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Abstract: The aim of this article was to provide analytical and numerical approaches to a one-
dimensional Eyring–Powell flow. First of all, the regularity, existence, and uniqueness of the solutions
were explored making use of a variational weak formulation. Then, the Eyring–Powell equation was
transformed into the travelling wave domain, where analytical solutions were obtained supported by
the geometric perturbation theory. Such analytical solutions were validated with a numerical exercise.
The main finding reported is the existence of a particular travelling wave speed a = 1.212 for which
the analytical solution is close to the actual numerical solution with an accumulative error of <10−3.
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1. Introduction

The Eyring–Powell flow is a type of non-Newtonian fluid of paramount relevance
in industrial areas, manufacturing, and biological technology. Some trivial examples of
non-Newtonian fluids are given by bubbles, boiling, plastic foam processing, columns,
toothpaste, mud, honey, and custard. Non-Newtonian fluids are further classified into
different classes by virtue of their rheological characteristic conditions. The Eyring–Powell
fluid is one such subclass of non-Newtonian fluids with particular features linked with
the kinetic theory of liquids. In their seminal paper, Metzner and Otto [1] considered a
non-Newtonian fluid focused on the relationship between the speed of flow and shear
rate. In 1982, Rajagopal [2] considered the incompressible, unidirectional, and unsteady
conditions of a second-grade fluid to obtain solutions for a flow between two rigid plates in
which one suddenly starts moving. Later on, with the help of Gupta [3], they established
the exact solution for the same kind of fluid between porous plates. These cited seminal
works have attracted the attention of the scientific community, leading to further research
paths with the same topical background in non-Newtonian fluids. Eldabe et al. [4] obtained
results applicable in the field of medicine and the study of blood flow, analysing the effect
of coupling forces on an unstable non-Newtonian flow of MHD between two parallel
fixed porous plates under a uniform external magnetic field. Another study, carried out
by Shao and Lo [5], modelled the hydrodynamics of incompressible particles (SPHs) to
simulate Newtonian and non-Newtonian flows with free surfaces. The authors were able to
verify the proper functioning of the model in problems such as dam breaks in 2D. Another
example of outstanding interest in this regard was the study carried out by Fetecau [6].
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Here, solutions were established for unidirectional transient flows of non-Newtonian fluids
in pipe-like domains.

Under particular rheological properties describing a non-Newtonian fluid, further
applications have been accounted for by the theory of magnetohydrodynamics (MHD).
Akbar [7] established the solution for a flow of a two-dimensional fluid under the effect
of a magnetic field over stretching surfaces. Hina [8] analysed the heat transfer for the
magnetohydrodynamic flow of the Eyring–Powell fluid. Later, Bhatti et al. [9] considered
the same MHD fluid over permeable stretching surfaces. In this direction, other relevant
studies can be considered (refer to [10–15]).

Further relevant topics in applied sciences involving Eyring–Powell fluids can be
mentioned. In [16], the authors analysed the characteristics of the flow of Eyring–Powell
nanofluids through a rotating disk subject to various physical phenomena such as a sliding
flow and a magnetic field together with homogeneous and heterogeneous reactions. To
this end, the proposed equations were solved by a numerical method based on the Runge–
Kutta–Fehlberg method of 4th–5th order. Furthermore, in [17], the authors developed
a computational technique for a three-dimensional Eyring–Powell fluid with activation
energy on a stretched sheet with sliding effects. The resulting nonlinear system of PDEs
was transformed into a nonlinear system of ODEs, and a shooting method was explored
accordingly. The analysis in [18] discussed the flow and heat transfer of the Eyring–Powell
MHD fluid in an infinite circular pipe. The explored solutions of different viscous terms
were calculated numerically with the help of an iterative technique.

Note that in all the previously cited references, attention was mainly set on the numer-
ical schemes in search of particular solutions. Analytical conceptions remain within the
scope of dimensional analysis.

Further analytical approaches can be found in [19], where a homotopy approach
was employed to construct solutions for a boundary layer with natural convection on a
permeable vertical plate with thermal radiation. Afterwards, the differential quadrature
method (DQM) was used to validate solutions for different parametrical cases involving
the local Nusselt number and the local Sherwood number. In [20], the authors used the
ADM-Padé approach to study analytical solutions for the deflection and pull-in instability
of nanocantilever electromechanical switches, showing the remarkable accuracy compared
with the numerical results. The authors claimed the possibility of extending their results
to solve a wide range of instability problems. Furthermore, in [21], the authors studied
a viscoelastic nanofluid with optimisation techniques subject to the proposal of a certain
solution that was progressively optimised. To account for further analytical approaches,
in [22], perturbation solutions were obtained for low-Reynolds–Eyring–Powell flow to
obtain velocity, temperature, concentration, and stream functions.

After having cited some paramount studies involving analytical conceptions, it shall
be noted that in the present study, the intention was to go deeper into the advances of
the theory of PDEs to construct profiles of solutions. Unlike the previously cited studies,
solutions were explored within the theory of travelling waves. Such a theory was firstly
introduced by Kolmogorov, Petrovskii, and Piskunov [23], in combustion theory, and by
Fisher [24], to predict the interaction of genes. The main question, introduced by the
mentioned authors, was related to the search for an appropriate travelling wave speed
for which the analytical travelling wave profile converges to the actual profile (solution of
the actual problem, not converted into the travelling domain). Both the travelling profile
and the actual one were shown to have the same exponential behaviour. This spirit was
kept in our present analysis: indeed, one question to answer is related to the search for an
appropriate travelling wave speed for which the analytically obtained solution converges
to the actual one (obtained by numerical means) with a certain error tolerance. This was
the main target of our analysis, but previously, the regularity, existence, and uniqueness
of the solutions were shown. Later, the geometric perturbation theory was employed to
support the construction of the analytical profiles of the solutions. These obtained profiles
were validated afterwards via a numerical exercise.



Mathematics 2022, 10, 660 3 of 15

2. Mathematical Model

We consider an incompressible, unsteady, and one-dimensional electrically conducting
Eyring–Powell fluid. Under these assumptions, the velocity field is given by V = (u1(y), 0, 0),
where u1(y) refers to the first velocity component. Note that the proposed problem refers to
an open geometry not shaped by dedicated containers or stretched by boundary conditions.
The continuity and constitutive equations for an Eyring–Powell fluid are generally given
by (refer to [25,26] for an additional discussion on the Eyring–Powell governing equations):

divV = 0, (1)

and:
ρ f

dV
dt

= divA + J× B, (2)

where ρ f refers to the density, J is the current density, B is the magnetic field, which can
be split into B = B0 + b where B0 and b are the imposed and induced magnetic fields,
respectively, and A is given by:

A = −pI + τij, (3)

divB = 0, curlB = µ1j, curlE = −∂B
∂t

(4)

J = σ(E + V× B), (5)

where p is the pressure field, I is the identity tensor, µ1 is the magnetic permeability,
E is the electric field, σ is the electric conductivity, and τij is the shear stress tensor of an
Eyring–Powell fluid [11,13] given by:

τij = µ
∂ui
∂xj

+
1
β

sinh−1

(
1
d1

∂ui
∂xj

)
, (6)

where µ is the dynamic viscosity and β and d1 are characteristic constants of the Powell-

Eyring model. Consider that sinh−1
(

1
d1

∂ui
∂xj

)
∼= 1

d1

∂ui
∂xj
− 1

6

(
1
d1

∂ui
∂xj

)3
,
∣∣∣ 1

d1

∂ui
∂xj

∣∣∣ ≤ 1. The gov-
erning equation, in the absence of an induced magnetic field, can be written as:

∂u1

∂t
= −1

ρ

dP
dx

+

(
v +

1
βd1ρ f

)
∂2u1

∂y2 −
1

2βd3
1ρ f

(
∂u1

∂y

)2 ∂2u1

∂y2 −
σB2

0u1

ρ f
. (7)

where v = µ
ρ f

is the kinematic viscosity. After differentiation in (7) with x:

−1
ρ

d2P
dx2 = 0, −1

ρ

dP
dx

= A1.

Using the value of − 1
ρ

dP
dx in (7), we obtain:

∂u1

∂t
= A1 +

(
v +

1
βd1ρ f

)
∂2u1

∂y2 −
1

2βd3
1ρ f

(
∂u1

∂y

)2 ∂2u1

∂y2 −
σB2

0u1

ρ f
. (8)

with the following initial condition:

u1(y, 0) = u0(y) ∈ L1
loc(R) ∩ L∞(R). (9)

3. Preliminaries

The proposed Eyring–Powell model in (8) is expressed making use of a weak formula-
tion to support the analysis of the regularity, existence, and uniqueness of the solutions.
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Definition 1. Consider a test function φ2 ∈ C∞(R) defined in (0, T), such that for 0 < τ < t < T,
the following weak formulation of (8) holds:

∫
R

u1(t)φ2(t)dy =
∫
R

u1(τ)φ2(τ)dy +

t∫
τ

∫
R

u1
∂φ2

∂s
dyds

+ A1

t∫
τ

∫
R

φ2dyds +

(
v +

1
βd1ρ f

) t∫
τ

∫
R

u1
∂2φ1

∂y2 dyds

+
1

6βd3
1ρ f

t∫
τ

∫
R

(
∂u1

∂y

)3 ∂φ2

∂y
dyds−

σB2
0

ρ f

t∫
τ

∫
R

u1φ2dyds.

In addition, the following definition holds:

Definition 2. Given a finite spatial location r0, admit a ball Br centred in r0 and with radiusr � r0.
In the proximity of the borders ∂Br and for 0 < s < τ < t < T, the following equation is defined:

u1
∂φ2

∂s
+ A1φ2 +

(
v +

1
βd1ρ f

)
u1

∂2φ2

∂y2 +
1

6βd3
1ρ f

(
∂u
∂y

)3 ∂φ2

∂y
−

σB2
0

ρ f
u1φ2 = 0, (10)

in Br × (0, T), with the following boundary and initial conditions:

0 <
∂φ2

∂y
= φ2 � 1,

and:
u1(y, 0) = u0(y) ∈ L1

loc(R) ∩ L∞(R).

4. Existence and Uniqueness Analysis

The following theorem aims to show the existence and bounds of the solutions:

Theorem 1. Given u0(y) ∈ L1
loc(R) ∩ L∞(R), then the solution is bounded for all (y, t) ∈

Br × [τ, T) with r � 1.

Proof. Consider a certain value η ∈ R+ such that the following cut-off function is defined
(see [27,28]):

ψη ∈ C∞
0 (y, t), 0 ≤ ψη ≤ 1,

ψη = 1 in Br−η , ψη = 0 in R− Br−η ,

so that: ∣∣∣∣∂ψη

∂η

∣∣∣∣ = Ba

η
,

where Ba is a suitable constant. Multiplying (10) by ψη and integrating in Br × [τ, T), we
obtain:

t∫
τ

∫
Br

u1
∂φ2

∂s
ψηdyds + A1

t∫
τ

∫
Br

φ2ψηdyds +

(
v +

1
βd1ρ f

) t∫
τ

∫
Br

u1
∂2φ2

∂y2 ψηdyds

+
1

6βd3
1ρ f

t∫
τ

∫
Br

(
∂u1

∂y

)3 ∂φ2

∂y
ψηdyds−

σB2
0

ρ f

t∫
τ

∫
Br

u1φ2ψηdyds = 0. (11)
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Now, admit an arbitrary m > 1 and some large r0 > 1 [27,28]:

t∫
τ

u1ds ≤
t∫
τ

um
1 ds ≤ D1(τ)r

2m
m−1 .

Considering the spatial variable y close to ∂Br, it can be assumed that y ∼ r. Then, for
m = 2, it holds that:

t∫
τ

u1ds ≤ D1(τ)r4,
t∫
τ

(
∂u1

∂y

)3
ds ≤ 64 D3

1(τ)r
9.

The integral for the diffusion term reads:(
v +

1
βd1ρ f

) t∫
τ

∫
Br

u1
∂2φ2

∂y2 ψηdyds

≤
(

v +
1

βd1ρ f

)∫
Br

D1(τ)r2 ∂2φ2

∂y2 ψηdy

=

(
v +

1
βd1ρ f

)
D1(τ)r2

(∂φ2

∂y
ψη

)
∂Br

−
∫
Br

∂φ2

∂y
∂ψη

∂y
dy

.

As r � 1 and taking φ2 sufficiently small such that ∂φ2
∂y ψη � 1 over ∂Br, the following

holds: (
v +

1
βd1ρ f

) t∫
τ

∫
Br

u1
∂2φ2

∂y2 ψηdyds

= −
(

v +
1

βd1ρ f

)∫
Br

D1(τ)r2 ∂φ2

∂y
∂ψη

∂y
dy

≤
(

v +
1

βd1ρ f

)
D1(τ)

∫
Br

r2 ∂φ2

∂y
Ba

η
dy

=

(
v +

1
βd1ρ f

)
BaD1(τ)

∫
Br

r
∂φ2

∂y
dy,

and:
1

6βd3
1ρ f

t∫
τ

∫
Br

(
∂u1

∂y

)3 ∂φ2

∂y
ψηdyds ≤ 32

3βd3
1ρ f

∫
Br

D3
1(τ)r

9 ∂φ2

∂y
ψηdy.

Now:

1
6βd3

1ρ f

t∫
τ

∫
Br

(
∂u1

∂y

)3 ∂φ2

∂y
ψηdyds ≤ − 32

3βd3
1ρ f

∫
Br

D3
1(τ)r

9φ2
∂ψη

∂y
dy

≤ 32
3βd3

1ρ f

∫
Br

D3
1(τ)r

9φ2
Ba

η
dy

=
32D3

1(τ)

3βd3
1ρ f

∫
Br

r8φ2dy. (12)
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Using the expressions (12) and (12) in (11), the following holds:

t∫
τ

∫
Br

u1
∂φ2

∂s
ψηdyds + A1

t∫
τ

∫
Br

φ2ψηdyds ≤
(

v +
1

βd1ρ f

)
BaD1(τ)

∫
Br

r
∂φ2

∂y
dy

+
32BaD3

1(τ)

3βd3
1ρ f

∫
Br

r8φ2dy +
σB2

0
ρ f

t∫
τ

∫
Br

u1φ2ψηdyds. (13)

Next, consider a test function φ2 of the form:

φ2(r, s) = e−ks
(

1 + r2
)−a

. (14)

We can choose a in such a way that (13) is convergent; therefore:(
v +

1
βd1ρ f

)
BaB1(τ)

∫
Br

r
∂φ2

∂y
dy+

32BaD3
1(τ)

3βd3
1ρ f

∫
Br

r8φ2dy +
σB2

0B1(τ)

ρ f

∫
Br

r2φ2ψηdy

≤ 2a

(
v +

1
βd1ρ f

)
BaB1(τ)

∫
Br

e−ksr−2adr

+
32BaD3

1(τ)

3βd3
1ρ f

∫
Br

r8−2aφ2dr +
σB2

0B1(τ)

ρ f

∫
Br

e−ksr2−2adr.

(15)

For a > 4 and r → ∞, the following holds:(
v +

1
βd1ρ f

)
BaB1(τ)

∫
Br

r
∂φ2

∂y
dy +

σB2
0B1(τ)

ρ f

∫
Br

r2φ2ψηdy ≤ 0. (16)

Putting (16) into (13):

t∫
τ

∫
Br

u1
∂φ2

∂s
ψηdyds + A1

t∫
τ

∫
Br

φ2ψηdyds ≤ 0. (17)

As both integrals are finite in τ < s < t < T, it is possible to conclude the theorem
principles related to the bound of the solutions in R× (0, T).

The next intention is to show the boundness of ∂u1
∂y .

Theorem 2. Given u1(y) as the solution of (8), then ∂u1
∂y is bounded for(y, t) ∈ R× (0, T).

Proof. Multiplying the equation (8) by u1 and using integration by parts:

d
dt

∫
R

|u1|2dy = A1

∫
R

u1dy−
(

v +
1

βd1ρ f

)∫
R

(
∂u1

∂y

)2
dy

+
1

6βd3
1ρ f

∫
R

(
∂u1

∂y

)4
dy−

σB2
0

ρ f

∫
R

|u1|2dy,
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which implies that:

∫
R

(
∂u1

∂y

)2
(

1
6βd3

1ρ f

(
∂u1

∂y

)2
−
(

v +
1

βd1ρ f

))
dy =

d
dt

∫
R

|u1|2dy

−A1

∫
R

u1dy−
σB2

0
ρ f

∫
R

|u1|2dy.

After integration on both sides:

t∫
0

∫
R

(
∂u1

∂y

)2
(

1
6βd3

1ρ f

(
∂u1

∂y

)2
−
(

v +
1

βd1ρ f

))
dyds =

∫
R

|u1(y, t)|2dy

−
∫
R

|u0(y)|2dy− A1

t∫
0

∫
R

u1dyds−
σB2

0
ρ f

t∫
0

∫
R

|u1|2dyds. (18)

From Theorem (1), the right-hand side of (18) is bounded; therefore, we can choose A2
such that:

t∫
0

∫
R

(
∂u1

∂y

)2
(

1
6βd3

1ρ f

(
∂u1

∂y

)2
−
(

v +
1

βd1ρ f

))
dyds ≤ A2, (19)

which permits concluding that ∂u1
∂y is bounded in R× (0, t) where we can admit t = T.

The next intention is to show the uniqueness of the solution.

Theorem 3. Let us admit u1 > 0 as a minimal solution and û1 as a maximal solution for (8) in
R× (0, T), then u1 coincides with the maximal solution û1, i.e., the solution is unique.

Proof. Consider û1 to be the maximal solution of (8) in R× (0, T) given by:

û1(y, 0) = u0(y) + ε, (20)

with ε > 0 arbitrarily small. In addition, let us define the minimal solution:

u1(y, 0) = u0(y).

The maximal and minimal solutions satisfy the following equations:

∂û1

∂t
= A1 +

(
v +

1
βd1ρ f

)
∂2û1

∂y2 −
1

2βd3
1ρ f

(
∂û1

∂y

)2 ∂2û1

∂y2 −
σB2

0 û1

ρ f
, (21)

∂u1

∂t
= A1 +

(
v +

1
βd1ρ f

)
∂2u1

∂y2 −
1

2βd3
1ρ f

(
∂u1

∂y

)2 ∂2u1

∂y2 −
σB2

0u1

ρ f
. (22)

For every test function φ2 ∈ C∞(R) and upon subtraction, the following expres-
sions hold:
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0 ≤
∫
R

(û1 − u1)φ2(t)dy =

t∫
0

∫
R

(û1 − u1)
∂φ2

∂s
dyds

+

(
v +

1
βd1ρ f

) t∫
0

∫
R

(û1 − u1)
∂2φ2

∂y2 dyds

+
1

6βd3
1ρ f

t∫
0

∫
R

((
∂û1

∂y

)3
−
(

∂u1

∂y

)3
)

∂2φ2

∂y2 dyds−
σB2

0
ρ f

t∫
0

∫
R

(û1 − u1)φdyds

≤
t∫
0

∫
R

(û1 − u1)
∂φ2

∂s
dyds +

(
v +

1
βd1ρ f

) t∫
0

∫
R

(û1 − u1)
∂2φ2

∂y2 dyds

+
1

6βd3
1ρ f

t∫
0

∫
R

(
∂û1

∂y
− ∂u1

∂y

)((
∂û1

∂y

)2
+

∂û1

∂y
∂u1

∂y
+

(
∂u1

∂y

)2
)

∂φ2

∂y
dyds

−
σB2

0
ρ f

t∫
0

∫
R

(û1 − u1)φdyds

(23)

Based on Theorem 2’s results, we can choose A3 such that A3 = sup{ ∂û1
∂y , ∂u1

∂y }, so that
the following holds:

∫
R

(û1 − u1)φ2(t)dy ≤
t∫
0

∫
R

(û1 − u1)
∂φ2
∂s

dyds +

(
v +

1
βd1ρ f

) t∫
0

∫
R

(û1 − u1)
∂2φ2

∂y2 dyds

+
A3

6βd3
1ρ f

t∫
0

∫
R

(
∂û1
∂y
− ∂u1

∂y

)
∂φ2
∂y

dyds−
σB2

0
ρ f

t∫
0

∫
R

(û1 − u1)φdyds

=

t∫
0

∫
R

(û1 − u1)
∂φ2
∂s

dyds +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

) t∫
0

∫
R

(û1 − u1)
∂2φ2

∂y2 dyds (24)

−
σB2

0
ρ f

t∫
0

∫
R

(û1 − u1)φdyds. (25)

Now, consider the test function given by:

φ2(|y|, s) = eA4(T−s)
(

1 + |y|2
)−b

, (26)

where A4 and b are constants. Making the differentiation of φ2 with regards to s and y, the
following holds:

∂φ2

∂s
= −A4φ2(|y|, s),

∂2φ2

∂y2 ≤ A5(b)φ2(|y|, s),

then:

(û1 − u1)
∂φ2
∂s

+

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
(û1 − u1)

∂2φ2

∂y2 −
σB2

0
ρ f

(û1 − u1)φ2

≤ −A4φ2(û1 − u1) +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)φ2(û1 − u1)−

σB2
0

ρ f
(û1 − u1)φ2

=

(
−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)−

σB2
0

ρ f

)
(û1 − u1)φ2. (27)
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Using (27) in (24), we obtain:

∫
R

(û1 − u1)φ2(t)dy ≤
(
−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)−

σB2
0

ρ f

)

×
t∫
0

∫
R

(û1 − u1)φ2dyds ≤
∣∣∣∣∣−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)−

σB2
0

ρ f

∣∣∣∣∣
×

t∫
0

∫
R

(û1 − u1)φ2dyds.

(28)

Making the differentiation with regard to t:

d
dt

∫
R

(û1 − u1)φ2(t)dy ≤
∣∣∣∣∣−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)−

σB2
0

ρ f

∣∣∣∣∣
×
∫
R

(û1 − u1)φ2(t)dy.
(29)

Now, let us define:
h(t) =

∫
R

(û1 − u1)φ2(t)dy. (30)

Putting (30) into (29), the following holds:

dh
dt
≤
∣∣∣∣∣−A4 +

(
v +

1
βd1ρ f

− A3

6βd3
1ρ f

)
A5(b)−

σB2
0

ρ f

∣∣∣∣∣h(t), (31)

with:
h(0) = ε→ 0.

After solving (31) by standard means, we obtain h(t) = 0, i.e., û1 = u1, which shows
the uniqueness of the solutions, as was intended to be proven.

5. Travelling Waves’ Existence and Regularity

The travelling wave profiles are described as u1(y, t) = k(ζ), where ζ = y− at ∈ R, a
refers to the travelling wave speed and k : R→ (0, ∞) belongs to L∞(R).

The equation (8) is transformed into the travelling wave domain as follows:

− ak′(ζ) = A1 +

(
v +

1
βd1ρ f

)
k′′(ζ)− 1

2βd3
1ρ f

(
k′(ζ)

)2k′′(ζ)−
σB2

0
ρ f

k(ζ). (32)

with k′(ζ) < 0 in the hypothesis of a purely decreasing travelling wave (this assumption is
further discussed later). Now, let us consider the following new variables:

X = k(ζ), Y = k′(ζ), (33)

such that the following system holds:

X′ = Y,

Y′ =
2βd3

1ρ f

2vβd3
1ρ f + 2d2

1 −Y2

(
−aY− A1 +

σB2
0

ρ f
X

)
. (34)
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To analyse the suggested system in the proximity of the critical point, admit X′ = 0
and Y′ = 0, yielding:

X =
A1ρ f

σB2
0

.

Therefore,
(

A1ρ f

σB2
0

, 0
)

represents the system critical point.

Our intention in the coming sections was to make use of the geometric perturbation
theory to characterise the existing critical point and to explore solution orbits close to such
a critical point.

5.1. Geometric Perturbation Theory

In this section, we use the singular geometric perturbation theory to show the asymp-
totic behaviour of an appropriately defined manifold close to the critical point. Afterwards,
the obtained results are used to derive a dedicated travelling wave profile.

For this purpose, admit the following manifold as:

N0 =

{
X, Y / X′ = Y; Y′ =

2βd3
1ρ f

2vβd3
1ρ f + 2d2

1 −Y2

(
−aY− A1 +

σB2
0

ρ f
X

)}
, (35)

with critical point
(

A1ρ f

σB2
0

, 0
)

. The perturbed manifold Nε close to N0 in the critical point(
A1ρ f

σB2
0

, 0
)

is defined as:

Nε =

{
X, Y / X′ = εY; Y′ = Fε

(
X−

A1ρ f

σB2
0

)}
, (36)

where ε denotes a perturbation parameter close to equilibrium (X1, 0) and F is a suitable

constant, which is found after root factorisation. Firstly, admit X3 = X − A1ρ f

σB2
0

. Our

intention was to apply the Fenichel invariant manifold theorem [29] as formulated in [30].
For this purpose, we have to show that N0 is a normally hyperbolic manifold, i.e., the
eigenvalues of N0 in the linearised frame close to the critical point, and transversal to the
tangent space, have non-zero real part. This is shown based on the following equivalent
flow associated with N0 : (

X′3
Y′

)
=

(
0 ε

Fε 0

)(
X3

Y

)
.

The associated eigenvalues are both real
(
±
√

Fε
)

, which shows that N0 is a hyperbolic
manifold. Now, we want to show that the manifold Nε is locally invariant under the
flow (34), so that the manifold N0 can be shown as an asymptotic approach to Nε and vice
versa. On this basis, we consider the functions:

ψ1 = εY,

ψ2 = FεX3,

which are Ci(R× [0, δ)), i > 0, in the proximity of the critical point
(

A1ρ f

σB2
0

, 0
)

. In this case,

δ is determined based on the following flows that are considered to be measurable a.e. in R:∥∥∥ψM0
1 − ψMε

1

∥∥∥ ≤ Fε‖X3‖ ≤ δε.
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Since the solutions are bounded, we conclude that δ = F‖X3‖ is finite; therefore, the
distance between the manifolds holds the normal hyperbolic condition for δ ∈ (0, ∞) and ε

sufficiently small close to the critical point
(

A1ρ f

σB2
0

, 0
)

.

5.2. Travelling Waves’ Profiles

Based on the normal hyperbolic condition shown for the manifold N0 under the
flow (34), asymptotic TW profiles can be obtained. For this purpose, let us consider
firstly (34) such that the following family of trajectories in the phase plane (X, Y) holds:

dY
dX

=
2βd3

1ρ f(
2vβd3

1ρ f + 2d2
1 −Y2

)
Y

(
−aY− A1 +

σB2
0

ρ f
X

)
= H(X, Y). (37)

As H(X, Y) is continuous and is changing the sign character if we take X sufficiently
large and sufficiently small, it is possible to conclude the existence of a critical trajectory of
the form:

−aX′ − A1 +
σB2

0
ρ f

X = 0,

which implies that:

X′ =
σB2

0
aρ f

(
X−

A1ρ f

σB2
0

)
. (38)

Solving (38), we obtain:

X =
A1ρ f

σB2
0

+ e
σB2

0
aρ f

ζ
.

After using the value of X, we obtain:

k(ζ) =
A1ρ f

σB2
0

+ e
σB2

0
aρ f

ζ
,

which implies that:

u1(y, t) =
A1ρ f

σB2
0

+ e
σB2

0
aρ f

(y−at)
.

This last expression shows the existence of an exponential profile along the travelling
wave frame. This is not a trivial result for the nonlinear reaction under the Eyring–Powell
fluid.

Note that the solution holds by the symmetry (ζ → −ζ) of travelling wave profiles. It
suffices to admit ζ = y + at, so that:

k(ζ) =
A1ρ f

σB2
0

+ e
− σB2

0
aρ f

ζ
, u1(y, t) =

A1ρ f

σB2
0

+ e
− σB2

0
aρ f

(y+at)
. (39)

Now, it is the aim to show that the defined supporting manifold Nε preserves the
exponential behaviour close to the critical points. For this purpose, the expression (36) is
re-written as:

dY
dX

=
F
Y

(
X−

A1ρ f

σB2
0

)
. (40)

After solving (40):

Y = F

(
X−

A1ρ f

σB2
0

)
. (41)
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From the expression (36), the equation (41) becomes:

X′ = Fε

(
X−

A1ρ f

σB2
0

)
. (42)

After solving (42), we have:

X =
A1ρ f

σB2
0

+ eFεζ . (43)

From (33), the expression (43) becomes:

k(ζ) =
A1ρ f

σB2
0

+ eFεζ , u1(y, t) =
A1ρ f

σB2
0

+ eFε(y−at).

This last expression permits showing the conservation of the exponential profile close
to the critical points defined by the asymptotic manifolds Nε.

6. Numerical Validation Assessments

The aim in this section is to develop a numerical simulation to determine an appropri-
ate travelling wave velocity (a) for which the approximated analytical solution (39) and
the exact one, obtained numerically, in (34) behave similarly. This exercise can be seen as
a validation process of the obtained analytical paths presented in the previous sections.
This validation was explored for certain combinations of the fluid properties. Note that
other combinations do not have an impact on the analytical ending in the exponential kind
of solutions.

The numerical exploration was performed as per the following principles:

• The solver bvp4c in MATLAB was employed. This solver is based on a Runge–Kutta
implicit approach with interpolant extensions [31]. The bvp4c collocation method
requires specifying pseudo-boundary conditions. In this case, the left boundary is
considered positive, k(ζ → −∞) = 1, and the right boundary is given by the null
critical state, k(ζ → ∞) = 0. As the intention was to determine the exact coincidence
along the profiles for which the exponential tail is given, the solutions were translated
into the zero state by the standard vertical translation;

• The integration domain was assumed as (−200, 200), sufficiently large so as to hinder
any potential effect of the pseudo-boundary conditions imposed by the collocation
method involved in the bvp4c solver;

• The domain was split into 100,000 nodes with an absolute error of 10−5 during the
computation;

• An absolute error criterion was considered to stop the exploration criteria. The
travelling wave speed for which both solutions, the numerically exact one and the
analytical approach, were sufficiently close with an absolute error of <10−3, named as
the critical a∗. For this particular speed, The analytical solution in (39) can be regarded
as a valid solution to the problem (34);

• The associated fluid constants in (34) were as one. The travelling wave speed a was
the parameter used in the search for an analytical profile matching the error tolerance.
In addition and with no loss of generality, A1 = 0. Note that this particular selection
of constant values did not impact the ending conclusions, i.e., on the existence of an
analytical exponential profile matching the exact solution for a certain value in the
travelling wave speed.

The results are compiled in Figures 1–3. The existence of a critical travelling wave
speed a∗ = 1.212 for which the analytical solution in (39) is close to the numerically exact
one of (34) with an accumulative error of <10−3 was concluded. This numerical exploration
permits accounting for the validation of the analytical exponential profile obtained.
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Figure 1. a = 0.1 (left), a = 1 (right). The blue line is the exact numerical profile of the set of
Equations (34). The red line is the analytical solution obtained in (39) up to ζ = 5 (beyond such
values, it is required to change the scale). Solutions on the left are provided for a = 1 and solutions
on the right for a = 1.5. For increasing values of the travelling speed, the solutions behave similarly
in their exponential tail.

Figure 2. a = 1.212 (left), a = 1.5 (right). The blue line is the exact numerical profile of the set of
Equations (34). The red line is the analytical solution obtained in (39). The approximated solution
and the exact profile closely match an accumulative error (as the integration of the difference of both
solutions) of < 10−3 for a = 1.212. Solutions on the right are given for a = 1.5. The approximated
solution is above the numerical one.

Figure 3. a = 2 (left), a = 3 (right). The blue line is the exact numerical profile of the set of
Equations (34). The red line is the analytical solution obtained in (39). Solutions on the left are
provided for a = 2 and solutions on the right for a = 3. Note that for increasing values of the
travelling wave speed, both profiles diverge.
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7. Conclusions

The presented analysis in this article permitted accounting for the regularity, existence,
and uniqueness of solutions to an Eyring–Powell fluid flow. Solutions were explored in
the travelling wave domain, and asymptotic approaches were provided making use of
the singular geometric perturbation theory. Afterwards, the obtained analytical solution
was validated for a certain combination of fluid constants and making use of a numerical
exercise. The existence of a travelling wave speed of a = 1.212 for which the analytical
solution is close to the actual numerical solution with an accumulative error of <10−3 was
concluded. The existence of an exponential travelling wave tail together with a certain
minimizing error critical speed constituted the main novelty reported by the present study.
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