
Software Impacts 12 (2022) 100280

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

An open-source Python library for self-organizing-maps
Álvaro José García-Tejedor, Alberto Nogales ∗

CEIEC Research Institure, Universidad Francisco de Vitoria, Ctra. M-515 Pozuelo-Majadahona km 1,800, 28223 Pozuelo de Alarcón, Spain

A R T I C L E I N F O

Keywords:
Machine learning
Neural networks
Self-organizing maps

A B S T R A C T

Organizations have realized the importance of data analysis and its benefits. This in combination with Machine
Learning algorithms has allowed us to solve problems more easily, making these processes less time-consuming.
Neural networks are the Machine Learning technique that is recently obtaining very good best results. This
paper describes an open-source Python library called GEMA developed to work with a type of neural network
model called Self-Organizing-Maps. GEMA is freely available under GNU General Public License at GitHub
(https://github.com/ufvceiec/GEMA). The library has been evaluated in different particular use cases obtaining
accurate results.

Code metadata

Current code version V0.4.2
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2022-18
Permanent link to reproducible capsule https://codeocean.com/capsule/3598335/tree/v1
Legal code license GPL-3.0 License
Code versioning system used git
Software code languages, tools and services used Python
Compilation requirements, operating environments and dependencies Requirements:

• NumPy
• tqdm
• Pandas
• matplotlib
• Plotly
• scikit-learn
• scipy
• numba
• imageio

If available, link to developer documentation/manual https://github.com/ufvceiec/GEMA/wiki
Support email for questions gema-som@googlegroups.com

1. Introduction

The increasing availability of big amounts of data and the drop of
computational capacity costs allow many hard problems to be solved
by applying machine learning (ML) techniques, [1]. Thus, there is a
growing need for ML libraries (implementation of algorithms and mod-
els), especially, in the open domain. In this scenario, artificial neural
networks (ANN), a subset of biologically inspired ML techniques, are

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: a.gtejedor@ceiec.es (Á.J. García Tejedor), alberto.nogales@ceiec.es (A. Nogales).

becoming more popular among the artificial intelligence community.
This is a consequence of their capability to solve different problems
and their good performance.

There are many ANN models, but self-organizing maps (SOMs) are
fundamentally different in terms of architecture and learning algo-
rithms. SOMs, also known as Kohonen maps, are based on biological
studies of the cerebral cortex and were introduced in 1982 by [2,3].
This model is an ANN with an unsupervised training algorithm that
https://doi.org/10.1016/j.simpa.2022.100280
Received 21 February 2022; Received in revised form 14 March 2022; Accepted 25 March 2022

2665-9638/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2022.100280
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2022.100280&domain=pdf
https://github.com/ufvceiec/GEMA
https://github.com/SoftwareImpacts/SIMPAC-2022-18
https://codeocean.com/capsule/3598335/tree/v1
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/blob/master/LICENSE
https://github.com/ufvceiec/GEMA/wiki
mailto:gema-som@googlegroups.com
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:a.gtejedor@ceiec.es
mailto:alberto.nogales@ceiec.es
https://doi.org/10.1016/j.simpa.2022.100280
http://creativecommons.org/licenses/by/4.0/


Á.J. García Tejedor and A. Nogales Software Impacts 12 (2022) 100280
Fig. 1. Kohonen map architecture.

performs non-linear mapping between high dimensional patterns and
a discrete bidimensional representation, called a feature map, without
external guidelines. It is for that reason that SOM has been widely used
as a method for pattern recognition, dimensionality reduction, data
visualization, and cluster analysis (categorization), [4].

GEMA, which stands for GEnerador de Mapas Autoasociativos (Self-
associative Maps Generator in Spanish) is an implementation of Ko-
honen’s maps that builds a SOM from scratch in a two-step process:
training and mapping/classification. The training process finds a coher-
ent clustering (a feature map) using a set of input examples by defining
and fine-tuning SOM parameters. The mapping process automatically
classifies new input data using the trained network from the previous
step. Also, GEMA implements facilities to analyze the results with
reports and interactive visualization.

2. Theoretical methods

SOM performs a mapping from a higher-dimensional input space to
a lower-dimensional map space through a two-layered fully connected
architecture. The input layer is a linear array with as many neurons
(elementary components of ANN) as the dimension of the input data
vector (n). The output layer (or Kohonen layer) consists of a set of
neurons, each of them having an associated weight vector of the same
dimension as the input data (n) and a position in a rectangular grid of
arbitrary size (k). All weights are arranged in a 𝑛 ∗ 𝑘 ∗ 𝑘 matrix called
weight matrix. Fig. 1 shows a typical architecture of a Kohonen map.

Self-organization is a process described as follows. A vector from
the data space (𝑋) is presented to the network. The node with the
closest weight vector 𝑊𝑗 is the winner neuron or best matching unit
(BMU). This is calculated using a simple discriminant function (Eu-
clidean distance) and a ‘‘winner-takes-all’’ mechanism (competition).
Then, the unsupervised training algorithm modifies the winner’s weight
vector depending on its resemblance with the input vector. Input
vectors presentation and BMU learning continue until a given number
of presentations (P) is reached. The result of this iterative process is a
trained (self-organized) Kohonen map, represented by a given weight
matrix. Each node in the Kohonen layer will answer for a certain
pattern previously learned and will recognize all elements belonging
to that class. The self-organizing training process guarantee that topo-
logical properties of the input space are preserved, and neighbor nodes
recognize patterns that share similar characteristics.

3. Related works

As GEMA is based on the application of SOM, following we list
recent works that apply it. [5] presents a new implementation of SOM
called Pseudo Label Assisted SOM that segments Magnetic Resonance
Imaging (MRI). In [6], it is used in a novel SOM method with Bayesian
regularization to analyze gasoline and diesel price drifts. Also [7] uses

Fig. 2. GEMA workflow and interaction between modules.

SOM, but in this case, it is applied in the clustering of Multipath
Components (MPC) for the analysis of wireless environments. SOM is
used in a method for ligand-based virtual screening, [8]. Finally, [9]
applies SOM to evaluate multidimensional trajectories of shrinkage in
Spain.

4. Software framework

GEMA is a library that has been developed to facilitate the man-
agement of Kohonen maps. It allows data scientists to define and train
SOMs, using them later to classify new instances from a target dataset.
GEMA also helps to analyze the classifier itself and the classification
results obtained by visualizing data and obtaining some metrics.

GEMA is written in Python 3.7 with dependencies to some libraries.
NumPy,1 a package for scientific computing. Pandas, [10], which is
used to manage data structures. Matplotlib is described in [11], im-
ageio,2 and Plotly3 for visualizing the results. Scikit-learn, [12], and
SciPy4 provide more complex mathematical functions. Finally, numba
is a Python compiler that accelerates developed functions, [13].

Neural networks require prior dataset manipulation to make it un-
derstandable by the network. These processes are grouped into a set of
operations called preprocessing, mainly data normalization, although
all statistical analyses of the dataset can also be carried out.

The training/learning process involves an incremental adaptation
of neurons’ weight vectors using a training dataset of unlabeled input
vectors until a coherent clustering (a map) is obtained accordingly. A
clean SOM is obtained as an instance of class GEMA by a call that
sets the map side. It is very usual that once a good SOM has been
obtained, the user is interested in saving it and using it in the future.
To accomplish this task, the library provides the possibility of saving
the information of the map as a JSON. Thus, a pre-trained model can
also be loaded with this saved model.

The process to classify a dataset with a network using this library is
practically the same as the training, except that no weight is modified,
and other parameters are not necessary. Only the winning neuron is
calculated for each sample to be categorized. The trained map receives
unlabeled patterns to be clustered in the space by calculating a dis-
criminant function (for example the Euclidean distance) between each
element to be classified and the SOM weight matrix.

Finally, a visualization/reporting stage where the user can ask for
different plots and reports that provide a friendly interpretation of

1 http://www.numpy.org/.
2 https://github.com/imageio/imageio.
3 https://plotly.com/.
4 http://www.scipy.org/.
2

http://www.numpy.org/
https://github.com/imageio/imageio
https://plotly.com/
http://www.scipy.org/


Á.J. García Tejedor and A. Nogales Software Impacts 12 (2022) 100280
Fig. 3. GEMA coding example of a complete workflow.

the results (input dataset and codebooks), cluster analysis, and qual-
ity measurements. Fig. 2 describes all the methods and the different
architectural elements involved.

Fig. 3 shows the same process by implementing the code. In this
case, a Kohonen map of size 10 is initialized and trained with data
from a csv file. The training stage consists of 50000 epochs and uses
a learning rate of 0.1. Then, this SOM is used to classify some data
instances. In the end, two types of plots have been obtained: a 3D and
a 2D heatmap.

5. Comparison with other tools

Other Python libraries implement Kohonen maps. Kohonen5 con-
tains some implementations of Kohonen-style vector quantizers al-
though it also supports Neural Gas and Growing Neural Gas. A very
simple implementation of a Kohonen map library called som.6 Somo-
clu, [14], also works with SOMs but it allows to parallelize the different
tasks. A package called PyMVPA for statistical learning analysis in-
cludes a class to model SOMs, [15]. NeuPy7 is a Neural Network library
including also a class for Kohonen maps. Another library only for
SOMs is SOMPy8 which follows the structure of the Matlab somtoolbox.
MiniSom9 is a minimalistic implementation of the Self Organizing
Maps. Finally, SimpSOM10 is a lightweight implementation of Kohonen
maps.

These libraries implement a lot of the functions provided by GEMA.
But in contrast, GEMA has new metrics like topology which provides
quality about the density of the map. Users also request more completed
reports containing detailed information of the feature map. Finally,
GEMA is the only one providing interactive visualization with graphs
like a 3D elevation heatmap or a diagram bar showing how many
neurons have been activated a certain number of times.

6. Empirical results and evaluation

To test the library, it has been evaluated in three well-known use
cases in the field. The first one consists of classifying a set of colors.
The second use case consists of classifying images of handwritten digits

5 https://github.com/lmjohns3/kohonen.
6 https://github.com/alexarnimueller/som.
7 https://github.com/itdxer/neupy.
8 https://github.com/sevamoo/SOMPY.
9 https://github.com/JustGlowing/minisom.

10 https://github.com/fcomitani/SimpSOM.

Fig. 4. Classification of RGB colors using GEMA.

in black and white. The third use case is formed by three classes
of iris plants where each pattern has the length and width of the
sepal and the petal. Apart from that, successful research has been
conducted in the field of psychology by classifying students’ profiles
regarding their competencies, [16]. In the following paragraphs, the
experiments for each use case will be explained. The results obtained
will be represented in graphs. In the results, it can be seen that patterns
with the same characteristics are clustered in similar zones. It should be
highlighted that these graphs are not part of the library and have been
developed itself only to evaluate the results obtained with the library.

The first use case consists of classifying a set of colors. The pat-
terns for each color are formed by three values between 0 and 255
corresponding to the red, green, and blue channels. A training dataset
has been created by generating 500 patterns randomly. Then, a SOM
of size 100 has been created and trained. After finishing that stage,
a set of 10,000 colors has been classified. The results can be seen in
Fig. 4showing that patterns of the same color are distributed in similar
zones and the soft transitions of tones among them.

The second use case demonstrates that GEMA can be used to clas-
sify images. In this case, the map has been trained with the well-
known dataset Modified National Institute of Standards and Technology
(MNITS).11 This consists of images of 28 × 28 pixels with handwritten
digits in black and white. In total, 60,000 examples are used for training
and 10,000 as a test set. In Fig. 5, it can be seen that a map with size
25 trained with 40,000 epochs is clustering well the different images.

11 http://yann.lecun.com/exdb/mnist.
3

https://github.com/lmjohns3/kohonen
https://github.com/alexarnimueller/som
https://github.com/itdxer/neupy
https://github.com/sevamoo/SOMPY
https://github.com/JustGlowing/minisom
https://github.com/fcomitani/SimpSOM
http://yann.lecun.com/exdb/mnist


Á.J. García Tejedor and A. Nogales Software Impacts 12 (2022) 100280

F
u
s
m

f
R
t
r
c

7

c
m
o
d
s
f

Fig. 5. Handwritten numbers classified.

Fig. 6. Iris flowers classified.

or example, images of the number seven are clustered around the left
pper corner. Another interesting point is that near a cluster of fours,
ome nines are quite difficult to distinguish. This occurs due to the
orphological characteristics of both numbers.

Another use case is the iris plants. This is also one of the most
amous datasets in machine learning. It is a dataset introduced by
onald Fisher in 1936, [17]. It consists of 50 samples of iris plants of

hree types measuring the width and length of sepals and petals. In the
esults provided in Fig. 6, it can be seen that there are three different
lusters, each corresponding to the different types of iris.

. Conclusions and outlook

The main aim was to develop a library to work with SOMs, also
alled Kohonen maps. This kind of neural model is divided into two
ain stages training and classification. Apart from developing them,

ther methods have been coded. It exists the possibility of obtaining
ifferent kinds of reports. The results can also be shown by plotting
ome interactive graphs. Finally, the map can be saved to use in the
uture by loading it.

In future works, the new implementation will be done. For example,
other concepts defined by Kohonen like Neural Gas or Growing Gas.
Also, the modules for obtaining reports and visualizing results will
be extended. Finally, the library will be used in new real cases like
clustering students depending on their psychological characteristics or
possible food alerts depending on the characteristics of how they are
transported around the European Union.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, M. Tornatore,
An overview of the application of machine learning techniques in optical
networks, IEEE Commun. Surv. Tutor. 21 (2) (2018) 1383–1408.

[2] T. Kohonen, Self-organized formation of topologically correct feature maps, Biol.
Cybernet. 43 (1) (1982) 59–69, http://dx.doi.org/10.1007/BF00337288.

[3] T. Kohonen, The self-organizing map, Proc. IEEE 78 (9) (1990) 1464–1480.
[4] M. Cottrell, M. Olteanu, F. Rossi, N. Villa-Vialaneix, Self-OrganizingMaps, theory

and applications, Investig. Operacional 39 (1) (2018) 1–23.
[5] J. Grande-Barreto, P. Gómez-Gil, Pseudo-label-assisted self-organizing maps for

brain tissue segmentation in magnetic resonance imaging, J. Digit. Imaging
(2022) 1–13.

[6] R. Sujatha, J.M. Chatterjee, I. Priyadarshini, A.E. Hassanien, A.A.A. Mousa, S.M.
Alghamdi, Self-organizing maps and Bayesian regularized neural network for
analyzing gasoline and diesel price drifts, Int. J. Comput. Intell. Syst. 15 (1)
(2022) 1–16.

[7] J. Alejandrino, E. Trinidad, R. Concepcion, E. Sybingco, M.G. Palconit, L.
Materum, E. Dadios, Utilization of self-organizing maps for map depiction of
multipath clusters, in: Int. Conf. Intell. Comput. Optim., Springer, Cham, 2021,
pp. 417–426.

[8] P.B. Jayaraj, S. Sanjay, K. Raja, G. Gopakumar, U.C. Jaleel, Ligand based virtual
screening using self-organizing maps, Protein J. (2022) 1–11.

[9] A. Ruiz-Varona, J. Lacasta, J. Nogueras-Iso, Self-organizing maps to evaluate
multidimensional trajectories of shrinkage in Spain, ISPRS Int. J. Geo-Inf. 11 (2)
(2022) 77.

[10] W. McKinney, Pandas: a foundational python library for data analysis and
statistics, Python High Perform. Sci. Comput. (2011) 1–9.

[11] D.J. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (2007)
90–95.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, J.
Vanderplas, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12
(2011) 2825–2830.

[13] S.K. Lam, A. Pitrou, S. Seibert, A llvm-based python jit compiler, in: Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 2015, pp.
1–6.

[14] P. Wittek, S.C. Gao, I.S. Lim, L. Zhao, Somoclu: An efficient parallel library for
self-organizing maps, J. Stat. Softw. 78 (2013) 1–21.

[15] M. Hanke, Y.O. Halchenko, P.B. Sederberg, S.J. Hanson, J.V. Haxby, S. Pollmann,
PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data,
Neuroinformatics 7 (2009) 37–53.

[16] A. Nogales, Á.J. García-Tejedor, N.M. Sanz, T.de.Dios. Alija, Competencies in
higher education: A feature analysis with self-organizing maps, in: A. Vellido, K.
Gibert, C. Angulo, Guerrero J. Martín (Eds.), Advances in Self-Organizing Maps,
Learning Vector Quantization, Clustering and Data Visualization. WSOM 2019,
in: Advances in Intelligent Systems and Computing, vol. 976, Springer, Cham,
http://dx.doi.org/10.1007/978-3-030-19642-4_8, 2020.

[17] R.A. Fisher, M. Marshall, Iris data set, in: RA Fisher, UC Irvine Machine Learning
Repository, vol. 440, 1936, p. 87.
4

http://refhub.elsevier.com/S2665-9638(22)00032-X/sb1
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb1
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb1
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb1
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb1
http://dx.doi.org/10.1007/BF00337288
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb3
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb4
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb4
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb4
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb5
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb5
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb5
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb5
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb5
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb6
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb6
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb6
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb6
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb6
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb6
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb6
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb7
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb7
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb7
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb7
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb7
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb7
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb7
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb8
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb8
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb8
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb9
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb9
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb9
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb9
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb9
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb10
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb10
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb10
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb11
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb11
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb11
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb12
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb12
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb12
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb12
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb12
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb13
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb13
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb13
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb13
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb13
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb14
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb14
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb14
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb15
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb15
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb15
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb15
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb15
http://dx.doi.org/10.1007/978-3-030-19642-4_8
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb17
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb17
http://refhub.elsevier.com/S2665-9638(22)00032-X/sb17

	An open-source Python library for self-organizing-maps
	Introduction
	Theoretical methods
	Related works
	Software framework
	Comparison with other tools
	Empirical results and evaluation
	Conclusions and outlook
	Declaration of competing interest
	References


