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ARTICLE INFO ABSTRACT

JEL: The outbreak of the novel corona virus has heightened concerns surrounding the adverse financial
€32 effects of the outbreak on stock market liquidity and economic policies. This paper contributes to
C52

the emerging strand of studies examining the adverse effects of the virus on varied aspect of

g; global markets. The paper examines the causality and co-movements between COVID-19 and the
aggregate stock market liquidity of China, Australia and the G7 countries (Canada, France, Italy,
Keywords: Japan, Germany, the UK and the US), using daily three liquidity proxies (Amihud, Spread and
COVID 19 . .. .
Stock market liquidity Traded Value) over the period December 2019 to July 2020. Our empirical analysis encompasses
Uncertainty wavelet coherence and phase-differences as well as a linear Granger causality test. Linear cau-
Wavelets sality test results suggest that a causal relationship exists between the number of cases of COVID
Causality 19 infections and stock market liquidity. To quantitatively examine the degree of causality be-

tween COVID-19 outbreak and stock market liquidity, we employ the continuous wavelet
coherence approach with results revealing the unprecedented impact of COVID-19 on stock
market liquidity during the low frequency bands for countries that were hard hit with the COVID-
19 outbreak, i.e., Italy, Germany, France, the UK and the US. Further, evidence shows that there is
a heterogeneous lead-lag nexus across scales for the entire period of the study.

1. Introduction

Since early 2020, the global financial markets have been shaken by the outbreak of COVID-19. Due to the virus’s huge global
impact, the emergence of several studies on the financial and economic effects of COVID-19 has been witnessed in finance literature (e.
g., Zhang, Hu, & Ji, 2020; Tiwari, Abakah, Dwumfour, & Gil-Alana, 2020; Abakah, Caporale, & Gil-Alana, 2021; Caporale, Kang,
Spagnolo, & Spagnolo, 2021). Previous literature has considered the impact of financial, environmental and/or health crises on
macroeconomic indicators such as inflation, interest rates, unemployment, just to mention a few (Salisu, Ogbonna, & Adediran, 2021)
as well as on some firm specific and financial indicators such as stock returns, volatilities (Okorie & Lin, 2020; Sharif, Aloui, &
Yarovaya, 2020) and investment funds (Mirza, Naqvi, Rahat, & Rizvi, 2020). Other studies commenting on the eruption of Covid19,
showed the reaction of commodity markets, minerals, stock markets and cryptocurrencies to the pandemic (Bai et al., 2021; Corbet,
Hou, Hu, Larkin, & Oxley, 2020; Haroon and Rizvi, 2020a, 2020b; Zhang et al., 2020). For example, Al-Awadhi, Alsaifi, Al-Awadhi,
and Alhammadi (2020), Mishra, Rath and Dash (2020) concentrate on the performance of stocks in China and India, supporting the
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existence of significant impacts of Covid19 on the performance of stocks. Zaremba, Aharon, Demir, Kizys, and Zawadka (2021)
document the effect of effective government responses on the volatility of bond markets during the Covid19 pandemic. Their findings
were congruent with earlier studies that stringent measures and economic support reduced the volatility of financial assets as were
those of Phan and Narayan (2020) for travel and leisure stock markets. Ashraf (2020a) also studies the reaction of stock markets to
Covid19 and finds a reduction in the returns of stocks to a one percent increase in the growth of confirmed cases. Thus, the Covid-19
induced global crisis has left an unforgettable dent, just like the 2007/08 crisis, in the global economic and financial markets.

Stock market liquidity is essential for economic growth and financial stability during extreme volatile conditions. Butler, Grullon,
and Weston (2005) find that higher levels of liquidity lead to a decline in the cost of equity capital which can alleviate a firm’s funding
constraints and further contribute to a firm’s financial resilience to the outbreak of COVID-19 pandemic. Moreover, given that liquidity
permits the immediate recognition of a gain or loss, the need to investigate its features under extreme volatile market conditions
cannot be ignored. Additionally, market participants, including fund and portfolio managers, regulators and policy makers have
constantly been monitoring liquidity to improve decision making in their quest to safeguard economic growth and financial stability
during the outbreak of the novel coronavirus. Interestingly, even though several emerging studies on the effects of the COVID-19
pandemic on the financial markets have been analyzed from different perspectives, leading to a comprehensive emerging literature
(Ashraf, 2020a; Goodell, 2020; Insaidoo, Arthur, Amoako, & Andoh, 2021; Takyi & Bentum-Ennin, 2021; Tiwari, Séraphin, &
Chowdhary, 2021; Topcu & Gulal, 2020), the literature is still limited since there are several questions yet to be identified and explored
on the financial effects of the COVID-19 pandemic. The objective of the study is to contribute to the extant literature on COVID-19 and
stock markets by investigating the impact of the COVID-19 outbreak on stock market liquidity around the world focusing on emerging
and developed equity markets.

Our pursuit to determine the impact of the Covid19 pandemic on stock trading activities follows theoretical arguments that the
behavior of financial securities, for example stocks in terms of returns and volatilities as well as investor behavior, are influenced by
macroeconomic events and news that can directly or indirectly affect trade and returns (Haroon and Rizvi, 2020a, 2020b; Salisu,
Sikiru, & Vo, 2020). Several studies have considered the effect of macroeconomic indicators on stock trading activities (Ashraf, 2020a;
Baker, Bloom, Davis, & Terry, 2020; Corbet et al., 2020; Le, Abakah, & Tiwari, 2020; McKibbin & Fernando, 2020; Okorie & Lin, 2020;
Topcu & Gulal, 2020), however, very few have assessed the impact of extreme global conditions on stock trading activities. The
Covid19 pandemic saw a halt in business activities, affecting business performance and consequently the dynamics of stock markets
(Bloom, 2009; Lam, Zhang, & Zhang, 2020; Okorie & Lin, 2020). Literature suggests that financial market trading activities and
investor behavior are affected by global crises and that the recent pandemic is not an exception (Brunnermeier, 2009; Kaplanski &
Haim Levy, 2010). Due to the ease of convertibility of financial assets, specifically stocks into cash and vice versa, defining the liquidity
of stocks is extremely crucial in periods of crises and remains prominent in decision-making regarding choice of assets on the part of
investors. Liquidity premiums are mostly required by investors who hold assets in less liquid assets thus influencing the cost of equity
and firm value (Amihud & Mendelson, 1986; Butler et al., 2005; Fang, Noe, & Tice, 2009). This being an important feature of financial
markets, we assess how the news of Covid19 influences the trading activities of financial assets, unambiguously the liquidity stocks of
markets of advanced and emerging economies. We ask whether the Covid19 pandemic affected stock market liquidity due to investors
perceived choice of holding more liquid assets in periods of increased uncertainty and even more so during pandemics. Stock liquidity
is indicative of the flow of capital and some studies support its association to the degree of market efficiency (Chordia, Roll, & Sub-
rahmanyam, 2008). Given the importance of the liquidity of stock in market efficiencies and firm value, there is a need to examine how
this vital characteristic of equity markets is impacted by a global pandemic that halted activity in the greater part of the global
economy. Tran, Hoang, and Tran (2018) report on stock liquidity commonality during the 2009 global financial crisis and how that
affects realized stock returns of international equity returns (see Dang & Nguyen, 2020). To the best of our knowledge, studies of stock
liquidity and the impacts of the Covid19 have been less represented or examined in literature (Adrian and Natalucci, 2020).

An important question that needs to be addressed is regarding the mechanism of the impact of the COVID 19 pandemic on stock
market liquidity, and to distinguish the impact of the epidemic on stock liquidity from the impact of stock returns. Following the
outbreak of the COVID-19 virus and its associated issues that forced governments to implement several policy responses among other
measures, at least three mechanisms have been identified through which the outbreak of COVID-19 may affect the liquidity of equity
markets. The first mechanism is described as the “infrastructure channel’. The closure of workplaces during the outbreak of COVID-19
in order to curb the spread of the virus may have distorted the decision processes of most financial institutions, thereby prohibiting
quick trading and swift reactions. Since most financial firms were physically closed, traders may not have been able to trade or transact
business in situations where there was lack of proper electronic infrastructure or regulatory frameworks. In cases where a significant
part of the trading is automated and the economy is controlled digitally, the role of these factors would be, at least, partly reduced. In
particular, the impact may be potentially stronger in emerging equity markets than in developed markets (Ersan & Ekinci, 2016; Glantz
& Kissell, 2013). On the other hand, even if workplaces were not actually closed, other “softer” measures may have had an indirect
impact. For example, internal travel restrictions may result in disruptions for commuters, and school closures require parents to stay
home leading, in turn, to significant absenteeism (Chen, Guo, & Huang, 2018; Epstein et al., 2020). The second mechanism is described
as the “portfolio channel”. Policy responses implemented by governments’ signaled variations in the future economy, resulting in the
need for portfolio restructuring. Notably, the deteriorating economic conditions may result in changes in cash flow expectations for
firms and, thus, portfolio reallocations. Additionally, investors may be less willing to invest their money in risky assets, such as stocks.
School or workplace closures may signal a worsening of future household cash flows (Chen et al., 2018; Epstein et al., 2020), which
increases the risk premium. Third, market participants can be induced by psychological and behavioral factors. Galai and Sade (2006),
Karlsson, Loewenstein, and Seppi (2009), as well as Sicherman, Loewenstein, Seppi, and Utkus (2016), note the “ostrich effect”, which
suggest that market participants in the wake of bad news are reluctant to follow and monitor their portfolios. Thus, investors may
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prefer to simply “put their head in the sand” rather than trade when confronted with a stream of negative news on government re-
strictions. This may be also amplified by the “information overload” effect (Agnew & Szykman, 2005). Behind this argument is the idea
that when a problem is loaded with information and thus is too hard to understand, an easy solution is just to nothing. Additionally,
Thaler and Johnson (1990) show that individuals who experience several consecutive periods of losses become more loss-averse and
avoid taking additional gambles. Pursuant to this line of thinking, trading activity decreases.

To the best of our knowledge, this is one of the foremost studies to examine the impact of coronavirus outbreak on stock market
liquidity. We contribute to the ongoing debate on the effects of COVID-19 pandemic on global financial markets in threefold. First, we
extend the literature by providing fresh empirical evidence on the linkages between COVID-19 and stock market liquidity. This study
offers a broader perspective on the issue of stock market liquidity and the case count as well as deaths caused by COVID-19, using a
modern method of time-series and a multi-country analysis. A significant number of these studies overlook one of the most important
characteristics of efficient capital markets during pandemics and periods of increased uncertainties — stock liquidity. Our study focuses
on the recent pandemic and its influence on the stock trading activities of Australia, China and the G7 economies. Specifically, we
examine the extent to which the outbreak of COVID-19 impacted stock market liquidity across the selected countries. Second, we
provide evidence on the effect of the COVID-19 pandemic on international financial markets for international portfolio investors to aid
the creation of wealth, portfolio formulation, diversification and trading activities during crisis period similar to other studies on the
impact of COVID-19 on financial markets (Ashraf, 2020a; Goodell, 2020; Insaidoo et al., 2021; Takyi & Bentum-Ennin, 2021; Tiwari
et al., 2021; Topcu & Gulal, 2020). In particular, we chose to concentrate on China, Australia and the countries of the G7 (Canada,
France, Italy, Japan, Germany, the UK, and the US) due to the interconnectedness of the stock markets of these economies (see Liu,
Gregoriou, & Bo, 2020) and the possible contagion effect of the Covid19 pandemic across these economies (Akhtaruzzaman, Boubaker,
& Sensoy, 2020). Further, these economies are deemed to have been the hardest-hit areas by the pandemic and as well possessing some
of the most vibrant financial markets in the world. Nevertheless, studies indicate that these economies performed better in terms of the
downward effect of the pandemic (Ashraf, 2020b; Baker et al., 2020; Phan & Narayan, 2020; Ramelli & Wagner, 2020). Third, we
employ the continuous wavelet (i.e., time-frequency) approach. This approach is adopted as it has the capacity to reveal underlying
processes with changing trends, lead-lag interactions and non-stationarity that characterize the behavior of the data being considered.
The application of the wavelet method permits us to discover the relations between the incidence of Covid19 and the liquidity that
exists in the equity markets of the countries under study. Other econometric approaches render some difficult in identifying such
relationships with the efficiency that the wavelet approach offers. Furthermore, the wavelet analysis is characterized as being model-
free. This is in contrast to other traditional econometric models that estimate the parameters in only one or at most two time scales. The
wavelet approach permits the study of time-series in both the time and frequency domain. The wavelet framework, for these reasons,
has considerable advantages over the traditional frequency methods when the time-series under study are non-stationary.

We document several interesting findings. Our results show strong evidence of co-movement between stock liquidity and COVID-19
outbreaks for all countries. However, the causality is strong for countries that recorded high counts of COVID-19 infections and death
such as Italy, France, the US and the UK. This is not surprising since the outbreak of the virus increased uncertainty in these economies
and may have influenced the investment activities and trading pattern of investors. For countries like Canada, Japan and Australia, we
find weak causality at the latter end of our sample period.

The layout of the paper is as follows: Section 2 outlines the literature review; Section 3 accounts for the econometric framework;
Section 4 describes the data; Section 5 presents the main empirical findings; Section 6 offers some concluding remarks.

2. Literature review

The economic impact of crises, natural disasters, diseases and wars have been recently documented in literature to show adverse
effects (Al-Awadhi et al., 2020; Gangopadhyay, Haley, & Zhang, 2010; Goodell, 2020; Ichev & Marin¢, 2018; Kowalewski &
Spiewanowski, 2020). The global financial crises of 2008-2009 clearly influenced the performance of the financial assets of major
financial markets of developed economies. The interconnectedness of crises and spillover effects on major economic variables have
been cited in the literature by, among others, Bekiros (2014), Luchtenberg and Vu (2015), Yarovaya, Brzeszczynski, and Lau (2016)
and Su (2020). Comparing the impacts of COVID-19 and the GFC, Shehzad, Xiaoxing, and Kazouz (2020) prove the perilous effect of
COVID-19, resulting in global financial crises. The literature on the impacts of COVID-19 spans a wide array of economies more than
the 2008/9 GFC which had major effects in the United States and trickled into other economies. Considering the economic impacts of
crises, Goodell (2020) points out COVID-19 may have a wider impact on financial sectors across countries.

The stock market reaction to the COVID-19 pandemic has featured quite a lot in recent literature (Baker et al., 2020; Erdem, 2020;
Haroon and Rizvi, 2020a, 2020b; Zhang et al., 2020). Several empirical studies consider different aspects of the financial markets and
their reaction to the Covid19 pandemic. For example, Al-Awadhi et al. (2020), Li, Strahan, and Zhang (2020), Pavlyshenko (2020) and
Sharif et al. (2020) studied the effect of the pandemic on stock returns, Albulescu (2020), Cheng (2020), Onali (2020) studied the
volatility of stocks during Covid19 and Haroon and Rizvi (2020a, 2020b) study the liquidity of stocks. Other studies considered the
impact of the Covid19 on other asset classes. These studies included bonds (Arellano, Bai, & Mihalache, 2020; He, Liu, Wu, Gu, Zhao, &
Yue, 2020; Ji, Liu, Cunado, & Gupta, 2020) commodities (Corbet, Larkin, & Lucey, 2020; Devpura & Narayan, 2020; Narayan, 2020;
Umar, Gubareva, Tran, & Teplova, 2021), cryptocurrencies (Corbet et al., 2020; Umar & Gubareva, 2020). Nevertheless, the literature
shows varying impacts of Covid19 on financial assets. Evidence from the performance of the US stock market, using the S&P1500,
indicate that sectoral stocks such as natural gas, food, healthcare and software recorded positive returns whereas the petroleum, real
estate, entertainment and hospitality sectors crashed during the height of the pandemic turmoil (Mazur, Dang, & Vega, 2020).

Lahmiri and Bekiros (2020) report on the diminished stability levels of cryptocurrency markets, increased volatilities with
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increased levels of irregularity, similar to that of international equity markets during the COVID-19 pandemic. Corbet et al. (2020)
indicate the contagion effect of the recent pandemic and show significant shift of capital from some financial assets to safer com-
modities and cryptocurrencies though the latter is not clearly seen as a diversifier due to its newness in the financial space (see also
Shahzad, Bouri, Roubaud, & Kristoufek, 2020).

Considering, non-financial assets, Akhtaruzzaman et al. (2020) showed the magnitude of increased correlations between financial
and non-financial stock returns in China and G7 countries during the COVID-19 outbreak. Their study also shows considerably higher
levels of correlations for financial firms, indicating the occurrence of financial contagion transmissions. Chiang (2019) indicate that
periods of uncertainties in economic policies were harmful to stock returns when compared to periods of tranquility. Ashraf (2020a)
examines the stock markets’ response to the COVID-19 pandemic using daily COVID-19 confirmed cases, deaths and stock market
returns from 64 countries, and report a decline in returns for increases in cases. Economic policy uncertainty as a result of the COVID-
19 pandemic could be seen as a factor behind increased risks and stock market volatilities, thereby affecting liquidity and stock returns.
Prior studies on the effects of equally dire global crises, such as the GFC on stock market liquidity, suggest a causal relationship be-
tween economic policy uncertainty and stock market liquidity (Dash, Maitra, Debata, & Mahakud, 2019; Yeyati, Schmukler, & Horen,
2008). Tran et al. (2018) suggest that stock market (il)liquidity in times of crisis is somewhat attributable to financial contagion which
is characterized by liquidity commonality and flight-to-liquidity (Brunnermeier & Pedersen, 2009). The co-movement of individual
assets liquidity with market liquidity known as the liquidity commonality; and shifting of investor choice from less liquid assets to
more liquid assets - flight to liquidity, increases the systematic risk and is seen as significant during periods of crises (Rosch & Kaserer,
2013). On the stock liquidity effect from the recent pandemic, Baig, Butt, Haroon, and Rizvi (2020) show significant increases in
market illiquidity and volatility with increases in confirmed cases and deaths. Studies have shown that declining trends of stock
markets affect the liquidity of stocks during crises as investors exhibit increased levels of risk aversion (Garleanu & Pedersen, 2007).

Concentration on the G7 countries is a relevant as fundamental economic factors exhibit cross-country associations (Su, 2020), thus
the contagion effect of COVID-19 affecting similar economies. Liu et al. (2020) examined the relationship between stock liquidity and
stock returns pre, during and post the 2007-2009 financial crises and document a positive association for Germany and the UK, but
negative and inconclusive results for China and the US respectively. The countries used in Liu et al. (2020) are, with the exception of
China, members of the G7 which are seen to have similar characteristics in their financial architecture. Using time-varying copulas
with Markov switching regimes, Ji et al. (2020) showed risk spillovers between the US stock market and the remaining G7 stock
markets. With financial market distortions from the COVID-19 pandemic and inconclusive literature on liquidity-returns relations
(Lee, 2011), this study ventures to contribute to the literature and policy on the effects of the prevailing pandemic on stock (il)liquidity,
which in turn affects efficient capital allocation, portfolio formation and subsequently, returns.

3. Empirical methodology
3.1. The continuous wavelet methodology

The wavelet transform approach decomposes signals into dilated and translated functions referred to as the mother wavelet u(t).
The mother wavelet is expressed as a function of two constructs where one focuses on the time position (s) with the other parameter

focuses on the scale of the wavelets. Hence a time series x(t) that has been subjected to the wavelet transform decomposition with
reference to the selected mother wavelet is presented in Eq. (1):

Wil = /w ()@ (%)dt: f (1), (1)dr, ¢))

where Wy(a,7) denotes the influence of the scales while * denotes the influence of the complex conjugate form leading to a two-
dimensional surface denoted as .Z(Wy(a,1)).

The wavelet approach adopted in this paper rests on several considerations. Nevertheless, Mallat (1998) posits that the best
methodology to consider in examining quantitative information about phase connections that exist between two time series is
continuous and complex wavelets. In the literature, the two most referred continuous wavelets are the “Mexican hat” and “Morlet
wavelet”. High frequency resolution is associated with the Morlet wavelet since its scales and frequencies are very localized. However,
for the Mexican hat frequency localisation is poor but has good time localisation.

In this paper, the Morlet wavelet is adopted for the purposes of the study,

p(t) = n ' *exp(—i2afyt)exp(—1/2%).

Under the Morlet wavelet, the nexus amid the wavelet scale and the frequency is outlined below % = % with w, about 2.
wo g

For the Morlet wavelet, the studied signal is separated into phase and amplitude since it can be factored into an imaginary and a real
part. We write a complex wavelet coefficient Wy («a, 7), which references its phase ¢« (@, 7) and modulus Wy(a, 7).
We discretised Eq. (1) for time series {x, : n =1 ... N} for practical purposes as shown below:

N-1
Wia, 1) = %an o (=), =12 N1 @

n=0



A.K. Tiwari et al. North American Journal of Economics and Finance 62 (2022) 101735

From Eq. (2), 6t denotes the uniform step size. Following Torrence and Compo (1998), we explored the expediency presented
discrete Fourier transform by discretising the wavelet transform as presented below:

st = . o
W;(a,’):%E %0 @ (awy)e™™, m=0,1,2,..,N—. 3)
n=0

A set of scales necessary for use in the wavelet transform was obtained using the formula below.

a = a2, j=0,1, .., JwhereJ = § log,(Nét/ap). ap denotes the least resolvable scales, which is chosen to ensure that the
corresponding Fourier period is about 24t.

Wavelet Power Spectrum, Wavelet Coherency and Phase Difference.

With spectral approaches, we compute the localized wavelet power spectrum as:

Sc(f, 1) = [Walf, 7)

We employ the wavelet cross spectrum and the wavelet coherence to compute the relation between the two time series that are non-
stationary.

The wavelet cross-spectrum employed in this study is given by:

ny(,f’ 7) = Wi(f, T)Wy(fv T)"

Table 1

Descriptive statistics of stock liquidity variables.
Countries Mean Std Dev Q1 Median Q3
USA
Amihud 0.0700 0.0663 0.0228 0.0516 0.0963
Spread 0.0154 0.0125 0.0068 0.0110 0.0190
Traded Value 13.0280 0.1203 12.9441 13.0002 13.1070
UK
Amihud 0.0093 0.0103 0.0019 0.0058 0.0147
Spread 0.0241 0.0193 0.0119 0.0175 0.0298
Traded Value 11.8533 0.1328 11.7727 11.8255 11.9235
Italy
Amihud 0.0007 0.0007 0.0002 0.0004 0.0010
Spread 0.0177 0.0165 0.0083 0.0142 0.0204
Traded Value 13.0518 0.1720 12.9355 13.0387 13.1901
Germany
Amihud 0.0042 0.0041 0.0013 0.0028 0.0060
Spread 0.0136 0.0107 0.0068 0.0104 0.0168
Traded Value 12.1930 0.1390 12.1065 12.1709 12.2757
France
Amihud 0.0117 0.0116 0.0034 0.0075 0.0177
Spread 0.0152 0.0113 0.0073 0.0127 0.0187
Traded Value 11.7888 0.1722 11.6797 11.7615 11.8779
Canada
Amihud 0.0022 0.0023 0.0006 0.0014 0.0028
Spread 0.0125 0.0132 0.0041 0.0086 0.0155
Traded Value 12.5253 0.1437 12.4429 12.5117 12.6070
Japan
Amihud 0.0379 0.0316 0.0131 0.0282 0.0579
Spread 0.0120 0.0095 0.0062 0.0083 0.0139
Traded Value 11.0635 0.7803 11.1265 11.1807 11.2911
China
Amihud 0.0004 0.0004 0.0001 0.0003 0.0005
Spread 0.0093 0.0055 0.0054 0.0078 0.0113
Trade Value 12.7876 1.0939 12.9380 12.9891 13.1043
Australia
Amihud 0.0021 0.0020 0.0008 0.0014 0.0028
Spread 0.0162 0.0143 0.0069 0.0115 0.0191
Traded Value 12.5392 0.1405 12.4510 12.5195 12.6219
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On the other hand, we denote the wavelet coherency as,

[We (. 7) |
D

R (f7) = “4)

where <> represents a smoothing operator in both scale and time. Based on this definition, R, , (f, 7) is restricted
by0 <R, (f, 7) <1..

Following, Liu (1994) we see that the benefits of wavelet coherency rests on its difference in time and, therefore its capacity to
identify transitory relationships between the two time series. We compute the phase difference ¢, ,(f, ) as shown below.

-1 3(<WXV)'(f7 T»)
R ((Wey(f,7))

From the phase difference, we obtain the linkages existing between the two series both in phase and out of phase. We then use
Monte Carlo approaches to test whether the wavelet patterns displayed by the wavelet approach is statistically significant.

¢x.y (f> T) = tan (5)

4. Data, variable definition, summary statistics and time trends

We use daily data from 31st December 2019 until 10th July 2020 for G7 countries, China and Australia aggregate stock market
indices to commute daily observations of 133 liquidity measures. The data for aggregate stock market indices of Canada (TSX 300
Composite Index), France (CAC 40 Index), Germany (DAX Composite Index), Italy (FTSE MIB Index), Japan (JPX-Nikkei Index 400),
UK (FTSE All Share Index), USA (S&P 500 Index), Australia (S&P/ASX 200) and China (Shanghai SE Composite Index) are obtained
from Thomson Reuters Eikon. The daily data on country specific COVID 19 infection cases and deaths are collected from Datastream.

Following the multidimensional nature of liquidity as expounded by Amihud (2002), in this paper we use three proxies to measure
the stock market trading activities. Consistent with Corwin and Schultz (2012) we construct a high-low spread ratio (Spread) to
capture the transaction cost aspect of liquidity. Consistent with Fernandez-Amador, Gachter, Larch, and Peter (2013) we use traded
value (Trade Value) to measure the trading activity. Following Amihud (2002), we measure illiquidity (ILLIQ) which we denote in the
same way as Amihud to capture the price impact characteristics. From the market microstructure literature, among the three proxies,
the Amihud (2002) measure is more prominent for its effectiveness over other high-frequency measures, and empirical support across
different market structures (e.g., Acharya & Pedersen, 2005; Goyenko, Holden, & Trzcinka, 2009; Karolyi, Lee, & Van Dijk, 2012;
Amihud, Hameed, Kang, & Zhang, 2015).

In Table 1, we report the descriptive statistics for our three liquidity proxies (Amihud, Spread and Traded Value). We observe that
the USA shows the highest average daily illiquidity (0.070) followed by Japan (0.034) for the Amihud proxy. For the Spread proxy, we
note that the UK shows the highest average (0.024) followed by Australia (0.016). In the case of Traded Value proxy, the highest mean
was recorded by Italy (13.052) followed by the USA (13.028).

Table 2 presents the summary statistics of country level COVID 19 daily infections and deaths. As expected, we find that the highest
average of COVID 19 cases (23,337) and standard deviation (29512) is associated with the USA, with the least average recorded cases
(45) corresponding to Canada. On the average number of deaths recorded per country as a result of the COVID 19 outbreak, we again
find that the highest mean (1014) and standard deviation (1515) is associated with the USA with the least mean deaths (1) linked to
Australia. In Table 2.1 we present the ADF test of Dickey and Fuller (1979) and Phillips and Perron (1988) test to test for stationarity of
our COVID-19 recorded cases and deaths. Results from the significant statistics show the proxies are stationary.

Table 2

Descriptive Statistics of COVID cases and deaths per country.
Variable Mean Std Dev Median
USA new cases 23,337 29,512 18,279
USA new deaths 1014 1515 485
UK new cases 2212 4570 1059
UK new deaths 343 508 150
Japan new cases 92 129 41
Japan new deaths 5 11 1
Italy new cases 1,214 1,629 331
Italy new deaths 176 234 55
Germany new cases 985 1524 378
Germany new deaths 48 76 10
France new cases 868 1341 358
France new deaths 147 251 27
Canada new cases 552 625 313
Canada new deaths 45 61 9
China new cases 471 1545 29
China new deaths 27 116
Australia new cases 47 103 11
Australia new deaths 1 1 0
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In Table 3, Panel A presents the ADF test of Dickey and Fuller (1979) and Phillips and Perron (1988) test to test for the stationarity
of the examined liquidity variables. Results from the significant statistics show the proxies are stationary. Panel B of Table 3 reports the
pairwise correlation between country specific liquidity proxies. We find significant positive correlation between the liquidity proxies,
which are consistent with the theoretical arguments associated with the liquidity proxies used. We also observe some negative cor-
relation between the liquidity measures. For the case of the USA, the UK, Canada, and Australia, we find significant positive correlation
between all three liquidity proxies. For Italy and Germany, we note a significant negative correlation between Amihud and Traded
Value. A negative correlation between Amihud and Traded Value could be attributable to the notion that stocks with high trading
volume are more likely to be traded quickly as the adverse price impact caused by the order flow is lower (Dash et al, 2019).

Fig. 1 displays the time series plots of COVID 19 daily cases and liquidity proxies (Amihud, Spread, and Traded Value), while Fig. 2
illustrates time series plots of COVID 19 daily deaths and the three liquidity proxies. From the two plots, we observe strong co-
movement between COVID 19 cases and deaths with the liquidity measures. We surmise then that an increase (decrease) in COVID
19 cases and deaths is associated with a decrease in stock market liquidity. A feature we investigate further below.

5. Empirical results discussion
5.1. Linear causality tests

Table 4 describes the linear Granger-causality test results between COVID-19 and the liquidity of G7 countries along with that of
China and Australia. Panel-A of Table 4 reports linear causality between COVID-19 cases and stock market liquidity. Results reveal
causality from COVID-19 daily infections rate to Amihud and Traded Value for the UK, Italy and France. Panel-B documents the
causality between COVID-19 deaths and aggregate stock market liquidity. We observe that the number of deaths recorded greatly
impacted market liquidity compared to the rate of infection. We make this conclusion because, we find causality from COVID-19 daily
deaths recorded to Amihud and Traded Value for USA and France, Spread and Traded Value for the UK, Amihud and Spread for
Canada, China and Germany. In the case of Italy, we observe causality from COVID-19 deaths recorded to all three liquidity proxies
thus Amihud, Spread and Traded Value. For Australia, we find causality from COVID-19 deaths to the Amihud liquidity measure. The
above results show that the number of deaths resulting from COVID-19 greatly affected the stock markets of countries which were
greatly affected by the virus. For example, in the case of Italy, we note that both the number of infections and recorded deaths impacted
market liquidity. For the USA stock market, we provide evidence that the number of deaths impacted trading activities compared to the
number of infections as shown in Panel A. Comparing results reported in Panel A and Panel B, we find some country level differences in
the COVID 19 pandemic and illiquidity relationship.

Recently, Baffes and Nagle (2020) find that the COVID-19 pandemic greatly affected the crude oil market with plummeting oil
prices constituting the largest slump since the Gulf war. We attribute our documented evidence on the impact of COVID-19 on market
liquidity to increased uncertainty in the economies of affected countries due to the COVID-19 outbreak. This is because prior literature
shows that stock market performance can be negatively affected by a high level of uncertainty in the sense that uncertainty in economic
policies cause market participants to embrace pessimistic considerations about expected discount rates, which may lead to a drop in
share prices (Antonakakis, Chatziantoniou, & Filis, 2013; Pastor & Veronesi, 2012). Hence, countries in which the number of recorded
deaths and infections such as the USA and Italy appears to be a strong predictor of stock return behavior, and if such countries exhibit
significant illiquidity risk pricing, then following the liquidity shock hypothesis one may expect that the COVID-19 outbreak and (il)
liquidity relationship in those markets to be more persuasive.

Overall, our results reveal a strong relationship between the COVID-19 outbreak and illiquidity measures for countries with high

Table 2.1

Unit-root test statistics (at level, with constant and trend) COVID cases and deaths per country.
Variable ADF PP
USA new cases —10.574 —6.093*
USA new deaths —22.554%*** —16.503
UK new cases 9.140* —7.410*
UK new deaths —19.514* —14.101
Japan new cases —22.089%** —16.784
Japan new deaths —88.617* —87.456*
Italy new cases —3.861 —2.887
Italy new deaths —3.929 —2.888
Germany new cases —7.582 —10.516
Germany new deaths —15.997 —14.248
France new cases —15.955 —29.407**
France new deaths —24.832%* -17.339
Canada new cases —4.675 —6.183
Canada new deaths —7.807 —13.548
China new cases —47.067* —66.142*
China new deaths —119.598* —129.317*
Australia new cases —36.316* —36.316%*
Australia new deaths —50.704* —50.704*

Notes: *** ** and * shows significance at 10%, 5% and 1% levels, respectively.
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Table 3

Units root test and linear correlation.
Panel A: Panel B:
Unit-root test statistics Pairwise correlation between country
(at level, with constant and trend) level liquidity proxies
Countries ADF PP Amihud Spread Traded Value
USA
Amihud —2.599%* —6.797* 1
Spread —1.790* —2.353* 0.465* 1
Traded Value —1.340* —1.652* 0.390* 0.813* 1
UK
Amihud —3.943* —8.502* 1
Spread —3.544* —5.173* 0.179 1
Traded Value —2.955%* —3.087%* 0.091 0.582* 1
Italy
Amihud —5.431* —9.205* 1
Spread —5.765* —6.389* 0.080 1
Traded Value —3.236* —4.634* —0.198*** 0.512* 1
Germany
Amihud —3.574* —8.732% 1
Spread —2.012% —3.728* 0.294* 1
Traded Value —3.713% —5.484* ~0.010% 0.516* 1
France
Amihud —4.537* —9.415* 1
Spread —3.519* —4.814* 0.154 1
Traded Value —3.624* —4.810% —-0.108 0.627* 1
Canada
Amihud —3.159* —4.875% 1
Spread —0.977* —2.371* 0.466* 1
Traded Value —2.688* —10.753* 0.185%** 0.501* 1
Japan
Amihud —5.014* —9.223* 1
Spread —2.544* —4117* 0.134 1
Traded Value —0.613* —0.655* —0.125 0.193*** 1
China
Amihud —3.357* —6.386* 1
Spread —3.721* —4.682* 0.178* 1
Trade Value —0.660* —0.647* 0.102 -0.017 1
Australia
Amihud —4.443* —10.076* 1
Spread —4.799* —4.779* 0.442* 1

Traded Value —2.455* —5.957* 0.200%** 0.529* 1

Notes: *** ** and * shows significance at 10%, 5% and 1% levels, respectively.

infection rates and deaths. There could be three credible explanations for such a relationship. First, the increase in COVID-19 infections
and deaths can distort market liquidity due to the lockdown that might have affected liquidity funding. Second, the causal link between
COVID 19 outbreak and (iD)liquidity may also be influenced by the stock market volatility and liquidity relationship. Third, as the
outbreak of the virus increased uncertainty in affected economies (Sharif et al., 2020) and studies have shown that uncertainty ac-
centuates the level of information asymmetry among investors (Nagar, Schoenfeld, & Wellman, 2019) an increase in information
asymmetry may also adversely affect stock market (il)liquidity due to the increases in bid-ask spreads (Glosten & Harris, 1988).

5.2. Wavelet based time frequency domain analysis

To quantitatively assess the degree of causality interactions between the COVID-19 pandemic and stock market liquidity in
different time scales we employ a continuous wavelet transform in order to track changes in phenomena over time. More precisely, a
wavelet coherence technique was implemented to examine the short and long run effect of COVID-19 cases and deaths on aggregate
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Fig. 1. Co-movements between COVID19 Cases and liquidity proxies per country.
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Fig. 1. (continued).

stock market liquidity of the G7 economies, China and Australia.

On wavelet coherency scalograms, the x- and y-axes refer to the time-scale space, in which the frequencies were shown as periods in
days (the higher frequencies or lower scales are indicated at the top of the coherency map). In others, the x-axis indicates the time in
terms of trading periods over the whole sample under study, while the y-axis represents the investment horizon, which refers to in-
vestors’ holding periods (e.g. 1-2 days, 2—-4 days, 4-8 days, etc.). The values of the wavelet coherency coefficients are represented with
lower to higher strengths in blue to red colors. The degree of interdependence between the COVID-19 pandemic and stock market
illiquidity indicators is given by the strength of the wavelet coherence of the COVID-19 outbreak- illiquidity pair indicating the spatial
variability of the COVID-19 outbreak and its nexus with our three liquidity measures at different scales.

On the coherency scalograms the power of causality interplays is observed by the color code which varies from blue (low coherence
relationship, the values of wavelet coherence coefficients are close to zero) to red (high coherence relationship, the values of wavelet
coherence are close to one). The 5% statistical significance level for the coherency is displayed by thick contours on the coherence map,
which is obtained from 1000 Monte Carlo Simulations. Inside the contour line we observe areas of strong coherence in time and period
scales for the COVID-19 outbreak- illiquidity pair. The so-called cone of influence showing the region affected by edge effects is
represented with a bold line. We neglect the areas outside the cone of influence as they do not hold significant confidence levels. Also,
the application of this complex Morlet wavelet, as with the phase information (in-phase pattern, leading role, lagging role, or anti-
phase pattern), enables the displaying of directionality in the dynamics between the COVID 19 outbreak- illiquidity pair for G7
countries, China and Australia.

In Fig. 3.1, we present wavelet coherency and phase differences between stock market liquidity proxies and COVID-19 reported
cases and deaths for countries under examination. Figs. 3.1-3.9 plot the wavelet coherence between the stock market liquidity proxies
and COVID-19 infected cases and deaths. For each country, the coherency between illiquidity and COVID-19 reported cases is dis-
played in the first column (a), while the relationship between illiquidity and COVID-19 reported deaths is illustrated in the second
column (b).

Fig. 3.1a and 3.1b display the estimated wavelet coherences (WC, hereafter) and phase differences for USA aggregate stock illi-
quidity and COVID-19 infected cases and deaths respectively. In Fig. 3.1a, we detect the existence of small islands of strong dependence
at the beginning, the mid and the end of the sample period over the 1-2 day frequency bands between all three liquidity measures
(Amihud, Spread, Traded Value) and USA COVID-19 cases. We further observe strong dependency evidenced by large red islands at the
middle of the sample period (29th February to 19th April) a period where the outbreak was at its peak globally over the 32-50 day
frequency band for Amihud and Spread and USA COVID-19 infected cases. In the cases of Traded Value, the strength of the coherency
declined over the 32-50 day frequency bands. This suggests that the USA market reacted to the bad news that emanated from China
concerning the outbreak of the virus and the death of the first patient. The wavelet coherence between US stock market liquidity and
COVID-19 reported deaths in Fig. 3.1b reveals huge islands of red color, which indicates strong dependency over the 1 to 8-day
frequency bands for the whole sample period. Moreover, another high coherency area is identified in mid-February corresponding
to some COVID-19 pandemic bad news such as the reported first patient death in the US on February 28th, the number of global cases
raised to 87,000 and the high-level warning announced by the US authorities.

As for the connectedness between the UK aggregate stock market liquidity and COVID-19 infected cases (Fig. 3.2a), the WC depicts
strong co-movement (deep red islands) at the beginning of the COVID-19 outbreak to the end of the entire sample period. It is worth
mentioning that, at the very short run (1-4 day cycle), we observe a significant red-island for the entire period. In the long run (32-50
days) we find huge red islands around the peak of the outbreak (February to April) when the UK recorded a massive increase in the
number of infected cases and the free fall of oil prices. Fig. 3.2b shows the wavelet plot between UK stock market liquidity and UK
COVID-19 death counts. We identify an island of high dependence over the 16-day frequency band over the entire sample period. Other
coherencies over 32-50 day frequency bands can be observed. In Italy where the coronavirus outbreak was very severe for both the
number of infected cases and deaths reported, we find a very strong co-movement between stock market liquidity and COVID-19
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Fig. 2. Co-movements between COVID19 Deaths and liquidity proxies per country.
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outbreak infected cases and deaths recorded for the entire period and the movement runs across frequency bands of 1-2,2-4,4-8,16-32
and 32-50 days. We find huge red islands for Spread liquidity measure and COVID-19 cases and deaths in Fig. 3.3a and 3.3b
respectively. For the coherency between Germany market liquidity and COVID-19 infected cases (Fig. 3.4a) and COVID-19 death
counts (Fig. 3.4b), even though we observed coherency in all cases as illustrated in Fig. 3.4, it is important to mention that, the WC
reveals higher level of co-movement between Spread liquidity measure and COVID-19 infected cases over the entire sample period at

all frequency bands.
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Fig. 2. (continued).

We identify a similar pattern with regards to islands of strong coherencies in Fig. 3.5 showing the coherence between the reported
stock liquidity of France and COVID-19 infected counts (Fig. 3.5a) and COVID-19 deaths (Fig. 3.5b). For the strong co-movement
between Spread and Traded Value and COVID-19 cases and deaths in France, we perceive that the COVID-19 outbreak has a
greater effect on the French economic uncertainty. The red islands identified at the beginning and the end of the sample period
correspond to lower frequencies (1 to 4 day frequency bands) which means that a long-term negative effect on the stock market was
expected which is exactly what happened as the impact was very strong at the end of higher frequencies.

Fig. 3.6 plots the wavelet coherence between Canada stock market liquidity and US COVID-19 infected cases (Fig. 3.6a) and death
(Fig. 3.6b), while Fig. 3.7 displays the connectedness between Japan stock illiquidity and COVID-19 reported cases (Fig. 3.7a) and
deaths (Fig. 3.7b). Similar to the above findings, it also documents strong coherency between illiquidity and COVID-19 outbreaks, for
both Canada and Japan where the number of recorded cases and deaths were high at the beginning of the outbreak, we identity strong
red islands at lower frequency bands (1-2, 2-4, 4-8) days for the entire period. However, at the 32-50 frequency bands, we find
minimal level of co-movement between illiquidity and COVID-19 pandemic for both Canada and Japan.

Besides focusing on the G7 countries, we further test the coherency between stock market liquidity and COVID-19 outbreaks for
China where the virus began and Australia given that Australia recorded minimal cases and deaths as result of COVID-19 for the sample
period. For China, we find from Fig. 3.8 that the effects of COVID-19 outbreak on liquidity was strong at lower frequencies of 1-2 and
2-4 days for all liquidity measures. In Fig. 3.9 we find, for the case of Australia, strong connections between Amihud and Spread
liquidity proxies and COVID-19 infected cases and deaths for the entire period. The effects were stronger during the peak of the
outbreak at frequency bands 1-2 and 2-4.

Next, we focus on the phase difference displayed beneath Figs. 3.1-3.9 which are also very informative. Accordingly, to study the
lead-lag nexus between aggregate market liquidity and COVID-19 infected cases and death counts in G7 countries, China and Australia,
we refer to the phase-differences. It is important to note that the phase diagrams for all studied pairs present a quite similar pattern
with values of phase-differences ranging between —n/2 and n/2 at all frequency bands and for the entire period under study, indicating
that aggregate market liquidity of countries and COVID-19 outbreak were constantly in-phase at any point in time. With reference to
the phase diagrams, it is remarkable that transport for most countries COVID-19 reported cases and death counts were leading for long
holding period such as 8-32 days and 32-50 days.

To briefly sum up, our findings show that the COVID-19 outbreak had a strong bearing on illiquidity globally. It is not surprising
major markets around the world performed poorly during the peak of the outbreak because of increased uncertainty. For example,
Baker et al. (2020) observe that the COVID-19 pandemic has had a worse impact on stock markets than any other infectious disease
such as Spanish Flu. Overall, our results reveal a strong co-movement between COVID-19 and the country-specific (iDliquidity
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Table 4
Linear causality: COVID 19 Pandemic and (iDliquidity.

Panel A: Linear causality: COVID 19 Cases and (iDliquidity

HO: HO:
COVID 19 Cases does not cause (iD)liquidity (iDliquidity Cases does not cause COVID 19 Cases
Countries Amihud Spread Traded Value Amihud Spread Traded Value
USA 0.365 0.622 0.510 4.794 4.477 0.992
[0.545] [0.430] [0.475] [0.029] [0.034] [0.319]
UK 2.980 0.079 3.685 0.013 1.512 0.102
[0.084] [0.778] [0.055] [0.909] [0.214] [0.749]
Italy 5.695 0.035 11.416 0.165 0.582 0.343
[0.017] [0.853] [0.001] [0.685] [0.446] [0.558]
Germany 1.004 0.039 1.436 1.979 4.371 0.167
[0.316] [0.844] [0.231] [0.159] [0.037] [0.683]
France 7.908 1.387 7.995 1.449 8.506 0.154
[0.005] [0.239] [0.005] [0.229] [0.004] [0.695]
Canada 0.308 1.033 0.550 4.682 4.381 0.007
[0.578] [0.309] [0.458] [0.030] [0.036] [0.993]
Japan 0.022 0.758 0.205 0.871 4.163 0.014
[0.882] [0.384] [0.651] [0.35] [0.041] [0.905]
China 1.956 2.165 0.427 0.451 0.306 0.041
[0.162] [0.141] [0.513] [0.502] [0.580] [0.834]
Australia 1.426 0.233 0.598 3.384 2.433 0.005
[0.232] [0.629] [0.439] [0.066] [0.119] [0.942]

Panel B: Linear causality: COVID 19 Deaths and (iDliquidity

HO: HO:
COVID 19 Death does not cause (il)liquidity (iDliquidity does not cause COVID 19 Death
USA 0.085 0.173 2.536 0.586 1.026 0.002
[0.077] [0.678] [0.011] [0.444] [0.311] [0.963]
UK 0.563 2.811 8.128 1.815 2.796 0.244
[0.453] [0.094] [0.004] [0.174] [0.094] [0.621]
Italy 6.834 1.377 5.107 0.294 0.176 0.031
[0.009] [0.675] [0.025] [0.588] [0.675] [0.860]
Germany 1.971 3.432 1.599 1.769 2.180 0.004
[0.010] [0.064] [0.206] [0.184] [0.140] [0.984]
France 6.568 1.367 2.969 1.274 2.657 0.357
[0.010] [0.242] [0.085] [0.721] [0.103] [0.550]
Canada 0.029 0.822 0.010 0.627 0.652 2.306
[0.0863] [0.065] [0.919] [0.428] [0.420] [0.129]
Japan 2.341 0.729 0.037 0.026 0.493 0.006
[0.126] [0.395] [0.847] [0.870] [0.516] [0.938]
China 1.105 3.990 0.765 0.103 0.422 0.002
[0.029] [0.046] [0.382] [0.748] [0.516] [0.969]
Australia 3.128 0.799 0.140 4.656 4.445 0.133
[0.077] [0.371] [0.707] [0.031] [0.035] [0.715]

Note: This table reports Chi square-Statistics of linear causality tests between COVID 19 pandemic and liquidity. Figures in curly brackets are p-values.
p < 0.10, < 0.05 and < 0.01 shows significance at 10%, 5% and 1% levels, respectively.

measures of Italy, Germany, France, the USA and the UK. The co-movements are found in all frequency bands between 1 and 2
days,2-4 days, 8-32 days and 32-50 days, which suggest that the effects of COVID-19 cases and deaths create uncertainty that last
longer (up to 50 days) in the developed markets. The findings of Ko and Lee (2015) also corroborate our results that high uncertainty
has strong effects for stock markets in, Germany, the United Kingdom, and the United States.

To explain our results, we argue that the variation of frequency bands across countries induced by the outbreak of COVID-19 may
also be related to their market structure, market participants’ behavior, and level of market integration with other markets. The
geographic, economic, and political environment could also affect the importance of liquidity risk differently across countries (Lee,
2011). We make this claim because, the spread of COVID-19 related information may facilitate the pricing of negative news about
future performance of the economy in the stock market. This, in turn, may induce a widespread portfolio repositioning. Also, investors
may be prone to rebalancing their portfolios towards safer assets. All these may result in additional trading, which affect equity market
liquidity. Additionally, the results on the effects of COVID-19 recorded cases and deaths on stock liquidity are in line with our ex-
pectations. This is because, the number of COVID-19 cases and deaths led to the closure of financial institutions which posed a
challenge to market participants’ trading possibilities, thus damaging stock market liquidity. Other phenomena that may explain the
impact of COVID-19 on stock market liquidity, may be irrational behaviors that are likely to be more pronounced in emerging markets.
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(k) Wavelet Coherency: Amihud-new deaths
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Fig. 3.1. USA Wavelet coherence between COVID 19 and (il) liquidity.

These include the tendency to ignore bad news, demonstrated by the “ostrich effect” (Galai & Sade, 2006), the “information overload
effect (Agnew & Szykman, 2005), the negative effect of bad experience (Thaler & Johnson, 1990), and the disposition effect (Shefrin
and Statman, 1985), which refers to the reluctance of investors to incur losses and to hold loser stocks for too long. All these potential
behavioral drivers may lead to lower levels of market liquidity. Related literature suggests that commonality in liquidity varies across
countries and over time (Karolyi et al., 2012), and the commonality in illiquidity return premium is stronger in markets that are
financially integrated with other markets (Amihud et al., 2015). Another possible explanation for the variation of frequency bands
across countries could be due to the difference in market participants’ behavior. The viability of profitable trading strategies for short-
and long-term investors (or the retail and institutional investors) in different countries could be different given the implication of
transaction cost variation for these two types of investors. A short-horizon calls for investing in liquid assets, whereas a long investment
horizon enables the investor to earn higher net return (after transaction cost) by investing in illiquid assets (Amihud & Mendelson,
1991). While the short-term investor is more interested in short-run (higher frequency) market movements, the latter is more
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(b) Wavelet Coherency: Amihud-new deaths
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Fig. 3.2. UK Wavelet coherence between COVID 19 and (il) liquidity.

concerned with long-run (lower frequency) market movements. That is if the degree of the co-movement between COVID-19 and (il)
liquidity varies across frequencies the investment risk management for each type of investor will also be different. Wavelet analysis
aids to assess the strength of the co-movement (in this case COVID-19 outbreak and liquidity) simultaneously at different frequencies,
and how such strength has evolved over time. To a certain extent, the observed pattern of variation in frequency bands across countries

could also be due to the different types of investor participation in different countries.
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Fig. 3.3. Italy Wavelet coherence between COVID 19 and (il) liquidity.
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Fig. 3.4. Germany Wavelet coherence between COVID 19 and (il) liquidity.
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Fig. 3.5. France Wavelet coherence between COVID 19 and (il) liquidity.

This paper investigates stock market liquidity and COVID-19 co-movement within the G7 countries, China and Australia using
country level aggregate stock market liquidity and COVID-19 infected cases and deaths. To study the synchronization between illi-
quidity and the COVID-19 outbreak across the selected countries at different periods, we employ wavelet coherency based on a
continuous wavelet transforms. Results from the wavelet coherency indicate that co-movements of market liquidity and COVID-19
outbreak are multi-scale in nature. Specifically, our analysis documents that illiquidity and COVID-19 cases and deaths co-move

strongly at low frequencies.
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Fig. 3.6. Canada Wavelet coherence between COVID 19 and (i) liquidity.

Our results suggest that portfolio managers and treasury departments of financial institutions should care more about market (il)
liquidity for the time or investment horizon in the short and long run. Consistent with Amihud and Mendelson (1991) observation, one
might recommend that public authorities should avoid laws and regulations that hurt the liquidity of capital markets. The results also
suggest that when market liquidity suffers and leads to uncertainty in the economic environment, policymakers can intervene with
prompt corrective actions such as increasing bond purchase to inject liquidity (Iwatsubo & Taishi, 2018), and facilitate liquidity
adjustment by offering competitive rates in comparison to short-term money market rates. The results can be also valuable for portfolio
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(b) Wavelet Coherency: Amihud-new deaths
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Fig. 3.7. Japan Wavelet coherence between COVID 19 and (il) liquidity.
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Fig. 3.8. China Wavelet coherence between COVID 19 and (il) liquidity.

managers in forecasting market risk. Our results may help investors to consider the dynamics of the stock markets in the short run in
order to learn how to invest in comparable conditions in the future. Additionally, our findings have significant implications for pol-
icymakers. Effective partnerships in relation to policy between governments and central banks in addition to securities regulators may
help them to deal with this pandemic challenge. This could make investors more optimistic about firms’ future earnings, which, in
turn, might lessen market instabilities. Further, regulatory authorities should plan proactive workshops to increase the confidence of
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investors after malign events such as COVID-19. Given that this is now an emerging area of research, we recommend that future studies
examine whether the market microstructure differs across different asset classes, e.g. indices vs individual stocks; growth indices vs
value indices (stocks) etc. using robust estimation techniques.
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