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Abstract: The analysis in the present paper provides insights into the Liouville-type results for an
Eyring-Powell fluid considered as having an incompressible and unsteady flow. The gradients in the
spatial distributions of the initial data are assumed to be globally (in the sense of energy) bounded.
Under this condition, solutions to the Eyring-Powell fluid equations are regular and bounded under
the L? norm. Additionally, a numerical assessment is provided to show the mentioned regularity
of solutions in the travelling wave domain. This exercise serves as a validation of the analytical
approach firstly introduced.
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1. Introduction and Problem Formulation

In science and engineering, fluids such as air, oil, and water are typically formulated
following a Newtonian description. Nonetheless, the rheological properties of a Newtonian
approach may not be sufficient to reproduce the behaviour of other types of fluids. As
an example, slurries and muds in the industries of mining, lubricating oils, or biomedical
flows. The particular description of a viscosity term leads to different fluid conceptions
under the general definition of non-Newtonian fluids. This is the case of the fluid studied
in the presented analysis known as the Eyring-Powell flow.

Numerous studies have been conducted on the Eyring-Powell fluid flow (see [1-10]
for some interesting articles). At the same time, there is not much literature focused on the
development of the Liouville results for the velocity profiles of an Eyring-Powell fluid flow-
ing along the z-axis. On the contrary, there is extensive literature developing the regularity
criteria and Liouville-type results for stationary fluids under Navier-Stokes Newtonian de-
scriptions. In this regard, the reader can refer to the applications to Magnetohydrodynamics
(MHD) and Hall-MHD in [11-16].

Motivated by the described facts, our objective in this paper is to establish the Liouville-
type results for a three-dimensional Eyring-Powell fluid flow with globally bounded spatial
gradients in the initial data of the velocity profiles. In particular, the idea is to explore the
regularity of velocity profiles in the x, y directions while the fluid moves along the z-axis
and with stretching initial velocity profiles.

The considered fluid in this analysis is electrically conducting in the presence of an
applied magnetic field, By. Consider the Cartesian coordinate system in such an approach
that the sheets of transversal planes correspond to the xy-plane and the fluid conquers
the space, z > 0. Admit the surface stretching velocities along the x and y directions to be
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uz—o(x,y,2z) = ax and v,—o(x,y,z) = ay, (a € R), respectively. Note that the velocity com-
ponents, continuity equations, and the governing equations of an Eyring-Powell fluid are
as follows:

V = [u(x,y,zt),v(x,y,zt)w(xy,zt)) and divV =0, (1)
ot ox 9y 0z Bdips ) 022 2Bd3ps\0z ) 0z2  py

v dv  Jv v 1 0%v 1 90\ 2920 oB3
ﬁ 1pf z 2,3d1pf z

0z py
in Q7 = Q x (0,00), where Q = R x R x [0,0).

o Trax TV TV T

The boundary and initial conditions for the present flow analysis are as follows:

u = ax, v=ay, w=0 at z=0.
u — 0, v—>0 as z— oo,
u = 0, v=0, w=0 if (x,y) = (—o0, —)
u = 0, v=0, w=0 if (x,y) — (c0,00)
u(x,y,z,0) = wu(x,y,z) and v(x,y,20) =vo(x,vy,2). 4)

Note that ©, v, w are the x, y, and z components of the velocity, respectively, while v
is the kinematic viscosity and is defined as a ratio of dynamic viscosity, u#, and the fluid
density, ps. Note that f and d; are two fluid parameters, and ¢ is related to the charge
distributions. In addition, let us assume that the shear stress is zero at z = 0, so that the
condition ‘3—;‘ = %12) = 0 holds. Moreover, admit that u = v = 0 for t — .

2. Statement of Result

The result obtained in this study is summarized in the following Theorem 1:

Theorem 1. Admit the following conditions for the initial data:
///|Vuo(x,y,z)\2dxdydz <0, ///|Vvo(x,y,z)|2dxdydz <0.
0 e

In addition, admit that:

du 9|Vu|
2z 0z

) € L%((0,00), BMO). (5)

Then, for R — oo, the solutions u(x,y,z,t) v(x,y,z,t) are bounded on Qr = Q x [0,00],
where (3 = R X R X [0, 00).
3. Preliminaries

Consider the Lebesgue space of real-valued functions L?(Q), Q = Q x (0,0) with
the norm || || .

1
r
— f|f(x/yrz)|pdxdydz> , 1 S p < 0
£l (Q
€55 SUP (v y,2)eQ ‘f(x/ Y, Z)‘/ p = oo.

In addition, admit the homogenous space of bounded means oscillations (BMO) whose
norm is defined as per [17]. To this end, define the set as follows:
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Br = {(x,y,z,t) €ER*x[0,T);|x| <R |yl <R, |z| <R, t < R}, (6)

I8llavmo = 1L2931:I>0<|BR1(X)|> /BR(X) 8) = <|BR1(V)|> /BR(}’) 8(2)

where the balls Br(x) and Bgr(y) are defined over the x and y directions, respectively.

such that

dy,

Proposition 1 below is also shown in [18].
Proposition 1. Let 1 < b < a < oo. Then,
1-¢t b
luallpe < [lurllgaiolluallfy-
In addition, the following proposition is required to support the coming analysis.

Proposition 2. Admit f, g, h € CZ(R?), then

of ||+

g ”gHLZ

[ o1 < Iy | H Il

wherea>2,1§q,s<oo,%+%:l.
Now, the following definition is required.

Definition 1. Ornce again, admit set (6) and ¢ € CF (R3) to be a cut-off function, such that ¢ = 1
in By and ¢ = 0 outside By, for R > 0. The following test function is defined as follows:

ENES
orx) = (3 %2 %)
which satisfies the following equation:

[740r] .. < g ond

4. Proof of Theorem 1

Taking the product in Equation (2) with (Au ¢r) and performing the integration by
parts, the following equation holds:

2
—% / a'gt”' prdxdydzdt — ?TZV"’R Vi dxdydzdt + I
BZR\BR BZR\BR
1 32 1 PR o OVu
S (VR / Vipr Vul g dvdydzdt + / Vu N dxdydzdt
( ﬁdmf) PR / ( ﬁd1Pf> 9z oz "
BZR\BR BZR\BR
1 oVu 1
vy —— / ( > dxdydzdt — I
( ﬁd1Pf> 9z ) PR 2pd3ps
Byr\Br
O—Btz) 2
+— / $r(Vu) dxdydzdt + / Vr Vuudxdydzdt |, (7)

Bar\Br Byr\Br
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where
Ig = / (V Vu)prAudxdydzdt,

Byr\Br

2
I = / (gl‘) (a )¢RAudxdydzdt

Baor\Bgr
We solve I and I7 separately, and to this end consider the following:

Is = /(VVu)<pRAudxdydzdt

Byr\Br

_ / V(V Vu)pr Vudxdydzdt — / Vo (V Vi) Vudxdydzdt

Byr\BRr Byr\Br
- / v (ug” + vgl‘ + wg”) Vi dxdydzdt — / Vo (V Vi) Vudxdydzdt
Byr\Br * Y : Byr\Br
. / ¢Rw%w dxdydzdt — / 4)Ru LV ddydzdt
Byr\BRr Byr\Br

/ quva:Vu dxdydzdt — / ¢Rvaavtuu dxdydzdt

Byr\Br Byr\Br

- / ¢Rng—ZVudxdydzdt— / (])Rwaav%Vudxdydzdt
BZR\BR BZR\BR

- / Vor (V Vi) Vudxdydzdt.

Byr\Br

Integrating by parts, we get the equation below:

/ gbRVug—ZVudxdydzdt—l—% / %W(Vu)zdxdydzdt

BZR\BR BZR\BR

/ IR (Vw2 dxdydzdt — / 4>Rwayw dxdydzdt

BZR\BR BZR\BR

41 / g;¢R(Vu)2dxdydzdt+; / 9Pr u(Vu) dxdydzdt

2 oy
BZR\BR BZR\BR
a aw 2
/ PRV dxdydzdt+ / = o (V) 2dxdydzat
BZR\BR BZR\BR
1 [ ¢k
+5 [ BRu(VuPdedydzdt— [ Vgr (V V) Vudxdydzat
Bar\Br Bor\Bg

The second, fifth, and eighth terms in the last expression vanish after making use of
Equation (1). Then, the following holds:

/ quVug—ZVu dxdydzdt—i—% / g’R (Vi) 2dxdydzdt
Bor\Br Byr\BRr
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- / gbRVUg;Vudxdydzdt—i-; / ag;R (Vi) 2dxdydzdt
Byr\Br Byr\BRr

0z

- / / / 4’va%vu‘1x‘iyd2dt+% / 9r u(Vu)?dxdydzdt
0 Bar\Br

- / Vor (V Vi) Vudxdydzdt
Bor\BR

Integrating by parts, the following holds:

Iy, = / aa(PR (Vu)?u dxdydzdt + 2 / uVuch%(Vu)dxdydzdt
BZR\BR BZR\BR

—I—% / E;PR u(Vu)?dxdydzdt + / uVuVo (I;Rdxdydzdt—i—

Bar\Br Bar\Br

+ / uquVuaavyvdxdydzdt—i— /u<pRVv
BZR\BR BZR\BR

ad

a'; Y dxdydzdt

3 / IR u(Vu) dxdydzdt—i— / uVquasidxdydzdt
Bor\Bg Bor\Bg

+ / uchVuaZdexdydzdt—F / u(,bRVwaav%dxdydzdt
BZR\BR BZK\BR

/ IR u(Vu)*dxdydzdt — / Vor (V Vu)Vudxdydzdt,
BZR\BR BZR\BR

From Equation (1), the second, fifth, and ninth terms vanish, so that the equation

above becomes:
Iy = /mpRVuaa—x(Vu)dxdydzdt—i- / u(pRVvaav;udxdydzdt
BZR\BR BZR\BR
oVu
+ / ugrVeo < Ldxdydz dt+ / u(Vu) dxdydzdt
BZR\BR BZR\BR

+ / uVuVo ¢Rdxdydzdt+ / UV uVw 4’Rdxdydzdt
BZR\BR BZR\BR

/ Vor (V Vi) Vudxdydzdt + / Eg{u(Vu)zdxdydzdt
BZR\BR BZR\BR

+ / IR (v dxdydzdt
Byr\Br

Integrating I7, we have the following equation:
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1 PR 1 JAu Jdu
h=-3 / - Au<a > dxdydzdt - / az¢R<az> dxdydzdt

BZR\BR BZR\BR
o 1 8ch ou
=3 / D (a > dxdydzdt — / ¢R< ) (a )dxdydzdt
BZR\BR BZR\BR

Integrating the second term on the right-hand side once again, we have the following:

1 d 0 9
=-3 / g;RAu<a ) dxdydzdt—o—f / {ch( u) }V(;:)dxdydzdt

Byr\Br B2r\Br
1 IPR ou ou
= R A (a ) dxdydzdt—i—f / vch( ) v(a )dxdydzdt
Bor\Br Bor\Bg
ou ou
+ / ch( ) V(az>v<a )dxdydzdt
Bor\Br
I = _% / ag;RAu<a ) dxdydzdt + - / Vor (a“> v(a”)dxdydzdt
Baor\Bg BZR\BR
u oVu
+ / or ( az> ( & ) dxdydzdt.
Bar\Br
Introducing the determined expression for Is and I7 into Equation (7) above, we get
the following:
/ a|v i prdxdydzdt = / %V(PR Vu dxdydzdt
BZR\BR BZR\BR

—2/ / /u¢RVu i(Vu)dxdydz - 2/ / /uq)RVv avjdxdydz
ox oy
—2// /u¢RVw O dxd dz—S/// (Vu) 2 qudxdydz
R R
—2/ / /uVuVUdedydz - 2/ / /uVqugdxdydz

+2 / Vor (V Vi) Vudxdydzdt — 2 / u(Vit)2dxdydzdt

Byr\Br Byr\Br

2
2 / IR u(Vu)2dxdydzdt + 2 (v + Bd> / V%% Vu dxdydzdt
BZR\BR BZR\BR

1 opr o, OV 1 oVu
v+ / VulM dxdydzdt — o / ( ) dxdydzdt

BZR\BR BZR\BR
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1 dpr < > / (au) (8u>
A dxdydzdt V() dxdydzdt
3pd3p; /\Raz”a xyz+/3d3 . VR 9z ) Ve

BZ
+2 / ¢R<g’:> (aaw) dudydzdt ~ = 0 / (Vi) 2¢r dxdydzdt.

f
Bar\Br Bar\Br

20B}
—I—Q / Vg Vuu dxdydzdt — / Vor (V Vu)Vudxdydzdt
Bar\Br Bar\Br

Integrating with regards to t , we get the equations below:

20B2 2
= / (Vi) gr dxdydzdt +2 v+ : / IVu ¢r dxdydzdt
Bdipg 0z
Bar'\Br Bar\Br
:—///\Vuo(x,y,Z)fdxdyder / |Vu|? ¢Rdxdydzdt— / %VfPR Vu dxdydzdt
0 Byr\BRr Bor\Br

— / M<PR (Vu) dxdydzdt — / u4)RVvaavyudxdydzdt
BZR\BR BZR\BR

-2 / uprVw aaldxdydzdt—B / (Vu) 2 ¢Rdxdydzdt
Bor\Br Bor\Br

-2 / uVuVo (Pdexdydzdt 2 / uVuVw (PRdxdydzdt

BZR\BR BZR\BR
+2 / Vor (V Vi) Vudxdydzdt — 2 / R u(Vu)2dxdydzdt
B2R\BR BZR\BR

2,
-2 / PR (Vu)zdxdydzdt +2 <1/ + W) / Vr Vug dxdydzdt
Bzzla\BR Byg\Br

IPr
-2 <1/ + ﬁd1Pf> e Vu a— dxdydzdt
Bor\Br

du 1 Jou Jdu
az> dxdydadt + 3 / ¢R( ) v ( i >dxdydzdt
Byr\Br

2 2
20B
Z> dxdydzdt — ZO / V¢r Vuu dxdydzdt.

BZR\BR BZR\BR

+2 / Vo (V Vi) Vudxdydzdt.

Byr\Br
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After using the Holder inequality and Proposition 2 , we have the following:

20'33 H <8 u)
of ||( ) Z’l)”Lz (Bar\Br) < ﬁlef)

< —///|Vu0(x,y,z)|2dxdydz+ ‘ a(';LtR
Q

L?(Byr\Bgr)

(V)72 By 3

Lo
+2[[Vor|| aa%l LzHVMHLZ(BzR\BR)
+K %(W) || ”L4 gz ag)yR I};(BZR\BR)
+Ka aav;u L2||(u.VU)||E4 a(uéjv) Z ag)yR i(BZR\BR)
+K; aaVZu L2|(“-Vw)||52 W % ag)yR ;(BZR\BR)
43|l 2 | (V24) 1 3 ) az%{ Loo+2””||L3HquL?’”vaLS(BZR\BR) ag;/R
Flull s IVull s IVl s gy ) 8% L (Byg\Bg)
2l 1) o Bg’yR + 20l 2| (V0) [ Fa iy ) a¢R

%u
azz 12

IVull 28,0\ )

1
+2<V+‘Bd1 >|V¢R||L°°

agbR
+2<v+ Bdip; Pf) H

|71,

oVu
dJz

&)

L(Byg\Bg)

\V 12

L?(Byr\Bg)

Aul|p

G,

L6

3:Bdlpf

oo

oVu

+ oo I VPR|| e 5z

3:8d1pf
H oVu

L?(Byr\Bgr)
2 2
20B
p + pfO IVORI oo [l 12| Vte] | 123, Br)

2||V<I>R e [V V)| 2| Vit 20 B -

Applying Young’s inequality together with Proposition 1, the following holds:

312
0z

al 2
aZ LZ

oVu ||?
dJz

ovu ||

84>R
78 0z

HBVu

L2 BMO ‘ BMO
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Initially, it was assumed that the fluid motion along z > 0 is such that the x-velocity
satisfies (g—;‘, aavzu) eL? ((0,00), BMO). In addition, the following holds as per Definition 1:

3 )

H IR . < VRl z%R Lo < IVorl

3 ) C
H PR o S VRl ||V4>R||Loo_ , and H a SR

Therefore, we have the following equations:

( ﬁdlpf )H (aw>

) 2C ) C
< —.///|Vu0(x,y,z)| dxdydz + = [[(Ve) | ) + R‘
@)

(2035
+
L2(Byr\BR) Pf

- K5> (V1) 22 (B )

u
ot || 2

IVl 12 (Boe\ Bg)

C
—K
+R 1

9
ox

ou

(Vu) o

Hu”LZ

L2(Byg \Bgr)

d(uVo)||2

oVu
ox ‘ 2||(PR||L2(BZR\BR)

1
ol MG

L2

2C
—K
R 2

oVu
dz

2y

R H 2 I (Va1 (0 )

1
[(uVw)| L2
2

9( qu H

L

2C 2C
+ Nl IVl s lIVoll sy pe) + 7 s IVl sl Va0l g, 8y

2C 2C
= IILzII(W)IIL4 (Bor\Br) fHuHLZ||(vu)||%4(BZR\BR)
2C 1 9%u v
TR +,3dP 32 LZH ull2(Byp\ B)
2C 1 E\Y%
+= <v+ . >||v ullz | 5
B 10f Z 112 (Byg\Bg)
s B s | LI )
_ < (2 _ < dad
3RpBdTp¢ FIN0z ) [ o(my\me) - 3RBdSpf L6 92 / |l 2(Byr\Br)

3Rﬁdlpr( )

ou
oz
2CoBj 2C

T Ro; [ull2lVatll gy + 7 1V V2Vl 2,0\ By

L2(Byr \BRr)

Taking R — oo,

2( s )H(*’V) <2(;fz—1<5> (V)
< ///|Vu0 X, Y,z |dxdydz<///|Vu0 z)[*dxdydz,
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that is,
1 aVu |2 20B32 )
Ut B, S 9z + 0 —K Vu
( ,Bdlpf 4>H< 0z > 12 ( of 5>|( iz
< / / / Vug(x,y,z) Pdxdydz.
Q
As

20 B2
V+L_K4 ZOI UO_KS ZOI
Bdips of

(%)

IVl < [ [ [19u0(x,y,2) Paxdydz.
Q

which implies that

2 3
= —// /””O(xr%Z)H%zdxdde’
: 0

and

Considering Poincare’s inequality,
i < WTwIiE < [ [ [1Vuo(xy,2)Pdxdydz, ®)
o)

which implies that u is bounded.
Similarly multiplying by (Av ¢r) in Equation (3) and repeating the same process, it is
concluded that v is bounded as well.

5. Numerical Assessment under the Travelling Waves Domain

This section has the objective of providing a validation of the previously introduced reg-
ularity assessments. To this end, the solutions are studied under the travelling waves domain.

The required travelling wave profiles are defined as u(x,y,z,t) = f({), v(x,y,z,t) = g(0),
{ = xng — ct € R, where c is the travelling wave propagation speed, 1, is the travelling
direction; in this case, n; = (0,0,1) and f,g : R — (0,0) belongs to L*(R) as per the
boundedness of solutions shown in (8). Then, the Equations (2) and (3) are converted to
the travelling domain as follows:

1 oB2
—cf +wf = v+ " /2//770, )
f'+wf ( /%dlpf> 2ﬁd%pf(f)f pff
1 1 oB?
—C/—I—wlz v+ " /2//_70‘ (10)
g +wg ( ﬁdlpf>g zﬁd%pf(g)g pfg

with
f,§ € L¥(R),

and the following radially symmetrical initial functions:
up(x,y,2) = vo(x,y,2) = e~ THVHE), (11)

which comply with the globally bounded gradient condition, as postulated in Theorem 1.
The choice of the bell-shaped initial condition is justified as follows: The problem is
considered for a free geometry with no fixed boundaries, so that the bell-shaped initial
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conditions permit the consideration of a positive distribution that is null at x — o0, y — o0
and z — co. Now, admit the following standard change of variable:

X1=£(), Xo=f(0), X3=g(0), Xs=¢g' ()

so that the following system holds:

X = X
(H%—@X%)xg = —cX2+(T£%X1 (12)
Xy = Xy (13)
<v+%—2ﬁ%pfx§>xg = —cx4+‘;iéx3,

where the velocity component, w , is considered as negligible compared to the velocity
components u,v, i.e., ||w||eo < [[ul|2, ||w||ee < [|7]|;2. This is equivalent to studying the
profile of the flow in the (x,y) plane along the z-axis (so that the velocity component, w,
shall be understood as a local perturbation upon fluid motion) and along time, as per the
travelling wave change of the variable.

Equations (12) and (13) are sharply solved to obtain the travelling wave profiles,
f,g. To this end, a numerical assessment was performed according to the following
main conditions:

¢  The numerical routine was compiled with the Matlab function, bvp4c. This function is
based on a Runge-Kutta implicit approach with interpolant extensions [19]. The bvp4c
collocation method required the specification of the boundary conditions, which in
this case were given by the following equations:

u—0,v—-0, {— oo (14)

u=ax,v=ay, (=0, (15)

where a € R, for the numerical assessment, 2 = 1. To execute the numerical exercise,
the profiles at { = 0 were taken as a mean over a sufficiently large square so as to
admit the conditions |x| — co and |y| — oo.

e  The integration domain was considered as { € (0, 350), sufficiently large to admit the
condition { — oo, or equivalently a condition in which the collocation method in the
boundaries does not impact the shape of the solution.

*  The travelling wave domain was divided into 100,000 nodes, with an accumulated
absolute error of 10~° during the computation.

e Without loss of generality and for the sake of simplicity during the computational
phase, the fluid constants in (2) and (3) were assumed to have a unity value.

Figures 1-3 compile the results. It is possible to check on the regularity of solutions
upon evolution along the travelling wave variable. The solutions are provided for a
wide interval of travelling wave speeds, c. The increase of the speed value, ¢, beyond
5000 induces instabilities in the numerical computation due to the fact that the solution is
within the interval error considered by the bvp4c solver.
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08¢ |

1 Zo0s6¢

f(¢). 9(©)
f(¢). 9(©)

04

02

Figure 1. c = 0.1 (left), c = 1 (right). Representation of the solutions in the travelling wave domain
evolving along the { domain. Note that both solutions, f, g, are superimposed. It is possible to check
the regularity of solutions.

0.3 . . 0.03
(0 (0
——a0 0025 ——a0
0.25 :
| 0.02
02} g
|
3 | 3 0.015
20.15 2
< | <
= | = 001f
|
|
0.1
| 0.005 |
|
005 | o
0 — - - -0.005
0 5 10 15 0 5 10 15
¢ ¢

Figure 2. ¢ = 10 (left), c = 100 (right). Representation of the solutions in the travelling wave domain
evolving along the { domain. Note that both solutions, f, g, are superimposed. Once again, it is
possible to check the regularity of solutions.

-3 -4
340 | | | | 6210
(0 (0
—(9) —(9)
25+ 5
2‘7 n
i
< 1510 3
=3 ‘ =3 ‘
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= " = 27‘
0.5*“ 4 1*
|
0 0
05 : : : : Bl
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Figure 3. ¢ = 1000 (left), c = 5000 (right). Representation of the solutions in the travelling wave
domain evolving along the { domain. Note that both solutions, f, g, are superimposed. It is possible
to check the regularity of solutions.

6. Conclusions

The proposed theorem, Theorem 1, was demonstrated based on the supporting
Propositions 1 and 2 and Definition 1 established in Sections 3 and 4. Such proposed
theorem permitted us to state on the L2-regularity criteria the given initial data with the
energetically bounded spatial gradient. The provided bounds and regularity conditions
were applied to an Eyring-Powell fluid along () = R x R x [0,00) for f > 0. Finally, a
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numerical assessment permitted the confirmation of the regularity of solutions, as proved
in Theorem 1.
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