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1  |  ALLERGIC AND C ARDIOVA SCUL AR 
DISE A SE (C VD):  A GROWING ISSUE

Allergic diseases are a heterogeneous group of allergen-induced 
immunological disorders including allergy to foods, drugs and in-
sects, allergic asthma, allergic rhinitis (AR), atopic dermatitis (AD) 
and eosinophilic esophagitis. The clinical manifestations of allergic 
reactions range in severity from mild symptoms to life-threatening 
anaphylaxis. Around 1.5  billion people have an allergic disease 
and their overall prevalence has been increasing in the last few 
decades.1,2 Allergic diseases are often chronic and there is a need 
for effective, curative treatments. Furthermore, there is increasing 
awareness of the negative impact on the quality of life of allergic 
patients and their relatives, notably in asthma3 and food allergy.4 In 
addition to being a health and social concern, allergic diseases entail 
a tremendous economic burden.5,6

The rise in allergy is paralleled by the increasing CVD prevalence, 
which affects arteries of different organs such as the heart, the kid-
ney and the brain. CVD can remain asymptomatic for decades and 
manifest as a stroke or heart attack, causing sudden death in the 

most severe cases.7 Approximately 523 million people suffer from 
CVD, the leading cause of mortality worldwide with 18.6  million 
deaths per year (>31% of total deaths).8 Furthermore, the prev-
alence of risk factors of CVD is increasing in younger adults.9 As 
this younger population ages, there is a growing CVD burden at 
the health, social and economic level.10 Noteworthy, atherosclero-
sis often underlies CVD, particularly in ischemic heart disease and 
stroke, which are major causes of morbidity and mortality globally 
accounting for 50% and 35% of CVD deaths, respectively.11,12

2  |  ATHEROSCLEROSIS

Atherosclerosis is a chronic disease characterized by endothelial 
dysfunction, accumulation of fibrofatty material in the intima of the 
artery wall, smooth muscle cell (SMC) proliferation, and local and 
systemic inflammation (Figure 1).13,14 The atherosclerotic plaque can 
become more fibrous and accumulate calcium with time. When ad-
vanced plaques progress, they can remodel the arterial wall invading 
the arterial lumen, obstructing blood flow and provoking myocardial 
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Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the 
development of type 2 immunity and IgE responses. The prevalence of allergic dis-
eases has been on the rise alike cardiovascular disease (CVD), which affects arteries 
of different organs such as the heart, the kidney and the brain. The underlying cause 
of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, 
fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell 
proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and ath-
erosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 re-
sponses. Yet, the clinical association between allergic disease and CVD argues against 
it. Within, we review different phases of allergic pathology, basic immunological 
mechanisms of atherosclerosis and the clinical association between allergic diseases 
(particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. 
Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic in-
flammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and 
allergic mediators such as vasoactive components, growth factors and those derived 
from the complement, contact and coagulation systems) and late phase inflammation 
(Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 
and IL-17).
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allergic inflammation, atherogenesis, atherosclerosis, cardiovascular disease, type 2 immunity
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ischemia. Acute myocardial events also occur due to an impaired 
blood flow caused by intra-arterial thrombosis induced by coro-
nary plaques ulceration.15,16 This acute lack of irrigation can affect 
myocardial perfusion itself resulting eventually in acute myocardial 
infarction (MI), or as a chronic condition causing symptoms related 
to stable coronary artery disease in a chronic coronary syndrome.17 
In addition, a lack of blood supply to the cerebral arteries triggers 
ischemic strokes. In the case of ischemia in peripheral arteries, inter-
mittent claudication, ulceration and gangrene may occur.18

Low-density lipoproteins (LDLs) are involved in the initiation and 
progression of atherosclerosis. Due to interactions with extracellular 
structures, such as arterial wall proteoglycans, LDLs are retained in 
the subendothelial space, where they can oxidize (oxLDL) or suffer 
other modifications.19 This process appears to be eased by inflam-
matory insults that increase endothelial permeability.10 Moreover, 
lesional macrophages internalize oxLDL yielding foam cells, which 
contribute to lipid storage and plaque growth.20 In addition, oxLDL 

promotes the release of cytokines by macrophages, which favours 
cell recruitment (monocytes, T cells, eosinophils, mast cells [MCs], 
etc.). Lipoprotein lipase and phospholipase-A2 secreted by mac-
rophages induce LDL-binding proteoglycan formation, enhancing 
atherosclerosis progression. Furthermore, through platelet-derived 
growth factor secretion, macrophages promote SMC migration from 
the tunica media to the intima.21 IFN-γ-producing-Th1 cells also 
enter the intima and respond to oxLDL in an antigen-specific man-
ner regulating some functions of innate cells, the endothelium and 
SMCs. For example, IFN-γ promotes M1 macrophage polarization 
and metalloproteinase production, and decreases collagen synthesis 
by SMCs, which contribute to plaque vulnerability.10 T-regulatory 
cells (T-reg) recognize modified apolipoprotein (Apo) B22 epitopes 
and respond to oxLDL via CD69 inducing the expression of anti-
inflammatory factors.23 Regarding Th2 (the hallmark allergic cells) 
and Th17 cells (present in some allergic phenotypes), there are con-
flicting data that are discussed in Section 4.

F I G U R E  1  Initiation and progression of an atherosclerotic lesion. Left panel: subendothelial accumulation of LDL initiates an 
atherosclerotic lesion. Reactive oxygen species (ROS) production in the intima layer causes LDL oxidation (oxLDL), inducing the activation of 
endothelial cells (EC). Increased permeability and the upregulation of adhesion molecules of activated endothelial cells facilitate recruitment 
of leukocytes such as T cells and monocytes (MO). Lesional monocytes differentiate into macrophages (MФ) that internalize and retain 
oxLDL. Activated macrophages contribute to ROS generation and, thus, LDL modification, which leads to cholesterol-rich macrophage 
foam cells formation. Right panel: when an atherosclerotic lesion progresses, foam cell accumulation contributes to lipid storage and plaque 
growth. Smooth muscle cells (SMC) migrate from the media layer to the subendothelial space in response to proinflammatory mediators. 
SMC produce extracellular matrix molecules (collagen, proteoglycans, etc.) promoting intima layer thickening and developing a fibrous 
cap that confers plaque stability. In contrast, IFN-γ and other inflammatory mediators produced by Th1 cells inhibit SMC proliferation and 
collagen expression; they also induce matrix metalloproteinases (MMPs) production by M1 macrophages, which weakens the fibrous cap and 
increases plaque vulnerability. Cell death of foam cells and SMC overloaded with cholesterol result in extracellular cholesterol deposition 
and formation of a lipid necrotic core
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3  |  ALLERGIC PATHOLOGY

Allergic sensitization, understood as the development of type 2 im-
munity and IgE responses against allergens, usually occurs early in 
life and can become chronic. It is the outcome of an interplay be-
tween the allergen and the dendritic cell influenced by the allergen 
innate immunostimulatory properties, individual genetic predisposi-
tion to atopy, and the level of tissue damage.24 Indeed, a compro-
mised epithelial barrier is the current paradigm on the global rise in 
allergy.25 Once someone becomes allergic there are, by and large, 
three clinical scenarios determined by allergen exposure (Figure 2).

The first scenario refers to allergic individuals that are unex-
posed to the allergen. While allergen avoidance protects them from 
undergoing allergic reactions, strict avoidance is an unsurmountable 
challenge when dealing with ubiquitous allergens such as those from 
pollen, dust mites, pets or certain foods.26,27

Allergen exposure triggers acute allergic reactions. These are 
largely mediated by the so-called “classical pathway” dependent on IgE 
and Fcε receptor I (FcεRI) signaling in MCs and basophils.28 In addition, 

alternative pathways of acute reactions involve the activation of mono-
cytes/macrophages or neutrophils via IgG and Fcγ receptors (FcγR).29,30 
Both pathways converge on the rapid release of proinflammatory and 
vasoactive mediators, which can be preformed (histamine, tryptase, 
chymase, etc.), or synthesized de novo (prostaglandins, leukotrienes, 
PAF, etc.).31 Whether via IgE and/or IgG1 signalling, the released aller-
gic mediators disrupt endothelial barrier function32-34 and impact the 
cardiovascular system by mechanisms reviewed recently.31,35

Late phase allergic reactions occur within hours, or days, follow-
ing allergen encounter. These reactions involve inflammatory media-
tors released in the early-phase reaction by MCs and basophils, and 
allergen-specific Th2 lymphocytes.36 Activated memory Th2 cells 
proliferate and produce cytokines (IL-4, IL-5, IL-9, IL-13, and IL-31). 
Th2 cells act synergistically with type 2 innate-like lymphoid cells 
(ILC2) activated during the acute phase. They recruit effector cells 
such as eosinophils, basophils, as well as other lymphocytes, to the 
site of allergen exposure.37-39 The Th2-IL-5-eosinophil axis enables or 
exacerbates other pathways that positively feedback into late phase 
inflammation. As such, IL-4, IL-5, and IL-13 drive Th2 cells towards 

F I G U R E  2  Overview of clinical scenarios in allergic pathology determined by allergen exposure. In the absence of allergen re-exposure, 
the cellular machinery that mediates allergic reactions remains quiescent (left panel). Upon allergen re-encounter, whether systemically 
and/or through the epithelium, two reactions take place in a time-dependent manner. There is an immediate reaction that develops within 
seconds, or minutes, and that is dependent on IgE/IgG; the activation of the classical pathway (IgE) leads to the degranulation of mast cells 
(MCs) and basophils (BAS) while the alternative (IgG) can operate on monocytes (MO), macrophages (MФ) and neutrophils (NEU). Both 
pathways concur in the release of inflammatory mediators such as PAF, histamine, prostaglandins (PGs), leukotrienes (LTs), etc., which 
damage and increase the permeability of the epithelium/vasculature leading to clinical manifestations (middle panel) and contributing to the 
late phase reaction. The latter occurs within hours, or days, following allergen exposure via antigen-presenting cells such as dendritic cells 
(DC); it is orchestrated by Th2 cells and related cytokines (IL-4, IL-5, IL-9, IL-13). The Th2-IL-5 axis induces eosinophil (EOS) recruitment to the 
sites of allergen exposure. Eosinophils contribute to the inflammatory ambient that can be exacerbated with the presence of type 2 innate 
lymphoid cells (ILC2) and epithelial-cell derived alarmins (IL-33, TSLP, IL-25) (right panel)
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a specialized Th2A phenotype (CRTH2+CD49d+CD161+) associated 
with persistent allergy and high IL5, IL9, and HPGDS expression.40,41 
Moreover, degranulating eosinophils, together with early-phase me-
diators, cause the release of epithelial-derived alarmins (IL-33, TSLP, 
IL-25, etc.), promote ILC2 differentiation, and foster a pernicious 
cycle of (chronic) inflammation.37,42,43 Ultimately, allergic inflamma-
tion impairs tissue functionality, rather than restoring homeostasis.44

4  |  THE CLINIC AL A SSOCIATION 
BET WEEN ALLERGY AND 
ATHEROSCLEROSIS

The association of serum IgE levels and CVD has been assessed with 
inconclusive results.45 This may insinuate that IgE plays different 
roles under homeostatic vs inflammatory conditions. When focusing 
specifically on IgE in atopy or allergy, several observational studies 
have analyzed the association between allergic disease and CVD risk 
(Table 1).

A prospective study with two matched cohorts of asthmatic and 
non-asthmatic patients (>200,000 patients per cohort) followed from 
1996 to 2008 in the USA and showed a significant CVD risk increase 
in asthmatic patients as compared to controls.46 Although the asthma 
patient cohort was not stratified (allergic vs non-allergic asthma), 
there was a significant effect of allergic disease, without asthma, on 
the risk of coronary heart disease (hazard ratio, [HR] 1.31), cerebro-
vascular disease (HR 1.22), and heart failure (HR 1.11).46

Regarding AD, a meta-analysis of 17 population-based studies 
reported that increasing severity was associated with higher risk of 
major cardiovascular outcomes (angina, MI, coronary revasculariza-
tion, heart failure, cardiac arrhythmias, stroke, and cardiovascular 
death); AD was also associated with increased risk of MI (risk ratio 
[RR] 1.12), stroke (RR 1.10), ischemic stroke (RR 1.17), angina (RR 
1.18), and heart failure (RR 1.26).47 Similarly, a recent meta-analysis 
of 37 studies from Europe, Asia and North America, showed signifi-
cantly higher overall odds ratio (OR) of CVD (1.08) in AD patients.48 
In addition, a Swedish nationwide, register-based, case–control 
study analyzed data from >100,000  AD patients and >1,000,000 
controls from 1968 to 2016.49 This study found that AD was asso-
ciated with angina pectoris (OR 1.13) and MI (OR 1.07), and severe 
AD with ischaemic stroke (OR 1.19).49 Furthermore, hypertension 
and hyperlipidemia -known CVD risk factors- were more prevalent 
in AD patients, as compared to controls.49 It is pertinent to remark 
that ~20% of AD patients do not show elevated serum IgE levels or 
allergen-specific sensitization. This AD phenotype, known as intrin-
sic, usually starts in adulthood. Intriguingly, both intrinsic and ex-
trinsic AD patients show a Th2-biased gene expression in lesional 
skin, although the former seems to present with a more robust Th17 
and Th22 response.50 Hence, evaluating CVD risk of these two AD 
phenotypes would be informative.

The impact of AR on CVD risk is controversial. For instance, one 
study analyzed data of 110,207 AR patients in a matched cohort from 
1999 to 2012 in South Carolina (USA).51 It showed a lower risk for 

MI (HR 0.63), coronary heart disease (HR 0.81) and CVD (HR 0.67) in 
AR patients.51 In contrast, a large-scale cohort study of ~9.5 million 
individuals followed from 2010 to 2018 through the Korean National 
Health Insurance Service52 found an increased MI risk in AR patients 
(HR 1.11). This study also reported an increased MI risk in AD (HR 
1.14) and asthmatic patients (not stratified based on asthma type; HR 
1.37). Interestingly, the combined risk of MI in patients with AD and 
asthma (HR, 1.81) was higher than in patients with AD, asthma and AR 
(HR, 1.71).52 The allergic group presented more CVD risk factors such 
as hypertension or dyslipidemia than controls, although it was partly 
attributed to the significant differences in age. Nevertheless, a re-
cent cross-sectional study in Egypt with 150 AR patients followed for 
2 months reported dyslipidemia in 56% of them.53 Moreover, serum 
levels of IgE and IL-17A, as well as house-dust-mite-sensitization, were 
identified as independent risk factors that significantly increased 
dyslipidemia risk.53 In agreement, a multicenter prospective study 
conducted in Italy in 160 adult AR patients and matched controls re-
ported a significantly higher dyslipidemia risk in AR patients.54

The relationship between food allergy and CVD has been less in-
vestigated. A study in the USA included 118 subjects that underwent 
cardiac catheterization and intravascular ultrasound to investigate 
galactose-α-1,3-galactose (α-gal)-specific IgE levels in atheroscle-
rosis.55 It reported that 26.3% of them had α-gal-specific-IgE and 
found a strong association between α-gal-specific-IgE and atheroma 
burden. Unstable plaques with more fibrofatty, necrotic and calci-
fied content, and less fibrous, were associated with α-gal-specific IgE 
serum levels.55 Interestingly, IgE-specific levels to common aeroal-
lergens and to peanut, did not significantly correlate with atheroma 
burden and volume, nor with maximal stenosis.55 Sensitization to 
α-gal is often attributed to tick bites. However, α-gal is present in 
non-primate mammals and can be found in many dietary sources and 
in carrageenan (E407).56,57 Therefore, the continuum environmental 
exposure to α-gal presumably sustains a level of chronic inflamma-
tion. The fact that α-gal is involved in delayed rather than acute re-
actions may favour recurrent exposures because these reactions are 
often misdiagnosed; not to mention that patients with a low degree 
of α-gal sensitization likely remain asymptomatic.56

Altogether, different lines of evidence indicate that allergic 
diseases increase CVD risk, which is often driven by atheroscle-
rosis. Some clinical studies, such as the Bruneck and the ARMY 
(Atherosclerosis Risk Factors in Male Youngsters study), have found 
a significant association between allergic diseases and subclinical 
atherosclerosis.58 The Bruneck study, conducted in Italy in a cohort 
of 826 individuals (40–70 year olds) reported that allergic patients 
were at a higher risk of atherosclerosis development and progression 
(OR 3.9 for asthma [not stratified based on type], AR or both; OR 1.7 
for IgE). Similarly, the ARMY study, performed in Austria in a cohort 
of 141 men (17–18 year olds) concluded that young allergic individu-
als were at a significantly increased risk for high intima media thick-
ness (OR 3.0 for asthma [not stratified based on type], AR or both).58 
Yet, these findings are observational and usually lack of patient 
stratification according to allergic disease severity or phenotype. 
Scientific evidence demonstrating the causal relationship between 
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allergic diseases and atherosclerosis is scarce. Indeed, intervention 
studies demonstrating that allergy treatment reduces atheroscle-
rosis, or related events, are lacking, and the mechanisms by which 
allergic diseases promote atherosclerosis remain largely unexplored.

5  |  PUTATIVE ATHEROSCLEROTIC 
MECHANISMS OF ALLERGIC DISE A SE

Experimental CVD models have been useful to investigate athero-
sclerosis. ApoE−/− and LDL receptor (LDLr)−/− mice are genetically 
predisposed to develop atherosclerosis, particularly when fed a high 
cholesterol/fat diet (HFD; otherwise indicated in the text).59-61 These 

models have proven useful to investigate the relationship between 
allergy and CVD as they mimic the clinical association observed in 
humans.62,63 However, in most cases, they have been applied to in-
vestigate the contribution of canonical type 2 immunity players to 
CVD under homeostatic conditions. In other words, how basal IgE64 
or MCs,65 without established allergy, influence atherosclerosis.

5.1  |  Atherosclerotic potential of acute 
allergic reactions

The key effector molecules of immune-mediated, acute allergic 
reactions are IgE and IgG,28 and both have been associated with 

F I G U R E  3  Potential atherosclerotic mechanisms of acute allergic reactions. Mast cells (MC) are found in lesions in a greater number 
than in healthy arterial intima, although they are much fewer than macrophages (MФ). Activated MC release inflammatory mediators that 
contribute to atherosclerosis progression and plaque destabilization. PAF and histamine activate endothelial cells (EC) and increase adhesion 
molecules expression and vascular permeability, facilitating the entry of LDL, other mediators, or leukocytes (Leu). Furthermore, PAF 
enhances foam cell formation by oxidized LDL (oxLDL) uptake and thrombus by platelet activation. Proteases such as tryptase and chymase 
damage extracellular matrix (ECM), EC and smooth muscle cells (SMC), thus facilitating fibrous cap erosion and intraplaque hemorrhage. 
Along with the release of angiogenic growth factors such as VEGF, MC induce local microvessel growth. MC can be activated by antigen-
IgE-FcεR, via oxLDL-IgG1-FcγR or other signals like C5a-C5aR. Plaque Ig can originate from B cells in adventitia or intima, circulating Ig that 
enters through the dysfunctional endothelium, or even microvessels in neovascularized areas of plaques, or intraplaque hemorrhages. IgE 
signalling in plaque macrophages favours M1 macrophage polarization and foam cell formation. IgE stimulation is also associated to SMC, EC 
and macrophage apoptosis. IgE-binding to atherosclerosis antigens like oxLDL remains unknown. Serum IgM and IgG1 form oxLDL immune 
complexes playing an atheroprotective role. Intraplaque oxLDL-specific IgG1 may also exhibit a protective neutralizing effect, although it 
may induce MC and macrophage activation via FcγR engagement. PC, plasma cell; LT, leukotriens; MO, monocyte; M2, M2 macrophage; F, 
factor; TFPI, tissue factor pathway inhibitor
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atherosclerosis (Figure  3). IgE contributes to plaque progression 
through several mechanisms including M1 macrophage polarization, 
foam cell formation, and vascular cell apoptosis.64,66,67 In addition, 
anti-IgE has been postulated as an atheroprotective intervention in 
autoimmune diseases.68,69 On the other hand, the number of IgG 
subtypes and diverse functionality of Fcγ receptors (activating vs 
inhibitory) have made it challenging to ascertain its role, which is 
also influenced by its specificity toward atherosclerosis-derived-
antigens.70-72 As it pertains to IgG1, high serum concentrations have 
been observed in ApoE−/− mice73 and atherosclerotic mechanisms 
have been reported involving Fcγ receptors and macrophages.74 
Noteworthy, oxLDL-specific IgG has been detected in human 
plaques,70 and different experimental strategies support the thera-
peutic role of oxLDL- (or atherosclerosis-derived-antigen)-specific 
IgG1 for plaque progression or stabilization.75-77 Therefore, an in-
creased serum level of oxLDL-specific IgG1, while indicative of ath-
erosclerosis, may be atheroprotective.

MCs play a pivotal role in acute allergic reactions and in athero-
sclerosis.78-80 Activated MCs contribute to plaque growth and in-
stability including intraplaque hemorrhage, increased lipid uptake, 
leukocyte influx, endothelial and SMC apoptosis, and matrix deg-
radation.81 Increased lesion size in the brachiocephalic artery and 
an enhanced incidence of intraplaque hemorrhage in carotid artery 
lesions has been observed in a dinitrophenyl-IgE-mediated anaphy-
laxis model in ApoE−/− mice.82 Moreover, MC–deficiency was shown 
to inhibit plaque development in LDLr−/− mice, which was attributed 
to decreased levels of IL-6, IFN-γ, cholesterol and triglycerides.65,83

5.1.1  |  Mediators of acute allergic reactions

Mediators released during acute allergic reactions contribute to 
atherosclerosis, notably via plaque destabilization as observed in 
some Kounis syndrome variants.84 Serum tryptase, a common ana-
phylaxis biomarker, has been positively correlated with lesion size,85 
increased intraplaque hemorrhage86 and cardiovascular events. 
Chymase has also been associated with plaque destabilization via 
matrix degradation with the consequent apoptosis of vascular SMCs 
and endothelial cells, and plaque erosion.82,87 In addition, chymase 
has been reported to reduce macrophage cholesterol efflux via pro-
teolytic HDL inactivation.88 In agreement, chymase inhibition re-
duced intraplaque hemorrhage in carotid artery atherosclerosis in 
ApoE−/− mice89 and impaired atherosclerosis in hamsters.90

Growth factors and vasoactive agents are detrimental in athero-
sclerosis. For example, it has been reported that VEGF decreases 
vessel tone and destabilizes the endothelium91; GM-CSF acceler-
ates plaque progression in LDLr−/− mice by increasing macrophage 
apoptosis92; and low stem cell factor (SCF) levels are associated with 
increased incidence of coronary events.93 In addition, histamine con-
tributes to plaque destabilization and intraplaque hemorrhage by 
enhancing vascular permeability and inflammation81; and histamine 
deficiency has been shown to decrease the expression of adhesion 
molecules and metalloproteinases.94 However, studies addressed in 

ApoE−/− mice have demonstrated the antagonistic role of histamine 
receptors, which exert atherogenic (receptor 1) and atheroprotec-
tive (receptor 2) functions.95

PAF participates in endothelial dysfunction, platelet reactivity, 
and foam macrophage differentiation.96,97 It induces the expres-
sion of adhesion molecules, which likely favour atherosclerosis 
through leukocyte recruitment and tissue extravasation.98 In ad-
dition, during plaque growth and expansion, PAF and its receptor 
have been linked to macrophage activation by oxidative stress and 
oxLDL uptake.99 The activity of PAF is regulated by PAF acetylhy-
drolase (PAF-AH),100 whose reduction in circulation has been iden-
tified as a biomarker of severe anaphylaxis.101 PAF-AH circulates 
forming a complex with LDL and HDL,102,103 and prevents their ox-
idation.104 Consequently, allergic reactions may impair the athero-
protective role of PAF-AH. Lastly, other arachidonic-acid-derived 
allergic mediators, especially cysteinyl leukotrienes (CysLT), have 
been shown to be determinant in MI, brain ischemia, aortic aneu-
rysms and intimal hyperplasia.105,106 Indeed, CysLT participate in 
plaque progression and the use of CysLT receptor antagonists re-
duces CVD risk.107,108

5.1.2  |  Coagulation, contact and 
complement systems

The activation of the coagulation, contact and complement systems 
concurs in acute allergic reactions and atherosclerosis. The relation-
ship between coagulation and atherosclerosis has been reported in 
different models and clinical studies, supporting the use of anticoag-
ulants in atherothrombotic events.109 The importance of thrombin, 
and consequently of coagulation in atherosclerosis, has been conclu-
sively demonstrated using both ApoE−/− mice and pharmacological 
tools.110,111 Other relevant components such as tissue factor path-
way inhibitor,112 coagulation factor (F) VIII,113 and activated FX114 
have been implicated in murine plaque development. Furthermore, 
the genetic ablation of FXII decreased lesion formation by reducing 
the expression of pro-inflammatory cytokines in antigen-presenting 
cells.115 In addition, FXI genetic deficiency or pharmacological inhi-
bition in ApoE−/− and LDLr−/− mice slowed down atherogenesis.116,117 
Regarding kininogen, its genetic deficiency promotes aneurysm for-
mation but not atherosclerosis.118

C3a, C4a, and C5a peptides, which derive from C3, C4 and C5 
proteolysis, have been considered, along with IgG, to be the main 
non-IgE elicitors in acute allergic reactions.119 In the vascular setting, 
high C3/C4 plasma levels have been observed in primary hypercho-
lesterolemic patients, and C5 has been suggested as a subclinical 
atherosclerosis biomarker.120,121 The effect of complement activa-
tion in vascular wall remodeling is similar to that observed in coag-
ulation.122 Aortic tissue from mice or human atherosclerotic lesions 
upregulates mRNA of anaphylatoxin receptors C3a and C5a. C3 
deficiency aggravated atherosclerosis by increasing the frequency 
of macrophages and decreasing vascular SMC content, yielding 
prone-to-rupture-plaques in LDLr−/− or ApoE/LDLr−/− mice.123,124 In 
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contrast, inhibition of C5 or CD88 (C5a receptor) in ApoE−/− mice 
diminished plaques by attenuating inflammation.125-128

5.2  |  Atherosclerotic potential of late phase 
inflammation

Th2 cells are at the heart of late-phase allergic inflammation, which 
contrasts with the atherosclerotic ambient governed by M1 mac-
rophages and IFN-γ-producing Th1 cells.59,129,130 The mutually-
suppressive Th1/Th2 equilibrium implied an atheroprotective role 
for Th2 cells by counteracting Th1 responses.131 In fact, Th2-biased 
mouse strains (BALB/c) are resistant to atherogenesis, while Th1-
prone (C57BL/6) develop fatty streaks when HFD-fed.132-134 Also, 
some clinical studies have found that a high Th2 cell frequency in 
circulation is associated with a lower carotid intima-media thick-
ness.135,136 On the other hand, the positive clinical association be-
tween allergic disease and CVD (Table  1), together with the few 
experimental studies in allergic inflammation, argues against the 
atheroprotective function of Th2 responses. This conundrum might 
be the result of a divergent role of homeostatic vs induced type 2 
immunity in CVD (Figure 4).

The impact of allergic inflammation in atherosclerosis has been 
studied in ovalbumin(OVA)-sensitized ApoE−/− mice on a chow diet 
and challenged with aerosolized OVA thrice per week during 8 and 
16 weeks.63 The allergic mice exhibited larger and more vulnerable 
lesions with increased macrophage and SMC infiltration, and less 
collagen content as compared to control mice.63 Remarkably, anti-
IL-4 or anti-IL-17A administration reduced lesion size, with a greater 
effect when combined.63 Another group applied an allergic asthma 
model in ApoE−/− mice for 12 weeks; the HFD started before, after, 
or at the same time of sensitization.62 Allergic mice had lesions with 
more pathogenic features (lesion cell proliferation, collagen and 
elastin degradation, SMC loss, apoptosis and angiogenesis) than con-
trol mice. However, mice only had larger lesion size when allergy was 
induced concomitantly with the introduction of a HFD.62 Also, daily 
treatment with nebulized ketotifen (MC inhibitor), or budesonide 
(corticosteroid) alleviated lesion pathology, but did not reduce lesion 
size.62 These studies demonstrate that exacerbated atherosclero-
sis in allergic asthma is partly mediated by IL-4 and IL-17, and the 
involvement of a MC-independent mechanism driven by allergic 
inflammation. Notwithstanding, the association between allergic 
disease and atherosclerosis is blurred when type 2 immunity players 
are studied individually outside of allergic pathology.129,130

5.2.1  |  IL-4 and IL-13

The role of IL-4 in atherosclerosis is unclear. Some gain- and loss-
of-function experiments (IL-4 administration, IL-4 deficiency) in 
ApoE−/− or LDLr−/− mice showed that IL-4 did not affect lesion size 
or composition.137,138 Yet, another group reported that IL-4 admin-
istration decreased lesion size by impairing Th1-cell expression in 

C57BL/6 mice.133 Moreover, a novel study using IL-4/IL13-deficient 
mice and several atherosclerosis models discovered that the Wnt 
signaling pathway favoured IL-4 responsiveness in macrophages 
and enhanced atherosclerosis resolution.139 In contrast, others sug-
gest a proatherogenic effect for IL-4 based on the reduced plaque 
size observed in IL-4-deficient mice on an ApoE−/− or LDLr−/− back-
ground with atherosclerosis induced by a HFD or inflammatory 
stimulus.140-142

While IL-4 data on atherosclerosis are inconclusive, potentially 
due, in part, to the heterogeneity of mouse strains and models ap-
plied, IL-13 has been reported atheroprotective. IL-13−/− bone mar-
row chimeric LDLr−/− mice exhibited suppressed M2 macrophage 
activation that accelerated atherosclerosis. Additionally, IL-13 ad-
ministration induced a more stable plaque composition (increased 
collagen content and M2 macrophage polarization, and reduced 
macrophage accumulation).143 Also, IL-13-deficient mice exhibited 
increased weight gain, hyperglycemia, and hepatic insulin resis-
tance.144 In vitro and in vivo data support that activated T-regulatory 
(Treg)-cell-derived IL-13 induces IL-10 secretion and efferocytosis 
by macrophages, which controls atherosclerosis.145 Moreover, it 
has been reported that oxLDL treatment downregulates IL-13 ex-
pression in eosinophils and promotes M1 macrophages.146

IL-4 and IL-13 share a common receptor-signaling pathway, which can 
be inhibited with IL-4Rα-specific antibodies (e.g., dupilumab). Recently, 
a significant correlation was reported between vascular inflammation 
and Th2-related products in the skin and blood of young moderate-to-
severe AD patients as compared to controls.147 Interestingly, dupilumab 
treatment for 16 weeks significantly modulated the expression of 23/63 
atherosclerosis-related genes in AD patients.147

5.2.2  |  IL-5 and eosinophils

Experimental studies have attributed an indirect atheroprotective 
effect to IL-5. It has been shown that IL-5 induces B1 cell expan-
sion and natural IgM production, some of which blocks oxLDL.148-151 
Although human plasma IL-5 levels do not predict CVD risk, high 
IL-5 levels have been associated with lower carotid intima-media 
thickness and increased oxLDL-specific antibody production.149,152 
Eosinophils also appear to participate in atherosclerosis153,154 as they 
were absent within stable human plaques but were detected in the 
ruptured ones.155 A recent study using eosinophil-deficient ApoE−/− 
mice delineated a self-reinforcing interplay between eosinophils and 
platelets in atherosclerosis. CCL5 and particularly CCL11 were in-
creased in atherosclerotic plaques.156 This was associated with en-
dothelial activation and exposure of von Willebrand factor (VWF), 
which induced platelet adhesion to the vessel wall and empowered 
eosinophil recruitment. Platelet-eosinophil interactions contributed 
to reciprocal activation and fostered plaque formation156; activated 
eosinophils release granules or extracellular traps that contain com-
ponents, such as eosinophil cationic protein (ECP), and participate 
in atherosclerosis.154,157,158 ECP induces CD54 (ICAM-1) expression 
on endothelial cells, leading to monocyte adhesion, and regulates 
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fibroblast activity promoting proteoglycan and extracellular matrix 
deposition. Indeed, it has been described that serum ECP levels are 
increased in patients with allergy and coronary atherosclerosis.153,159 
Additional clinical studies have shown a positive correlation between 
eosinophil counts and coronary artery calcification.160

5.2.3  |  The alarmin-ILC2 axis

Alarmins such as IL-33, TLSP and IL-25 are involved in both aller-
gic sensitization and inflammation.161,162 The role of IL-33 in CVD is 

controversial. Its administration in ApoE−/− mice reduced plaque size 
via IL-5 and oxLDL-specific antibodies.163 The co-administration of 
IL-33 with anti-IL-5 prevented plaque size reduction, but not the de-
creased macrophage infiltration, thus revealing an IL-5-independent 
atheroprotective mechanism for IL-33.163 Moreover, IL-33 adminis-
tration impaired foam macrophage formation in vitro and in ApoE−/− 
mice by reducing oxLDL uptake, intracellular cholesterol content, 
and enhancing cholesterol efflux.164 A few reports have further ex-
plored the atheroprotective effect of IL-33 at the genetic level in 
macrophages.165-167 Nevertheless, others have shown contradictory 
results, where IL-33 promoted endothelial activation.168 Of note, 

F I G U R E  4  Putative atherosclerotic mechanisms of late phase allergic inflammation. The atherosclerotic plaque usually contains 
macrophages and Th1 lymphocytes, with only a few cells producing Th2-type or Th17-type cytokines. Th2 responses are promoted by type 
2 innate lymphocytes (ILC2) which generate Th2-related cytokines (IL-4, IL-5, IL-9, IL-13). The role of IL-4 in atherosclerosis is incompletely 
understood. Both IL-13 and IL-4 promote protective M2-macrophage polarization and IL-10, VEGF and TGF-β secretion. In contrast, Th1 
cell-derived IFN-γ induces proinflammatory M1-macrophage polarization and reactive oxygen species (ROS), prostaglandins (PG) and 
leukotrienes (LT) production. IL-9 induces CCL20 expression that binds to CCR6 promoting cell recruitment into the plaque. IL-5 has been 
attributed to an indirect atheroprotective effect by inducing IgM-secreting B1 cells, which can recognize oxLDL. In contrast, IL-5 exacerbates 
eosinophilic inflammation; eosinophils (EOS) can be recruited into the plaque through the CCL5/CCL11-von Willebrand factor (VWF) axis. 
In turn, VWF promotes platelet adhesion that increases CCL5 levels. These events together with the eosinophil-platelet interaction favour 
thrombus formation. Activated eosinophils release eosinophil cationic protein (ECP) which induces extracellular matrix (ECM) deposition and 
adhesion molecules expression (ICAM-1) facilitating monocyte (MO) extravasation. The cytotoxic activity of eosinophils damages endothelial 
cells that release alarmins (IL-25, IL-33 and TSLP). IL-25 decreases plaque Th17 responses and IL-17 levels, which have a controversial role. 
Circulating IL-25 stimulates bone marrow and splenic Th2 and ILC2 cells to produce atheroprotective IL-5. IL-33 activates the endothelium, 
but it can inhibit macrophage oxLDL uptake. The effect of TSLP in Th17 responses remains unclear. Leu, leukocytes; PC, plasma cell
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IL-33 deficiency in ApoE−/− altered neither atherosclerotic lesion nor 
the Th1/Th2 cytokine profile in supernatants of stimulated lymph 
node cells, which questions the role of endogenous IL-33.169

Genetic or antibody inhibition of IL-25 during plaque formation 
in ApoE−/− mice promoted Th1/Th17-related immune responses that 
induced larger lesions in the aortic arch.170 Accordingly, IL-25 treat-
ment of ApoE−/− mice reduced atherosclerosis via IL-5-producing-
ILC2 expansion.171 In human PBMCs, IL-25 has been reported to 
decrease Th1 and Th17 responses.172

TSLP and its receptor have been detected in human 
plaques.173-175 Angiotensin II-induced TSLP promotes atherogenic 
Th17 responses.173,174 It has been reported to induce a Th17/Treg 
imbalance in ApoE−/− mice.175 In contrast, TSLP was shown to inhibit 
plaque formation in ApoE−/− mice by inducing tolerogenic dendritic 
cells and Tregs; this caused a phenotypic switch from an inflamma-
tory Th1 toward a non-inflammatory Th2 phenotype, and oxLDL-
specific antibody production.176

ILC2 can secrete large quantities of IL-5, IL-13 and IL-9,162,177 and 
have been identified in cardiovascular tissues.178,179 Bone marrow 
chimera experiments showed that genetic deletion of ILC2 in LDLr−/− 
mice aggravates atherosclerosis; the reconstitution with ILC2 was 
protective but not when IL-5- or IL-13-deficient ILC2 were used.178 
ApoE−/− mice transferred with ILC2 exhibited decreased lipid con-
tent and increased peritoneal B1 cells.180 Moreover, it has been 
reported that IL-25-driven ILC2 expansion reduced plaque develop-
ment through the IL-5-B1-IgM axis in ApoE−/− mice.171 In vitro and in 
vivo experiments revealed an atheroprotective role for Treg cells by 
expanding ILC2 and increasing IL-13 secretion.181

5.2.4  |  Other players of allergic inflammation

IL-9 participates in several pathologies including allergic inflamma-
tion.182,183 IL-9 blockade in ApoE−/− mice decreased macrophage 
and T-cell infiltration in lesions, which reduced atherosclerosis, 
and exogenous IL-9 administration had the opposite effect.184 
Moreover, Blimp-1-mediated inhibition of Th9 cell differentiation 
was protective in a diabetic coronary heart disease rat model.185 In 
line, acute coronary syndrome patients showed a greater number 
of peripheral CD4+IL-9+ T cells and IL-9 levels184,186; and patients 
with carotid atherosclerosis had increased IL-9 levels too.187 In al-
lergic disease, Th9 cells induce CCL17 and CCL22 expression,188 
which facilitate atherosclerosis.189,190 Additional studies in ApoE−/− 
mice revealed that CCR6 and CCL20, which are induced by IL-9, are 
proatherogenic.191,192

The role of IL-17A in atherosclerosis is controversial.193-195 For 
instance, IL17A-deficient ApoE−/− mice had smaller plaques in the 
aortic arch and roots than controls, but with a similar plaque burden 
in the thoracoabdominal aorta.196 In stark contrast, in vivo admin-
istration of IL-17A reduced plaque burden in aortic roots of LDLr−/− 
mice,197 and may promote plaque stability by increasing vascular 
SMC collagen production.198 Accumulating evidence suggests the 
participation of Th17 cells in allergic asthma and even the presence 

of a subgroup of dual positive Th2/Th17 cells in bronchoalveolar la-
vage fluid from asthmatic patients.199-201 As abovementioned, data 
from experimental systems support a proatherogenic role for IL-17A 
in allergic asthma.63

6  |  CONCLUDING REMARKS & 
PROSPEC TS

Allergy and atherosclerosis are immune-mediated diseases with an 
opposed T-cell identity and a profound vasculature involvement. 
From a simplistic standpoint, atherosclerosis could be referred to as 
a physical plumbing issue that leads to pipe clots, pressure changes 
and ruptures. Yet, atherosclerosis still stands as a major cause of 
mortality worldwide, with a dearth of curative treatment options, 
which unveils the intricate maze that it represents.

The repercussion of acute and late allergic inflammation in 
atherosclerosis remains poorly characterized. From a broader per-
spective, acute allergic reactions are the result of an inflammatory 
program that ultimately acts on the endothelium favouring cell di-
apedesis to respond to a threat. The fast-acting ability of this Ig-
mediated response allows the immune system to react promptly to 
danger, but it comes with an endothelial toll, likely favouring the ini-
tiation or exacerbation of atherosclerosis.

The atherosclerotic role of several components classically as-
sociated with Th2 immunity has been studied, but mostly under 
non-allergic conditions and on an individual basis. However, Th2 
responses are an integral part of a broader program, termed type 2 
immunity, which has evolved not only to control parasites and non-
microbial noxious substances, but also to regulate other homeostatic 
processes. Thus, understanding type 2 immunity and, particularly, 
atherogenic mechanisms of allergic diseases, requires a holistic ap-
proach that assesses the role of each cellular/molecular player in the 
allergic arena.
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