (0.06–0.13) and large (>0.14) effect sizes were
calculated using eta partial squared (η2

p). All statistical analyses were performed using
SPSS 24.0 (IBM Corporation, Armonk, NY), and the level of statistical significance was set
at p < 0.05.

3. Results

Table 1 shows baseline characteristics of the sample. The are no differences between
both groups in age, height and weight variables.
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Table 1. Baseline characteristics.

Sample CG EG
Mean SD Mean SD Mean SD

n 34 15 19
Age (years) 24.3 4.64 21.07 1.73 26.68 4.69
Height (cm) 179 7.07 178 8.68 179 5.7
Weight (kg) 74 6.16 72.79 7.23 74.89 5.27

Note: n, number; SD, standard deviation; CG, control group; EG, experimental group.

3.1. TMG Parameters

Table 2 shows the descriptive analysis in muscular response in both legs, muscles
and groups.

Table 2. Descriptive values of TMG in muscular response for both legs, muscles and groups.

Values
Pre Post

Leg Muscle Var Group Mean SD Mean SD

Right BF Tc (ms) CG 26.02 8.54 25.57 18.47
EG 29.92 7.68 37.75 14.89

Dm (mm) CG 4.23 2.29 4.15 1.68
EG 5.35 1.79 4.79 1.91

ST Tc (ms) CG 48.27 6.65 30.42 10.39
EG 47.42 9.05 44.43 11.36

Dm (mm) CG 7.80 2.11 5.88 2.28
EG 9.30 2.81 6.24 2.96

Left BF Tc (ms) CG 43.61 18.89 30.85 19.14
EG 38.07 16.27 36.34 11.40

Dm (mm) CG 6.83 2.87 6.34 1.85
EG 6.17 3.11 5.44 2.76

ST Tc (ms) CG 46.96 6.44 35.58 9.38
EG 49.54 7.34 41.11 12.32

Dm (mm) CG 8.54 1.67 6.45 1.57
EG 7.82 2.58 6.41 3.18

Note: BF, biceps femoris; ST, semitendinosus; Tc, time contraction; Dm, maximal radial muscle-belly displacement;
Pre, first assessment moment; Post, second assessment moment; Var, variable; CG, control group; EG, experimental
group.

The Tc only increases in the right BF of the experimental group; in the rest of the
muscles and in both groups it decreases. The Dm decreases in both groups and in both
muscles.

3.1.1. Right Leg

Table 3 shows the multivariate analysis of the right leg. All factors except muscle × group
and time × muscle × group have a significant difference with a large effect size.

Table 3. Multivariate analysis values of right leg.

F-Value Df p-Value η2
p 1−β

Time 5.540 2,31 0.009 0.263 0.817
Time × Group 5.348 2,31 0.010 0.257 0.803

Muscle 19.109 2,31 <0.001 0.552 1
Muscle × Group 1.632 2,31 0.212 0.095 0.318
Time × muscle 16.160 2,31 <0.001 0.510 0.99

Time × muscle × group 0.092 2,31 0.912 0.184 0.063

Note: Df = Degree of freedom, η2
p = Eta partial Square, 1 − β = power statistic.
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3.1.2. Left Leg

Table 4 shows the multivariate analysis of the left leg. No interaction with the group
factor has a significant difference.

Table 4. Multivariate analysis values of left leg.

F-Value Df p-Value η2
p 1−β

Time 3.788 2,31 0.034 0.196 0.65
Time × Group 0.179 2,31 0.837 0.011 0.07

Muscle 4.151 2,31 0.025 0.21 0.69
Muscle × Group 1.178 2,31 0.321 0.071 0.24
Time × muscle 4.054 2,31 0.027 0.207 0.68

Time × muscle × group 1.546 2,31 0.229 0.091 0.30

Note: Df = Degree of freedom, η2
p = Eta partial Square, 1 − β = power statistic.

Table 5 shows the factors and interaction analysis of both legs. There is a significant
difference in interaction time × muscle × group in Tc value in the right leg.

Table 5. Factors and interaction analysis in both legs.

p-Value η2
p

Leg Var Ti TixG M MxG TixM TixMxG Ti TixG M MxG TixM TixMxG

Right Tc (ms) <0.001 0.005 <0.001 0.089 <0.001 0.007 0.471 0.296 0.952 0.12 0.476 0.278
Dm (mm) 0.003 0.363 <0.001 0.41 0.001 0.413 0.33 0.036 0.866 0.03 0.365 0.029

Left Tc (ms) 0.002 0.171 0.066 0.525 0.627 0.461 0.332 0.076 0.134 0.017 0.01 0.023
Dm (mm) 0.071 0.864 0.024 0.665 0.135 0.543 0.13 0.001 0.194 0.008 0.09 0.016

Note: Ti, time; TixG, time-group interaction; M, muscle; MxG, muscle-group interaction; TixM, time-muscle
interaction; TixMxG, time-muscle-group interaction; η2

p = partial eta squared; Tc, time contraction; Dm, maximal
radial muscle-belly displacement.

3.2. Change of Direction Test

Figure 3 shows how CG increases its time in COD 90◦ after the training programme in
both sides while EG remains similar.
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3.2.1. Right Side

There are significant differences in the time factor (F (1,32) = 9.184, p = 0.005, η2
p = 0.223,

1 − β = 0.836). That is, there are significant changes between pre- and post-test regardless of
group. Furthermore, there are differences in the time x group interaction (F (1,32) = 13.216,
p = 0.001, η2

p = 0.292, 1 − β = 0.94). There are differences in the pre between both groups
(p < 0.001) and in the post (p = 0.038). In addition, there are differences between pre and
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post depending on the group. The control group has significant differences between pre
and post (p < 0.001), while the experimental group does not (p = 0.652).

3.2.2. Left Side

There are significant differences in the time factor (F (1,32) = 15.933, p < 0.001, η2
p = 0.332,

1 − β = 0.972). That is, there are significant changes between pre and post regardless of
group. Furthermore, there are differences in the time × group interaction (F (1,32) = 16.242,
p < 0.001, η2

p = 0.337, 1 − β = 0.974). That is, there are differences between pre (p < 0.01)
and post (p = 0.008) depending on the group. There are differences between the two groups
in both pre and post. In addition, the control group has significant differences between pre
and post (p < 0.001), while the experimental group does not (p = 0.977).

4. Discussion

The main findings of this study are that: (a) the effect of the individual training
improves muscle tone in the EG more than in the CG in both muscles (BF and ST). (b) The
tone improvement is more relevant in the semitendinosus than in the biceps femoris in the
right leg. (c) The 90◦degree COD worsens the execution time in the control group and is
maintained in the experimental group. Also, during the research, the experimental group
did not have any hamstring injuries from the beginning of the research until the end of the
season, but there were hamstring injuries in the control group in four football players.

The time of contraction in milliseconds, measured with TMG, reflects the explosiveness
of the muscle. A muscle with a short time of contraction indicates high explosiveness, and
a muscle with a long time of contraction shows a slow muscle [29]. The Tc also depends
on the percentage of rapid or slow fibres in the evaluated muscle. When the percentage of
rapid fibres increases, the Tc decreases [19].

Muscular displacement, measured by TMG, is a parameter that reflects muscle tone
and stiffness [19]. If the stimulated muscle has great displacement, it indicates a lack of
muscular tone; when the muscle has little displacement, it shows stiffness in the muscle. On
the contrary, if the muscle’s displacement is adequate, it demonstrates good muscle tone.

In our study, there are significant differences in the Tc on the right leg in the time-
muscle-group interaction. In addition, these differences occur in ST and BF between pre-
and post-test, and these changes are different in both groups (Tables 3–5). The changes in BF
are greater in the EG than in the CG. In the control group, contraction time decreases, and
in the EG, the contraction time increases (right leg CG: pre-test 26.02 ± 8.54 ms, post-test
25.57 ± 18.47 ms and in the EG pre-test 29.9 ± 7.68 ms, post-test 37.5 ± 14.89 ms), which
means that they are slower. This could be an indicator of fatigue because the muscle takes
longer to contract, maybe due to the increased competitive density in EG (two match per
week) and the intervention programme. It can be further explained by factors related
to the central nervous system, such as changes at the spinal level [30] or by peripheral
factors associated with the muscle, such as failure of transmission at the neuromuscular
junction [31]. In addition, the biceps femoris is a muscle that is more fatigued than the
ST [32]. Specifically, it has been observed that the acute effects of training generate a
decrease in Tc [33,34] and that the chronic effects, more sustained over time, generate an
increase in Tc. Our results disagreed with Loturco et al. [35], in which after an 8-week
training programme, the BF reduced the contraction time (pre-test 24.5 ± 10.6 ms, post-test
19.6 ± 9.3 ms). The athletes completed, on average, eight training sessions per week, which
consisted of ≈ 6 technical and tactical (game-based training) and ≈ 2 strength-power (e.g.,
unloaded vertical and horizontal jumps, and squat jump) training sessions. The period was
implemented in the transition between two championships, so no official matches had been
played. Moreover, they did not individualise the specific training programme and had no
control group. However, the increment of time contraction in BF in our study also appears
in the study of García-García et al. [36], (pre: 28.8 ± 5.9 ms, post: 29.8 ± 4.6 ms). This
study also carried out individualised training on a group of football players and compared
with participants who were physically active, non-football playing males who had not
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undergone any systematic training process, after a 7-week preseason with a high load and a
10-week gap between tests. This could imply that in periods of higher load, the contraction
time of the BF increases; this is a fatigue indicator. However, further studies are needed to
confirm these findings.

In relation to Dm in our study, in BF, this decreased more in the EG than in the CG,
which hardly changed (CG pre: 4.23 ± 2.29 mm, post: 4.15 ± 1.68 mm, and the EG pre:
5.35 ± 1.79 mm, post: 4.79 ± 1.91 mm). This can be interpreted as meaning that the
individualised programme based on the TMG values improved the muscle tone of the
bicep femoris, which is similar to the findings of the Loturco et al. [35] study with Brazilian
football players (pre-test: 4.48 ± 1.9 mm, post-test: 3.04 ± 2.18 mm), in which the BF muscle
tone also improved.

Regarding ST, both groups, EG and CG, showed improved Dm, and therefore im-
proved their muscle tone. However, the EG has a much greater improvement (CG pre:
7.80 ± 2.11 mm, post: 5.88 ± 2.28 mm, and the EG pre: 9.30 ± 2.81 mm, 6.24 ± 2.96 mm).
Many of the exercises prescribed to the EG were aimed at this muscle, as the ST was
the muscle with the worst values in the initial measurement. We have not found any
studies that analyse pre and post by measuring the ST. In fact, there are few studies that
measure the ST either in experimental or descriptive research, nor is this muscle usually
measured in practice, which is very striking given its importance and its relationship with
the BF. To date, there are two studies in which this muscle is measured at two different
times of the season [37]. In a previous study by Fernández-Baeza et al. (2022), the Dm
of the ST worsened during the season, increasing in both the right and left leg (right leg
8.72 ± 2.21 mm vs. 8.91 ± 2.08 mm; left leg 8.41 ± 2.21 mm vs. 10.09 ± 2.95 mm), which
means that as the season progressed, the muscle tone of the ST worsened [38]. The same
outcome was observed in the study by Piqueras-Sanchiz et al. [37]. Although this was
performed in futsal, the Dm of the ST also worsened during the season (9.7 ± 2.0 mm vs.
10.6 ± 2.0 mm). It seems that the ST is less activated than the BF during sprinting [32,39],
with especially less eccentric activation [40]. This seems to be the explanation for why, as
the season progresses and the sprinting frequency increases, the ST data worsen, and the
BF improves. Therefore, our study, which implements specific work to improve ST, is an
interesting solution to prevent the worsening of ST per se during competition.

With regard to the ST contraction time, this decreases in both groups and therefore im-
proves explosiveness. However, the CG is the one that improved this variable more (CG pre:
48.27 ± 6.65 ms, post: 30.42 ± 10.39 ms, EG pre: 47.42 ± 9.05 ms, post: 44.43 ± 11.36 ms).
This may be due to the age of the players, who are younger in the CG, as explosiveness is
lost as we get older [41]. Age is strongly associated with a decline of physical capacities,
and poorer sprint mechanical output values were observed among male players over 28
years old than for the other male age categories [42]. According to Korhonen et al. [43],
age-related sprint performance decline is mainly explained by the reduction in the size
of fast fibres, and a lower maximum shortening velocity of type I myosin heavy-chain
fibres. While mean peak performance in elite sprint specialists is achieved at 25–26 years of
age [44], previous cross-sectional studies indicate that sprint capacities in football players
peaks several years earlier [3,45].

Regarding the 90◦ COD test, although there were no statistically significant differences,
it was observed that the CG worsened its COD test values on both sides, and the EG
maintained its results for the left side 90◦ COD test and improved the right side 90◦ COD
test (left 90◦ COD CG pre: 2.25 ± 0.08 s, post: 2.31 ± 0.10 s, EG pre: 2.43 ± 0.08 s, post:
2.43 ± 0.08 s; right 90◦ COD CG pre: 2.30 ± 0.11 s, post: 2.34 ± 0.09 s, EG pre: 2.45 ± 0.09 s,
post 2.44 ± 0.09 s). There are significant differences in the time factor (p = 0.009 right side
and p = 0.02 left side) and in the time × group interaction (p = 0.001 right side and p = 0.018
left side). The CG has significant differences between pre and post (p = 0.001 right side and
p = 0.007 left side), while the EG does not (p = 0.334 right side and p = 0.966 left side). This
is likely due to the improvement obtained by the EG in the muscle tone of the ST of the
right leg, because it is a muscle that participates in the eccentric action in deceleration and
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concentric action in acceleration [46]. In any case, it is important to note that the tests were
carried out at the end of the season, so it is important not to worsen the COD test times in
that phase where fatigue usually appears.

Likewise, the individualised training plan had eccentric exercises that have been
shown to be a good tool to improve in COD and TMG variables [47]. The study of
Loturco et al. [35] performed a COD test consisting of four 5-metre sections marked with
cones set at 100◦ angles, measured at two different times of the season. Although the COD
angle was different from our study, and therefore the times as well, an improvement was
observed in the times (pre: 3.66 ± 0.12 s, post: 3.58 ± 0.11 s), which coincides with our
study in the right-side COD test.

5. Conclusions

This research demonstrates the importance of evaluating our athletes at different times
of the season, in order to be able to individualise training according to the values obtained
in the TMG. Likewise, football coaches should implement a strength training programme
with analytical exercises focused on the semitendinosus, to balance the intermuscular
coordination produced by training and competition between the BF and the ST.

Eight weeks of an individual training programme based on tensiomyography in
the knee flexor muscles (BF and ST) improved the muscle contractile properties in the
contraction time and muscle displacement, and maintain, without worsening, the execution
times in the 90◦ COD test in football players. Further studies are required along the lines of
the same methodology in the use of TMG in different professional football teams, in order
to implement individualised training programmes based on the TMG data to improve
muscle tone and explosiveness in football players. Finally, the limitations of the study were
that the study was carried out with professional football players in the competitive period
and could be influenced by training fatigue, competition and opponents in different ways
in both groups.
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properties in female soccer players: Inter-limb comparison using tensiomyography. J. Musculoskelet. Neuronal Interact. 2022, 22,
179–192.

21. Šimunič, B.; Rozman, S.; Pišot, R. Detecting the Velocity of the Muscle Contraction. 2007. Available online: http://www.
tensiomyograph.de/download/Det-E.pdf (accessed on 26 July 2022).

22. Bourne, M.N.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of exercise selection on hamstring muscle
activation. Br. J. Sports Med. 2017, 51, 1021–1028. [CrossRef]

23. García-García, O.; Cuba-Dorado, A.; Álvarez-Yates, T.; Carballo-López, J.; Iglesias-Caamaño, M. Clinical utility of tensiomyogra-
phy for muscle function analysis in athletes. Open Access J. Sport Med. 2019, 10, 49–69. [CrossRef] [PubMed]
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