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ABSTRACT 

Exposure to traumatic life events might give rise to the onset of fear-related disorders, 

such as posttraumatic stress disorder, panic, and phobias. However, risk for such 

neuropsychiatric conditions varies greatly among individuals, with particular significance 

in genetic and epigenetic factors. For that reason, it is important to elucidate the 

involvement of common environmental insults on its own or in combination with other 

stimuli, in fear response. Animal models constitute a useful tool for the advancing in our 

understanding of risk factors for extinction dysregulations at the neural, genetic, and 

neurochemical levels. By using different behavioural and biochemical techniques, the 

current thesis analyses long-term effects of concomitant Δ9- tetrahydrocannabinol (THC), 

the main psychoactive compound of cannabis, and stress exposure during adolescence, 

in the extinction of fear memories. We report that adolescent male mice simultaneously 

exposed to THC and stress presented fear extinction deficits in the adulthood. These 

fear dysregulations were paralleled with decreased neuronal activity in the main areas 

regulating such function and structural plasticity alterations. Once fear becomes 

disrupted, deciphering the biological underpinnings allows the identification of novel 

targets to further develop better and more effective treatment strategies. A substantial 

body of evidence has grown over the last years to emphasize the role of the orexin 

system in the modulation of fear extinction, although the underlying neurobiological 

mechanisms remain poorly understood. Given the neuroanatomical and functional 

overlapping between the orexin and the endocannabinoid system, molecular interactions 

in the context of impaired fear extinction induced by orexin-A have been addressed in 

the present thesis. We discovered a novel mechanism involving the endocannabinoid 2-

arachidonoylglycerol and cannabinoid type-2 receptor (CB2R) located in the amygdala 

in the impairment of fear extinction induced by an overactivation of the orexin system. 

On the other hand, we have also evaluated the role of the endocannabinoid system in 

129S1/SvImJ mice, an inbred mouse strain with remarkable fear extinction deficits. In 

accordance with the previous study, CB2R was markedly increased in the main brain 

regions that modulate fear extinction of such mouse strain, compared to C57BL/6J 

control mice. Pharmacological modulation of CB2R revealed an anxiolytic effect induced 

by CB2R blockade, whereas CB2R agonism potentiated basal-increased sensorimotor 

gating and fear extinction deficits, in this mouse model of aberrant fear extinction. The 

findings of the current thesis warn about an unknown risk factor for the correct extinction 

of aversive memory, consisting of simultaneous THC and stress exposure in early life 

stages. Moreover, CB2R is reported to play an important role in fear extinction, thus 

becoming a novel potential target for the treatment of fear-related disorders.  
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RESUMEN 

La exposición a eventos traumáticos a lo largo de la vida puede dar lugar a la aparición 

de trastornos relacionados con el miedo, como el trastorno de estrés postraumático, 

pánico y fobias. Sin embargo, existe una gran variabilidad interindividual en el riesgo de 

sufrir dichas patologías, siendo de especial importancia los factores genéticos y 

epigenéticos. Por ello, es muy relevante conocer la implicación de ciertos factores 

ambientales nocivos en la extinción del miedo, por sí mismos o en combinación con 

otros. Los modelos animales son una herramienta útil para avanzar en el conocimiento 

de los factores de riesgo para la desregulación en la extinción del miedo a nivel neuronal, 

genético y neuroquímico. Mediante test de comportamiento y técnicas bioquímicas, esta 

tesis evalúa los efectos a largo plazo de la exposición a Δ9- tetrahidrocannabinol (THC), 

principal componente psicoactivo del cannabis, y estrés durante la adolescencia, en la 

extinción de memorias aversivas. Hemos observado que los ratones macho expuestos 

simultáneamente a THC y estrés en la adolescencia presentaron déficits en la extinción 

del miedo cuando eran adultos. Estas alteraciones se asociaron con una hipoactividad 

en las principales áreas que regulan dicha función y con alteraciones en la plasticidad 

sináptica. Una vez se desregula el miedo, conocer los mecanismos subyacentes permite 

la identificación de nuevas dianas terapéuticas para mejorar el tratamiento actual. En 

los últimos años, el rol del sistema de orexinas en la extinción del miedo ha ganado 

importancia, aunque los mecanismos neurobiológicos todavía se desconocen. Dadas 

las coincidencias neuroanatómicas y funcionales de los sistemas de orexina y 

endocannabinoide, en esta tesis se han abordado las interacciones moleculares 

subyacentes a las alteraciones en la extinción del miedo inducidas por la orexina-A. 

Hemos descubierto un nuevo mecanismo en la alteración de la extinción del miedo 

debido a la sobreactivación del sistema de orexinas, que incluye el endocannabinoide 

2-araquidonoilglicerol y el receptor cannabinoide tipo 2 (CB2R) en la amígdala. Por otro 

lado, hemos evaluado el papel del sistema endocannabinoide en ratones 129S1/SvImJ, 

una cepa con alteraciones en la extinción del miedo. De acuerdo con el estudio anterior, 

estos animales presentaron un aumento de CB2R en las principales regiones que 

modulan la extinción del miedo, en comparación con la cepa control. El bloqueo de dicho 

receptor indujo un efecto ansiolítico, mientas que su agonismo potenció el incremento 

basal del filtro sensoriomotor y los déficits en la extinción del miedo. Los hallazgos de 

esta tesis alertan sobre un nuevo factor de riesgo para la correcta extinción del miedo, 

la exposición simultánea a THC y estrés en la adolescencia. Además, se presenta CB2R 

como un elemento importante para la extinción del miedo, postulándose así como una 

posible diana terapéutica para el tratamiento de trastornos relacionados con el miedo.
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1. CANNABINOIDS AND THE ENDOCANNABINOID SYSTEM 

Humans have consumed cannabis derivates over thousands of years due to their 

medicinal and recreational use. From them on, more than 100 cannabinoids have been 

isolated from the Cannabis sativa plant, with particular attention to the main psychoactive 

compound Δ9-tetrahydrocannabinol (THC), discovered in the 1960s by Mechoulam and 

Gaoni (Mechoulam and Gaoni, 1965). This seminal discovery opened the door to the 

exploration of a novel neuromodulatory system, the endocannabinoid system. Over the 

next decades, Devane and co-workers identified the first cannabinoid receptor in rat and 

human brains, by using a synthetic radiolabelled THC analogue (Devane et al., 1988). 

This receptor was known to be the major site of action of THC and other cannabinoids. 

Subsequently, a similar cannabinoid receptor highly expressed in the immune system 

was discovered by homology cloning (Matsuda et al., 1990; Munro et al., 1993). A crucial 

breakthrough was the identification of the two main endogenous ligands of both 

cannabinoid receptors, which were referred to as endocannabinoids (Devane et al., 

1992; Mechoulam et al., 1995). Then, the close association between cannabis and 

humans made sense, since it was known that human brain is able to produce and 

process cannabinoids. 

Cumulative knowledge has established the endocannabinoid system as a widespread 

neuromodulatory network, involved in a plethora of physiological and cognitive 

processes. This system consists of the endocannabinoids, their receptors, and the 

enzymatic machinery responsible for synthesising and degrading these 

endocannabinoids. Moreover, diverse mediators biochemically related to the 

endocannabinoid system components have been discovered at a later time, thus 

expanding the primarily known endocannabinoid system, which is named 

endocannabinoidome (di Marzo and Wang, 2015). This complex network overlaps with 

other pathways and includes different metabolic processes. From a functional 

perspective, the endocannabinoid system acts retrogradely from the postsynaptic to the 

presynaptic neuron and is broadly expressed throughout the entire central nervous 

system (CNS) (Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001; Busquets-Garcia et 

al., 2018). For that reason, it has been demonstrated a key role in several biological 

functions, including brain development, pain, stress coping, motivation, and energy 

expenditure, among many others (Cristino et al., 2020). 
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1.1. Overview of the endocannabinoid system 

As previously explained, the endocannabinoid system is composed of receptors, the two 

main endocannabinoids, and the enzymes involved in the synthesis and degradation of 

each endocannabinoid. 

1.1.1. Cannabinoid receptors 

Endogenous and exogenous cannabinoids activate at least two different receptors, the 

cannabinoid type-1 and type-2 receptors (CB1R and CB2R, respectively). Both belong 

to the G protein-coupled receptor (GPCR) family, specifically coupled to Gi/o proteins. 

However, increasing evidence indicates that other receptors also bind cannabinoid 

ligands, such as peroxisome proliferator-activated receptor-α (PPARα) (O’Sullivan, 

2007), orphan GPCR 55 (GPR55) (Lauckner et al., 2008; Godlewski et al., 2009), orphan 

GPCR 119 (GPR119) (Godlewski et al., 2009) and the transient receptor potential cation 

channel subfamily V member 1 (TRPV1) (Di Marzo and De Petrocellis, 2010), among 

others. Interestingly, these receptors often have opposite roles to those of CB1R and 

CB2R (Kawahara et al., 2011; Benito et al., 2012; Hansen et al., 2012). 

CB1R is a seven-transmembrane domain receptor, which is mainly expressed in the 

brain. Indeed, it is claimed to be the most abundant GPCR in the mammalian brain 

(Cristino et al., 2020). Neuroanatomical distribution of CB1R has been profoundly 

characterized in both rodents (Herkenham et al., 1991; Tsou et al., 1998) and humans 

(Westlake et al., 1994; Burns et al., 2007), with a high density in almost all brain regions, 

especially in the cerebellum, basal ganglia, and hippocampus (Figure 1). However, 

CB1R is not a nervous system-restricted receptor, as it is also expressed in peripheral 

tissues including heart, lung, adrenal glands, retina, liver, gonads, adipocytes and 

immune and vascular systems (Pertwee et al., 2010). Advanced microscopy technology, 

such as electron microscopy, has better identified CB1R at the cellular level. In this 

sense, CB1R is predominantly expressed presynaptically in both excitatory and inhibitory 

neurons, where it inhibits voltage-gated Ca2+ channels and vesicular release of γ-

aminobutyric acid (GABA) or glutamate (Caulfield and Brown, 1992; Mackie and Hille, 

1992). Hence, CB1R acts as a retrograde modulator of different types of 

neurotransmitters in the synaptic process (Ohno-Shosaku et al., 2001; Wilson and Nicoll, 

2001). Additionally, some evidence indicates that CB1R is also located in astrocytes 

where it regulates synaptic plasticity (Sánchez et al., 2001; Robin et al., 2018), and even 

in the external membrane of mitochondria by inhibiting electron transport and the 

respiratory chain (Bénard et al., 2012; Hebert-Chatelain et al., 2016). For that reason, 
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CB1R has emerged as a potential therapeutic target for many diseases, given its 

involvement in a wide variety of physiological functions. 

 

Figure 1. Schematic representation of the main areas expressing CB1R. Colour intensity 

reflects CB1R expression levels. AMG, amygdala; CPu, caudate putamen; Ctx, cortex; DRN, 

dorsal raphe nucleus; GP, globus pallidus; LC, locus coeruleus; NAc, nucleus accumbens; NTS, 

nucleus of the solitary tract; OB, olfactory bulb; OT, olfactory tubercle; PAG, periaqueductal gray; 

SNr, substantia nigra pars reticulata; VTA, ventral tegmental area (Adapted from Flores et al, 

2013). 

 

On the other side, CB2R is also a seven-transmembrane domain GPCR, which central 

function is the modulation of the immune system (Cristino et al., 2020). Cumulative 

knowledge indicates that CB2R is primarily found in peripheral tissues, mainly in immune 

cells (Munro et al., 1993; Galiègue et al., 1995; Brown et al., 2002; Liu et al., 2009; 

Simard et al., 2022). Unlike CB1R, CB2R expression in the CNS is low under 

physiological conditions, and it can be increased in concrete pathological states, 

including schizophrenia, depression, addiction, and Parkinson disease (PD), among 

others, thus becoming a potential therapeutic target for several CNS diseases (Kibret et 

al., 2022). Nevertheless, its cell-type location in the CNS presents unresolved 

controversies due to the questioned selectivity of CB2R antibodies (Atwood and MacKie, 

2010; Cabañero et al., 2021). A broad consensus is emerging on the important role of 

CB2R in microglial cells (Komorowska-Müller and Schmöle, 2020; Reusch et al., 2022; 

Ruiz de Martín Esteban et al., 2022) and, to a lesser extent, in astrocytes (Stella, 2010; 

Jia et al., 2020). Importantly, its expression in these glial cells is significantly increased 

in chronic neuroinflammation-associated diseases (Cabral and Griffin-Thomas, 2009), 

such as Alzheimer disease (AD) (Benito et al., 2003). Contrary to the wide agreement 

on microglial expression of CB2R, reasonable concerns remain on the CB2R location in 

neurons. While early studies showed that CB2R was absent in neuronal cells (Munro et 

al., 1993), further research indicates that it is present in neurons of several brain areas, 
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including hippocampus, amygdala, thalamus, striatum, cerebral cortex, cerebellum, and 

spinal and olfactory nuclei (van Sickle et al., 2005; Onaivi et al., 2006; Jordan and Xi, 

2019). Moreover, the mechanism by which CB2R regulates neuronal function remains 

unknown, in contrast to the well-characterized CB1R. On balance, there is clear 

consistency among research studies indicating an inducible character for CB2R mainly 

in pathological conditions, whereas its function and cell-type location need to be further 

explored and constitute one of the specific objectives of the present thesis (Articles 2 

and 3). 

Cannabinoid receptors are involved in a wide range of functions by activating different 

signal transduction pathways (Ye et al., 2019). In particular, both CB1R and CB2R act 

through the activation of Gi/o proteins (Howlett and Abood, 2017), although CB1R might 

also bind Gs and Gq proteins in specific conditions (Glass and Felder, 1997; Lauckner 

et al., 2005). While CB1R signalling has been extensively studied, only a few studies 

have addressed CB2R to date. Then, CB1R stimulation regulates the activity of diverse 

ion channels, including K+ and Ca2+ channels, in order to repolarize the plasmatic 

membrane and inhibit the release of neurotransmitters (Deadwyler et al., 1995; Vásquez 

et al., 2003). Also, the activation of CB1R mediates the inhibition of adenyl cyclase and, 

in turn, decreases cAMP and reduces the activity of protein kinase A (Howlett, 2005). 

This activation might also initiate other kinase signalling cascades, such as the 

phosphoinositide 3-kinase pathway, glycogen synthase kinase 3 and protein kinase C 

(Bouaboula et al., 1995; Gómez Del Pulgar et al., 2000; Ozaita et al., 2007), thus 

modifying gene expression (Figure 2). Given the complexity of endocannabinoid 

signalling, allosteric modulators of CB1R and CB2R have emerged as promising tools. 

Thereby, several downstream pathways might be modulated, while preserving the site- 

and time-selectivity of endocannabinoids at these receptors and avoiding any 

interference with other cannabinoid mediators (Bosier et al., 2010). 
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Figure 2. Regulation of cell excitability and neurotransmitter release through CB1R. 

(Adapted from Bosier et al, 2010). 

 

1.1.2. Endocannabinoids 

Endogenous cannabinoids, also named endocannabinoids, are signalling lipids that 

activate cannabinoid receptors. The two main endocannabinoids are anandamide (the 

ethanolamide of arachidonic acid) and 2-arachidonoylglycerol, often abbreviated as AEA 

and 2-AG, respectively (Figure 3). Nevertheless, other endocannabinoid-related 

molecules, such as 2-arachidonyl glyceryl ether (Hanus et al., 2001) and N-arachidonoyl 

dopamine (Grabiec and Dehghani, 2017), also engage cannabinoid receptors. 

AEA was the first known endocannabinoid (Figure 3), isolated from porcine brain. Its 

name was coined from the Sanskrit word ananda meaning “bliss”, and from the chemical 

nature of this compound (Devane et al., 1992). This endocannabinoid acts as a partial 

agonist at both cannabinoid receptors, although it presents higher affinity for CB1R rather 

than for CB2R (Reggio, 2010). A few years later, 2-AG was discovered as the second 

endogenous cannabinoid ligand (Mechoulam et al., 1995; Sugiura et al., 1995) (Figure 

3). This endocannabinoid behaves as a full agonist for both CB1R and CB2R with higher 

potency than AEA, and presents the characteristic effects associated with cannabinoid 

agonism (Reggio, 2010). Interestingly, 2-AG has been found in the brain at 

concentrations 170 times greater than AEA (Stella et al., 1997). Both endocannabinoids 
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present a similar distribution pattern in the CNS, with high density in the brainstem, 

striatum and hippocampus, and lower in the diencephalon, cortex and cerebellum 

(Bisogno et al., 1999). As previously mentioned, other putative endocannabinoids with 

lower affinity for both cannabinoid receptors have also been characterized. However, 

their functional relevance remains to be deciphered (Cristino et al., 2020). 

 

Figure 3. Structure of the endocannabinoids 2-arachidonoylglycerol and anandamide. 

(Adapted from Fisar, 2009) 

 

A distinctive feature of the endocannabinoid system is its mechanism of action. 

Endocannabinoids are synthesized and released from the postsynaptic terminals in an 

activity-dependent manner, and travel through the synaptic cleft to the presynaptic axon, 

thus binding CB1R (Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001). As a 

neuromodulatory system, this retrograde signalling produces a transient decrease of the 

release of other neurotransmitters, in order to avoid an uncontrolled overactivation of any 

neurotransmission system (Caulfield and Brown, 1992; Mackie and Hille, 1992; di Marzo 

et al., 2005). As detailed below, such modulatory function of both AEA and 2-AG needs 

to be accurately regulated through their correspondent pathways of synthesis and 

degradation. 

1.1.3. Enzymes involved in the synthesis and degradation of endocannabinoids 

In contrast to classic neurotransmitters, endocannabinoids are synthesised “on-demand” 

since their precursors exist as membrane lipids and are liberated by the activation of the 

correspondent enzymes (di Marzo et al., 1999). Such activation occurs in response to 

concrete signals, such as increased levels of intracellular Ca2+ (di Marzo et al., 1994; 

Placzek et al., 2008) or the activation of a GPCR (Vellani et al., 2008; Wu et al., 2020). 

Hence, both AEA and 2-AG are accurately released in a precise time and space. 
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There are several pathways for the synthesis of endocannabinoids. The importance of 

each one depends on specific factors, such as the tissue, the development state and the 

presence or absence of any pathological condition (Lu and Mackie, 2021). However, a 

more prominent pathway has been widely described for each endocannabinoid. The 

synthesis of AEA is mainly accomplished through the hydrolysis of its phospholipid 

precursor N-arachidonoyl-phosphatidylethanolamine (NAPE) by a specific 

phospholipase D, although additional pathways are well described (di Marzo et al., 1994; 

Biringer, 2021). On the other hand, the canonical pathway of 2-AG synthesis involves 

the hydrolysis of its precursor diacylglycerol, by the enzyme diacylglycerol lipase (DAGL) 

(Mechoulam et al., 1995; di Marzo et al., 2005). This enzyme presents two different 

isoforms, DAGL-α and DAGL-β (Bisogno et al., 2003). Both are highly expressed in the 

entire CNS, with slight differences in their cell type location. Whereas DAGL-α takes an 

important role in the synaptic production of 2-AG, DAGL-β is primarily involved in the 

synthesis and release of 2-AG from microglial cells (Viader et al., 2016). 

Once endocannabinoids have activated their molecular targets, both AEA and 2-AG are 

removed from the synaptic cleft. Although little is known about endocannabinoid 

trafficking across the cell membrane, recent evidence points carrier-mediated facilitated 

diffusion, such as Na+- or ATP-requiring transporters, as the most likely mechanism for 

endocannabinoids transport (Kaczocha and Haj-Dahmane, 2022). Subsequent 

degradation is carried out by specific intracellular enzymes, which hydrolyse the 

arachidonic acid from either the ethanolamine and the glycerol of AEA and 2-AG, 

respectively. AEA is hydrolysed by fatty acid amide hydrolase (FAAH) (Cravatt et al., 

1996, 2001), an enzyme mainly found in the soma and dendrites of postsynaptic neurons 

(Egertová et al., 2003). Analogously, 2-AG hydrolysis is exerted by monoacylglycerol 

lipase (MAGL) or α/β-hydrolase domain containing 6 (ABHD6) (Dinh et al., 2002; Marrs 

et al., 2010). MAGL is primarily expressed in presynaptic terminals, while ABHD6 is 

mostly found in dendrites (Gulyas et al., 2004; Marrs et al., 2010; Ludányi et al., 2011).  

1.1.4. Physiological functions 

Since its discovery in the 1990s, the endocannabinoid system has emerged as an 

essential modulator of several physiological, behavioural, immunological, and metabolic 

functions, given its extensive distribution across almost all tissues, especially in the CNS. 

As explained before, cannabinoid receptors are expressed in a region-specific manner. 

However, considering both CB1R and CB2R distribution, the endocannabinoid system 

is involved to a greater or lesser extent in the modulation of a wide variety of physiological 

and pathological conditions (Zou and Kumar, 2018).  
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In the central and peripheral nervous system, the endocannabinoid system acts as an 

essential player in the regulation of the synaptic homeostasis. Hence, it modulates 

synapse creation and remodelling (Kano et al., 2009), and specific processes that 

modulate neuronal development, such as neuronal differentiation, proliferation, 

migration, and survival (Rueda et al., 2002; Harkany et al., 2008; Galve-Roperh et al., 

2013). In this vein, the endocannabinoid system regulates nociception under different 

types of acute and chronic pain (Finn et al., 2021). Moreover, CB1R in the cerebellum 

and basal ganglia has been linked with motor coordination and cerebellar learning 

performance (el Manira and Kyriakatos, 2010). This receptor in the hippocampus has 

also been investigated due to cannabis effects on memory and learning (Puighermanal 

et al., 2009; Kloft et al., 2020). It is also remarkable the role played by this 

neuromodulatory system to ensure an appropriate reaction to stressful situations, thus 

controlling anxiety and fear responses (Maldonado et al., 2020). Moreover, the 

endocannabinoid system is widely known to regulate rewarding properties of diverse 

substances and events, given its broad expression in the limbic system and related brain 

areas (Mechoulam and Parker, 2013). For that reason, it has become an essential 

component to modulate addictive disorders (Maldonado et al., 2006; Spanagel, 2020). 

The endocannabinoid system is also relevant in peripheral tissues. It regulates the 

mobility of the gastrointestinal tract, where it also modulates the secretion of gastric 

fluids, neurotransmitters and hormones, as well as the permeability of the intestinal 

epithelium and the gut microbiota (Mehrpouya-Bahrami et al., 2017; Wang et al., 2020; 

Izzo and Sharkey, 2010). Both CB1R and CB2R have a low expression in hepatic and 

cardiovascular tissues. However, CB1R is upregulated in both tissues under pathological 

conditions, thus becoming an interesting pharmacological target (Miller and Devi, 2011; 

Montecucco and di Marzo, 2012). CB2R modulates the activity of the immune system, 

in which cells is highly expressed (Turcotte et al., 2016; Simard et al., 2022). In addition 

to the aforementioned tissues, the endocannabinoid system has also been reported to 

have an important role in the reproductive system, skeletal muscle, adipose tissue, eye, 

bone, and skin, among others (Maccarrone et al., 2015). 

1.2. Psychoactive cannabinoids: focus on THC 

Aside from previously described endocannabinoids, several exogenous compounds can 

also interact with cannabinoid receptors. Such structurally diverse class of natural 

constituents in the Cannabis sativa plant are named cannabinoids, also known as 

phytocannabinoids due to their plant origin. Indeed, more than 500 compounds have 

been isolated from this plant, of which 125 are classified as cannabinoids. The remaining 
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compounds include terpenes, phenols, flavonoids and alkaloids, among others (Radwan 

et al., 2021).  

THC is the main psychotropic cannabinoid in the plant (Figure 4), which activates CB1R, 

thus inducing the well-known cannabinoid tetrad effects: hypothermia, hypolocomotion, 

catalepsy and analgesia (Prescott et al., 1992; Meng et al., 1998; Smirnov and Kiyatkin, 

2008; Pagano et al., 2022). This cannabinoid is considered a partial agonist of both 

cannabinoid receptors and exerts its psychoactive effects via CB1R agonism (Schurman 

et al., 2020). In contrast, the non-psychotropic cannabinoid cannabidiol (CBD) has 

recently gained attention (Figure 4), since it presents several beneficial attributes such 

as neuroprotective, anticonvulsant, anti-inflammatory, antispasmodic, and antiemetic 

properties, avoiding side effects (Hampson et al., 1998; Baker et al., 2000; Malfait et al., 

2000; Rock et al., 2012; van den Elsen et al., 2014). Although its mechanism of action is 

still a controversial issue, a growing number of studies points that CBD has relatively 

little affinity for the orthostatic sites of both cannabinoid receptors, thus exhibiting a 

negative allosteric binding activity on CB1R (Laprairie et al., 2015; Tham et al., 2019; 

Peng et al., 2022). A similar allosteric site for CBD has been found in CB2R, which allows 

this compound to promote anti-inflammatory effects (Martínez-Pinilla et al., 2017; Peng 

et al., 2022). However, CBD has many properties that are independent of cannabinoid 

receptors, whose mechanisms remain unknown. Other cannabinoids, such as 

tetrahydrocannabivarin, cannabinol, cannabigerol, and cannabichromene are also 

present in the Cannavis sativa plant, albeit in lesser amounts in comparison with THC 

and CBD.  

 

Figure 4. Structure of the phytocannabinoids Δ9-tetrahydrocannabinol and cannabidiol. 

(Modified from Fisar, 2009) 

 

Given the widely studied therapeutic properties of the two major cannabinoids, CBD has 

been already approved by several regulatory agencies for the treatment of convulsive 

seizures (Epidiolex), as well as the combination of CBD and THC in a 1:1 ratio for multiple 
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sclerosis-related spasticity, and pain associated with the same disease and cancer 

(Sativex). Also, nabilone and dronabinol, two synthetic cannabinoid drugs approved in 

diverse countries, are already used in clinical practice due to their analgesic properties 

for patients with chronic pain, and for reducing nauseas and vomiting in cancer patients 

(Pagano et al., 2022). Legalization of cannabis and derivates for medical or recreational 

use is a current hot topic with controversial opinions among the scientific community and 

society as a whole. However, it was in 1985 when dronabinol was first approved in the 

USA for the treatment of anorexia derived from acquired immunodeficiency syndrome 

(AIDS) due to human immunodeficiency virus (HIV), as well as chemotherapy-induced 

nausea and vomiting in patients with who had failed to respond to conventional 

treatments (O’Donnell et al., 2022). 

Despite the increasing number of approved drugs and the growing body of evidence 

reporting novel therapeutic properties for THC, this cannabinoid entails psychotropic 

effects that impair physiological functions, to a greater or lesser extent (Volkow et al., 

2016; National Academies of Sciences, 2017; Sagar and Gruber, 2018). In addition, 

Cannabis sativa plant has been largely manipulated to obtain a higher potency by 

increasing the THC to CBD ratio (Lafaye et al., 2017). For that reason, recreational 

cannabis use is related to cognitive decline and neural changes, among many other 

consequences, especially when consumption begins in early life stages. 

1.2.1. Cannabinoids use, abuse, and dependence 

Cannabis is the most consumed illicit drug worldwide, and the third drug of abuse most 

commonly used after alcohol and tobacco (first and second, respectively). Data from the 

European Drug Report of 2022 show that 66% of the total drug confiscations in Europe 

in 2020 corresponds to different types of cannabis preparations, far ahead of cocaine, 

the second most seized drug (13%) (Figure 5). As a consequence, cannabis was the 

substance most frequently reported by hospitals involved in the European Drug 

Emergency Network in 2020. About a quarter of acute drug toxicity presentations 

involved cannabis, frequently in the presence of other substances. Moreover, its 

consumption is also related to economic and gender differences. High-income countries 

present the highest prevalence of cannabis use, although an increasing use is being 

reported in low- and middle-income countries. On the other hand, a clear disparity exists 

between genders, since 84% of users entering a chronic cannabis consumption in 2021 

were men. Another interesting fact on cannabis use in Europe was carried by the recent 

Covid-19 pandemic. Health measures and restrictions adopted during this period have 

impacted cannabis use patterns, with an increase on herbal cannabis consumption 
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among frequent users and a clear decrease between infrequent users (European 

Monitoring Centre for Drugs and Drug Addiction, 2022). 

 

Figure 5. Number of reported drug confiscations in Europe in 2020. Cannabis-derived 

preparations includes herbal cannabis, cannabis resin, and cannabis plants (Adapted from 

European Monitoring Centre for Drugs and Drug Addiction, 2022). 

 

There are different types of cannabis preparations, all of them contain substantial 

amounts of THC. Interestingly, analysis performed in 2020 revealed that the most 

resinous parts of the cannabis plant (traditionally named as hashish) presented an 

average THC content of 21%, almost twice that of herbal cannabis (also known as 

marijuana), at 11% (European Monitoring Centre for Drugs and Drug Addiction, 2022). 

These preparations are usually mixed with tobacco and the most common rout of 

administration is smoke inhalation. Once cannabis is consumed, individuals experience 

rewarding effects characterized by euphoria, lethargy, and overstretch of ordinary 

situations (Johnson, 1990). These effects may also be accompanied by physical signs, 

including tachycardia, increased appetite, and bronchodilatation, among others (Hall and 

Solowij, 1998; Karila et al., 2014). However, negative effects are hiding beneath this 

pleasant sensation. In this respect, acute cannabis use may also induce anxiety, 

dysphoria, disorientation, psychomotor agitation, deficits in prospective memory and 

executive functions, hallucinations, and paranoid ideas (Johns, 2001; Martin-Santos et 

al., 2012; Montgomery et al., 2012). In high doses, cannabis consumption may potentiate 

schizophrenia-like symptoms, leading to an acute functional psychosis (Moore et al., 

2007).  

About 10% of individuals that reported cannabis use in 2020 were daily or near-daily 

users (United Nations Office on Drugs and Crime (UNODC), 2022). Thus, chronic 
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cannabis consumption entails long-term consequences, such as the impairment of 

verbal learning and memory, working memory, and attention. Moreover, associations 

between stronger cognitive alterations and a younger age of onset have been regularly 

reported (Broyd et al., 2016). Chronic cannabis intake has also been related to other 

cognitive disturbances like depersonalization and amotivational syndromes, which entail 

an alteration in subjective experience of reality and reduced motivation and capacity for 

daily activities, respectively (Moran, 1986; Hürlimann et al., 2012; Volkow et al., 2016). 

Furthermore, different somatic disorders may appear after recurrent cannabis use. For 

instance, hyperemesis, asthma exacerbation, airflow obstructions, cardiac arrythmias 

and nasopharyngeal carcinoma, among many others (Feng et al., 2009; Galli et al., 2011; 

Tessmer et al., 2012; Tashkin and Roth, 2019; Richards et al., 2020). On the other hand, 

cannabis consumption also entails social consequences, since it has been widely related 

with low academic achievement, unemployment and delinquency (de Looze et al., 2015; 

Hernández-Serrano et al., 2018; Barry et al., 2022). 

Despite the negative effects for human health, acute rewarding properties from cannabis 

can induce a repeated and uncontrolled consumption. This behaviour has been recently 

categorized as a mental illness in the last update of the main psychiatry manual, the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5), referred to as cannabis 

use disorder (American Psychiatric Association, 2013). Such disturbance affects about 

10% of cannabis users worldwide and as many as one-third of those who use it daily 

(United Nations Office on Drugs and Crime (UNODC), 2022). Aside from cannabis use 

disorder, the DSM-5 also includes cannabis intoxication and withdrawal within the 

framework of cannabis-related disorders, thus resembling the same features as any 

other drug addiction (Connor et al., 2021). 

1.2.2. Cannabis exposure in early life stages 

Nervous system formation and maturation comprises a vulnerable life stage, in which 

environmental perturbations like cannabis consumption might have a dramatic cost for 

individual’s health. Adolescence is included in this critical period, since efficient neuronal 

pathways by constant neuroplastic shaping, synaptic reorganization and neurochemical 

changes are created (Sturman and Moghaddam, 2011). Over this period, many players 

are involved to achieve a correct maturation of the CNS. In particular, the 

endocannabinoid system has a key role through the regulation of several processes, 

such as the maturation of the corticolimbic circuit neurons by achieving a balance 

between inhibitory and excitatory neurotransmission in the prefrontal cortex (Meyer et 

al., 2018). These maturational events require an accurate signalling, that is reflected in 
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variations in the temporal expression of components of the endocannabinoid system 

during adolescence. Studies in rodents showed that CB1R expression peaks with the 

onset of adolescence with a subsequent decline approaching adulthood (de Fonseca et 

al., 1993; Heng et al., 2011). Interestingly, 2-AG levels remain high at the beginning and 

the end of adolescence with attenuated expression in mild-adolescence, whereas AEA 

present constant fluctuations during this period (Ellgren et al., 2008; Lee et al., 2013; 

Rubino et al., 2015a) (Figure 6). For that reason, direct perturbations into the 

endocannabinoid system, such as cannabis intake, might induce detrimental effects in 

the adulthood. 

 

Figure 6. Developmental trajectories of the components of the endocannabinoid system. 

(Adapted from Meyer et al, 2018).  

 

As previously mentioned, recreational use of cannabis is widespread worldwide. 

Specifically, cannabis consumption in 2021 among the European population aged 15-34 

is estimated at 15.5%. However, this figure is even higher among adolescents aged 15-

24 that is at 19.1% (European Monitoring Centre for Drugs and Drug Addiction, 2022). 

Preclinical and clinical studies indicate that cannabinoid exposure during this critical 

window of development produces short- and long-lasting neurobiological changes that 

affect the function and behaviour of the brain (Renard et al., 2014). In this vein, cognitive 

effects have been widely studied in both humans and animal models (Scheyer et al., 

2022). Rats chronically exposed to THC and other CB1R agonists during adolescence 

presented short- and long-term memory impairment, usually evaluated by using the 

object recognition task, and spatial working memory deficits measured with the radial 

maze test (O’Shea et al., 2006; Abush and Akirav, 2012; Renard et al., 2013). The 

neurobiological mechanisms underlying these cognitive disruptions have been 

associated with diverse alterations, including changes in hippocampal morphology, as 

well as reduced protein expression in the same region and the medial prefrontal cortex 

(mPFC), mainly synaptic proteins (e.g., synaptophysin and PSD95) (Rubino et al., 
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2009a, 2009b; Llorente-Berzal et al., 2013). Clinical studies recapitulate these cognitive 

impairments by adding deficits in cognitive inhibition, attention, impulsivity, and overall 

intelligence quotient (Fontes et al., 2011; Meier et al., 2012). Anxiety is one of the most 

common disorders developed by chronic cannabis use, with a higher prevalence in 

females (Hayatbakhsh et al., 2007; Kedzior and Laeber, 2014). However, only a few 

studies have assessed the relationship between cannabis use and long-term anxiety 

disorders in humans. Moreover, animal studies evaluating anxiety-like behaviour have 

reported inconsistent results, due to differences in the specific period in which 

cannabinoids are administered and the test used to assess this behaviour (Biscaia et al., 

2003; Higuera-Matas et al., 2009; Saravia et al., 2019). Also, depressive and mood 

disorders have been strongly associated with cannabis consumption. Such disorders 

present a prevalence of 25% among cannabis users. However, this risk can increase by 

five-fold depending on the age of cannabis use onset and the gender (Grant and 

Pickering, 1998; Green and Ritter, 2000; Chabrol et al., 2008). Accordingly, preclinical 

studies with rodents treated with cannabinoids during the adolescent period presented a 

clear depressive-like phenotype in the adulthood, by using the sucrose preference and 

the forced-swim tests (Rubino et al., 2008a; Bambico et al., 2010; Zamberletti et al., 

2014). Furthermore, Rubino and co-workers identified a decreased expression of CB1R 

in the amygdala, ventral tegmental area (VTA) and nucleus accumbens (NAc), thus 

associating this biochemical alteration with the depressive phenotype observed (Rubino 

et al., 2008a). 

Not only cognitive impairments are derived from early cannabis consumption, but also 

long-term psychotic effects have been reported as a consequence of adolescent 

cannabis use (Degenhardt and Hall, 2002; Hasan et al., 2020). Indeed, in 1987 a study 

performed with young healthy Swedish subjects demonstrated a six-fold increased risk 

of developing schizophrenia later in life as a result of heavy cannabis use at age 18 

(Andréasson et al., 1987). Several studies with humans have further confirmed this 

concerning association, thus pointing the age of onset of cannabis intake and the genetic 

variations as key parameters for the appearance of psychotic disorders (Arseneault et 

al., 2002; Stefanis et al., 2004; Hiemstra et al., 2018). In animal studies, disruptions in 

the prepulse inhibition (PPI) of startle reflex, which evaluates the sensorimotor gating, is 

widely accepted as an endophenotype of psychotic disorders (Braff et al., 2001) (Figure 

7). In accordance with clinical findings, adolescent rodents treated with cannabinoids 

presented a decreased PPI response, thus revealing a psychotic phenotype (Schneider 

and Koch, 2003; Wegener and Koch, 2009; Abela et al., 2019).  
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Figure 7. Diagrammatic representation of prepulse inhibition of startle reflex. (Adapted from 

Geyer, 2010). 

 

In conclusion, cannabis use at early life stages, predominantly in the adolescence, 

increases the risk of long-term cognitive and/or psychotic effects. However, most 

alarming consequences arise from the synergistic effect of multiple factors, such as 

environmental events (e.g., stress, drug abuse) and gene polymorphisms that enhance 

risk (e.g., catechol-O-methyltransferase (COMT) gene) (Rubino and Parolaro, 2016). 

This well-known “two-hit” hypothesis has been widely accepted in the case of 

schizophrenia (Maynard et al., 2001; Dalton et al., 2012; Davis et al., 2016), although it 

remains unexplored in other phenotypes. For that reason, one of the main objectives of 

the present thesis is to evaluate the cumulative effect of THC consumption and stress 

exposure during the adolescence in the extinction of fear memories in the adulthood 

(Article 1). 

1.2.3. Synthetic cannabinoids 

Recreational use of cannabis has recurrently faced legal barriers in most countries. An 

alternative solution to the classic cannabis drugs is the consumption of synthetic 

cannabinoids, given the easy accessibility and limited availability of sensitive analytical 

methods for screening this group of compounds (Ford et al., 2017). Originally produced 
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for a research purpose, synthetic cannabinoids are currently manufactured by 

clandestine laboratories and sold in striking coloured packages containing a mixture of 

a dried base plant without psychotropic effects, such as Mentha or Melissa, and a 

synthetic cannabinoid usually added by soaking or spraying (Duccio et al., 2018; Alves 

et al., 2020). These products were initially commercialized as “Spice” in European 

countries and “K2” in the United States, through internet retailers and “headshops” (Seely 

et al., 2011). From the early 2000s, they have rapidly gained attention mainly in Western 

countries. Nowadays, more than 324 different compounds have been reported worldwide 

in this cluster of drugs, thus becoming an increasing health problem, particularly in the 

adolescent population which consumption is substantially greater than the average 

population (Mathews et al., 2019; Bukke et al., 2021; United Nations Office on Drugs and 

Crime (UNODC), 2022). JWH-018, HU-210 and AM-2201, among many others, are 

examples of originally research molecules presently detected in Spice/K2 preparations 

(Atwood et al., 2010; Funada and Takebayashi-Ohsawa, 2018; Papaseit et al., 2018; 

Fang and Wang, 2023). These novel drugs are harder than cannabis, since synthetic 

cannabinoids are potent and efficacious cannabinoid receptor agonists, whereas 

cannabis preparations contain a variety of different compounds (Cohen and Weinstein, 

2018; Hourani and Alexander, 2018). For instance, JWH-018 is a potent agonist at CB1R 

and CB2R, showing approximately a four-fold increased activity for CB1R and ten-fold 

affinity at the CB2R, in comparison with THC (Dresen et al., 2010). As a consequence, 

synthetic cannabinoids have been related to more harmful effects than natural 

cannabinoids (Ford et al., 2017). Acute intoxication has been linked to seizures, 

tachycardia, hypertension, anxiety, hallucinations, tachypnea, mydriasis, nausea and 

vomiting (Davidson et al., 2017). Most alarming, abuse of synthetic cannabinoids has 

even resulted in death (Trecki et al., 2015).  
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2. THE OREXIN/HYPOCRETIN SYSTEM 

The orexin system, also known as hypocretin system, was concurrently discovered in 

1998 by two different research groups: Sakurai et al. (Japan) and de Lecea et al. (United 

Sates). Sakurai and colleagues identified two novel neuropeptides that strongly activated 

an orphan receptor (HFGAN72). By sequence homology analysis, a second receptor 

with the same properties was also characterized. These peptides and the correspondent 

receptors were termed “orexins” from the Greek word orexis meaning appetite, as the 

central administration of these peptides was shown to stimulate food intake in rats 

(Sakurai et al., 1998). At the same time, de Lecea and co-workers described a 

hypothalamus-specific mRNA which encoded the precursor of two similar peptides. Both 

neuropeptides exhibited substantial amino acid sequence identity with incretins, a group 

of metabolic hormones related to feeding behaviour. For that reason, they named these 

peptides “hypocretins” (“hypo-” from hypothalamus; “-cretins” from incretins). Moreover, 

hypocretins showed an important neuroexcitatory activity in cultured neurons, thus 

suggesting the role of neurotransmitters in the CNS (de Lecea et al., 1998). 

A few months later, it became clear that the orexin and the hypocretin systems were 

different terms for the same neurotransmission system. Although cDNA accession 

number of Mus musculus prepro-hypocretin (AF019566) was originally different from the 

one for prepro-orexin (AFO41242), mRNA sequences, chromosomal mapping and brain 

immunolocalization of both peptides converged towards the same way (Nisoli et al., 

1998). Altogether, the names “orexin” and “hypocretin” are currently used as synonyms 

in the scientific literature. To avoid potential confusion, the term “orexin” will be used 

throughout the present thesis. 

The orexin system was originally known for its physiological role in the central regulation 

of feeding (Sakurai et al., 1998; Lubkin and Stricker-Krongrad, 1998; Wolf, 1998). 

However, further investigation also highlighted a pivotal role in the maintenance and 

control of sleep/wakefulness states and energy homeostasis (Hagan et al., 1999; Lin et 

al., 1999a; Thannickal et al., 2000a; Mieda et al., 2004a). Nowadays, many other 

functions associated with the orexinergic system in physiological and pathological 

conditions have been clearly deciphered (Jacobson et al., 2022). 

2.1. Orexins and receptors 

Orexin-A (OXA) and orexin-B (OXB) are neuropeptides synthesized by neuronal cells, 

primarily found in the lateral hypothalamic area (LHA), which comprises the perifornical, 

lateral, posterior and dorsomedial nuclei (de Lecea et al., 1998; Sakurai et al., 1998; 

Nambu et al., 1999). These cells express a single-gene localized on chromosome 17q21 
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(in humans), which encodes the prepro-orexin, a 131-residue polypeptide (Sakurai et al., 

1999). By enzymatic cleavage of this common precursor, both orexins are synthesized. 

OXA is a 33-amino acid peptide with two intramolecular disulphide bridges within the N-

terminal, whereas OXB is a linear 28-amino acid peptide (Sakurai et al., 1998). These 

neuropeptides share 46% homology and have been identified from fish to mammalian 

species (Wong et al., 2011) (Figure 8). The genetic and molecular organization of orexin 

peptides amongst vertebrates are highly similar, thus highlighting the strong evolutionary 

pressure exerted to preserve structural integrity and functions. Indeed, OXA remains 

highly conserved in the vertebrate species, particularly in mammals with 100% sequence 

homology, while OXB differs only in 1 or 2 amino acids across species (Wong et al., 

2011). 

Orexins act on two specific receptors that are widespread distributed across the brain: 

orexin receptor-1 (OX1R; 425 amino acids) and orexin receptor-2 (OX2R; 444 amino 

acids) (Sakurai et al., 1998; de Lecea et al., 1998; Peyron et al., 1998). Both receptors 

belong to the GPCR superfamily with seven transmembrane domains. In humans, OX1R 

and OX2R are located at chromosomes 1 and 6, respectively, and have 64% amino-acid 

identity with each other (Kukkonen et al., 2002). Analogously to orexin peptides, orexin 

receptors remain evolutionary preserved along vertebrate species. Particularly, OX2R is 

present in most vertebrate lineages, whereas OX1R is specific to mammalian species 

and evolved only during this latter lineage (Wong et al., 2011). An assay performed to 

determine the affinity of both orexin peptides towards the correspondent receptors 

demonstrated that OXA presented similar binding affinity for both receptor subtypes, 

whereas OXB is ~ 10-fold selective for the OX2R versus the OX1R (Sakurai et al., 1998). 

In addition, neither OX1R nor OX2R have significant affinity for any other neuropeptide, 

although they exert some structural similarities to other receptors (Holmqvist et al., 2001) 

(Figure 8). 

 

Figure 8. Schematic representation of the orexin peptides biosynthesis. 
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Orexin signalling is complex and can change depending on the cell type and environment 

(Kukkonen and Turunen, 2021). As explained before, OX1R and OX2R display the 

typical intracellular signalling through G-proteins, although only a few studies have 

focused on this coupling due to technical difficulties (Kukkonen and Leonard, 2014; 

Kukkonen, 2017). Several studies support that the major primary signalling transducer 

for orexin receptors is associated with Gq proteins. Nevertheless, this statement is based 

only on the original finding (Sakurai et al., 1998). Further investigation has also 

demonstrated a strong coupling to the Gq-mediated responses, consisting of a Ca2+ 

elevation and a phospholipase C (PLC) activation, thus supporting the original 

hypothesis (Johansson et al., 2007; Putula et al., 2014). In this vein, the G-protein 

families Gi/o and Gs have been implicated in the orexin signalling (Karteris et al., 2001; 

Kukkonen, 2016). Downstream signal pathways induce several molecular alterations in 

neuronal cells. For instance, a neuroexcitatory activity as a consequence of Ca2+ 

increase. This ion elevation is caused by extracellular Ca2+ entrance through the 

modulation of membrane ion channels, as well as Ca2+ release from intracellular vesicles 

(van den Pol et al., 1998; Eriksson et al., 2001). Also, gene expression is modified 

through the activation or inhibition of protein kinases, mainly including mitogen-activated 

protein kinases and protein kinase A (Selbach et al., 2010; Guo and Feng, 2012). Finally, 

arachidonic and phosphatidic acids are also synthesized via phospholipase A2 and D, 

respectively, downstream the orexin receptor activation (Turunen et al., 2010; Jäntti et 

al., 2012). These metabolites have a key role in the activation of different cation channels 

and protein kinases (Jang et al., 2012). The endocannabinoid 2-AG is also synthesized 

by diacylglycerol hydrolysis following orexin receptor activation (Turunen et al., 2012). 

As explained in section 1.1.2. Endocannabinoids, 2-AG is known to be a key regulator 

of neurotransmitters release and mediates several physiological effects of orexins (Haj-

Dahmane and Shen, 2005; Berrendero et al., 2018). 

Orexin receptors are also capable of making heteromeric complexes with other GPCRs, 

at least in recombinant systems (Wang et al., 2019; Raïch et al., 2022). It remains unclear 

whether this phenomenon happens physiologically. However, if this hypothesis is further 

confirmed, it might affect orexin signalling, trafficking and pharmacology. 

2.2. Neurobiological distribution of the orexin system 

Orexin neurons are localized restrictively in the LHA, as described before. Deciphering 

the projections emitted to other brain areas (i.e. outputs) is essential to elucidate the 

specific roles of orexins in neuronal and behavioural regulation (Figure 9). However, it is 
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also relevant to recognize afferent neurons that modulate the activity of the orexin system 

(i.e. inputs) by releasing either excitatory or inhibitory neurotransmitters onto orexin 

neurons (Li and de Lecea, 2020).  

A study performed with a tracing method of green fluorescent protein (GFP) fused with 

a nontoxic fragment of tetanus toxin that transfers the tracer in the retrograde direction 

(Maskos et al., 2002), identified the multiple brain regions which neurons directly make 

synapse onto orexin neurons (Sakurai et al., 2005a). This study points out the amygdala, 

basal forebrain, preoptic area, raphe nuclei, ventromedial, dorsomedial and 

paraventricular nucleus (PVN) in the hypothalamus, septum, infralimbic (IL) and 

prelimbic (PL) portions of the mPFC, NAc shell and bed nucleus of stria terminalis 

(BNST), as the main brain regions that modulate the activity of orexin neurons (Sakurai 

et al., 2005a). In general agreement with these results, a similar pattern of orexin afferent 

neurons was obtained in further studies by using different tracing techniques (Yoshida 

et al., 2006; Giardino et al., 2018; Saito et al., 2018). 

A few months after the orexin system discovery, Peyron and colleagues illustrated the 

distribution and relative density of orexin fibres in coronal slices of the rat brain atlas 

(Peyron et al., 1998). These results were confirmed by latter efforts (Nambu et al., 1999; 

Date et al., 1999; Mondal et al., 1999; Marcus et al., 2001), which highlighted a broad 

distribution of the orexin system throughout the whole brain (Figure 9). The different 

areas receiving orexin projections have been detailed in the next section, according to 

the most relevant function in which they have been involved. 

 

Figure 9. Schematic representation of the neurobiological distribution of the orexin system 

in the brain. AMY, amygdala; Arc, arcuate nucleus; BF, basal forebrain; BNST, bed nucleus of 

the stria terminalis; DR, dorsal raphe; HPC, hippocampus; IC, insular cortex; LHA, lateral 

hypothalamic area; LC, locus coeruleus; OX1R, orexin receptor-1; OX2R, orexin receptor-2; PVN, 

paraventricular nucleus in the hypothalamus; PVT, paraventricular thalamus; TMN, 

tuberomammillary nucleus; VP, ventral pallidum; VTA, ventral tegmental area. 
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2.3. Physiological functions in the CNS 

The orexin circuitry and receptor expression profile naturally associate this system with 

specific clusters of functional roles. These functions include sleep-wake cycle 

homeostasis, reward and motivation, stress resilience, feeding behaviour and 

metabolism, and cognition.  

2.3.1. Sleep-wake cycle homeostasis 

Sleep is defined as a physiological and reversible state of reduced responsiveness to 

external stimuli and relative inactivity, accompanied by a loss of consciousness. A 

considerable amount of evidence has established that sleep benefits the retention of 

memory, as sleep deprivation causes irreversible cognitive dysfunctions (Yang et al., 

2012; Hudson et al., 2020; Sabia et al., 2021). Additionally, recent studies have revealed 

direct and indirect associations between sleep and health risks, such as stroke, 

neurodegenerative, immunological, endocrine and mood disorders, among others (Liew 

and Aung, 2021).  

Orexin neurons in the LHA project to diverse wakefulness-related brain regions. The 

locus coeruleus (LC) receives the densest extrahypothalamic projections from 

orexinergic neurons (Peyron et al., 1998; Date et al., 1999), thus exerting a strong 

neuroexcitatory activity by releasing orexins, as well as glutamate (Henny et al., 2010). 

Such region presents abundant OX1R, whereas OX2R expression is lower (Hervieu et 

al., 2001; Marcus et al., 2001). Orexin projections also achieve serotonergic neurons of 

the raphe nuclei (Peyron et al., 1998), specifically those neurons localized in the dorsal 

raphe portion (Lee et al., 2005; Pollak Dorocic et al., 2014). Both orexin receptors are 

present in this area (Trivedi et al., 1998; Marcus et al., 2001), although OX2R has a more 

pronounced effect in depolarizing serotonergic neurons of the dorsal raphe (Soffin et al., 

2004). Orexin neurons from the LHA send abundant projections to the tuberomammillary 

nucleus (TMN) (Peyron et al., 1998), which synthesize histamine, a monoaminergic 

neurotransmitter classically related to sleep-wake cycle regulation (Ramesh et al., 2004; 

Chu et al., 2004). In that region, OXR2 is much more expressed than OX1R (Marcus et 

al., 2001; Eriksson et al., 2001), and the neuroexcitatory activity is exerted via direct 

effect of orexins and glutamate (Bayer et al., 2001; Eriksson et al., 2001), as well as an 

indirect inhibition of GABAergic projections to the TMN neurons upon dynorphin’s 

suppression (Eriksson et al., 2004). Acetylcholine is another key modulator of the sleep-

wake cycle, which neurons are primarily localized in an area at the front and bottom of 

the brain named basal forebrain (Woolf, 1991). This region includes several nuclei that 

receive abundant projections from the LHA (Peyron et al., 1998; Villano et al., 2017) and 

both OX1R and OX2R are equivalently expressed (Marcus et al., 2001). In particular, 
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cholinergic neurons of the basal forebrain are activated mainly via OX2R in brain 

preparations (Eggermann et al., 2001). The paraventricular thalamus (PVT) is also 

involved in the regulation of the sleep-wake cycle. Although this region expresses both 

orexin receptors (Marcus et al., 2001; Kirouac et al., 2005), OXA and OXB excite 

postsynaptic neurons in the PVT likely through the activation of OX2R (Ishibashi et al., 

2005). Orexins are co-released with dynorphins in these neurons, thus minimalizing 

orexin’s excitatory effect on PVT (Matzeu and Martin-Fardon, 2018). 

The first evidence associating the orexin system with the regulation of sleep-wake cycles 

was reported in 1999, by demonstrating that prepro-orexin or OX2R deficiencies caused 

narcolepsy in mice (Chemelli et al., 1999) and dogs (Lin et al., 1999), respectively. In 

agreement, post-mortem brains of narcoleptic patients showed a loss of orexin neurons 

(Peyron et al., 2000; Thannickal et al., 2000) and reduced orexin concentrations in the 

cerebrospinal fluid (CSF) of people with narcolepsy (Nishino et al., 2000). Subsequent 

experiments demonstrated that acute intracerebroventricular (icv) administration of OXA 

maintained wakefulness, suppressed sleep and avoided cataplectic attacks, in a murine 

model of narcolepsy (Mieda et al., 2004). Contrary, administration of the OX2R 

antagonist MK1064 promoted non-rapid eye movement (NREM) and REM sleep across 

different species (Gotter et al., 2016). 

Direct infusion of OXA into the nuclei that receive projections from orexin neurons 

including the LC (Bourgin et al., 2000), the TMM (Huang et al., 2001) or the basal 

forebrain (Thakkar et al., 2001) has also been reported to increase the duration of 

wakefulness and suppressed REM sleep. On the other hand, orexin neurons also receive 

projections from some nuclei involved in sleep-wake regulation. For example, "sleep-

active" neurons of the preoptic area of the hypothalamus contain the inhibitory 

neurotransmitter GABA and densely project to orexin neurons (Sakurai et al., 2005). 

Optogenetic stimulation of preoptic area fibres resulted in rapid inhibition of orexin 

neurons (Saito et al., 2013). On the contrary, orexin neurons are also innervated by 

cholinergic neurons in the basal forebrain, which have a positive influence on 

wakefulness. Overall, orexin neurons are inhibited by sleep-promoting neurons and 

activated by wake-promoting neurons (Shen et al., 2022). 

As detailed in section 2.4. Therapeutic agents targeting the orexin system, preclinical 

research has paved the road to the discovery and production of novel pharmacological 

treatments for sleep disorders. In this sense, orexin receptor antagonists have been 

developed as sleep-promoting agents for patients with insomnia disorder. Orexin 

agonists could also be developed to alleviate symptoms of narcolepsy and treat 
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excessive daytime sleepiness and/or hypersomnolence, given the destruction of orexin 

neurons observed in those patients (Black et al., 2017).  

2.3.2. Reward and motivation 

The rewarding system normally serves to guide our attention towards and consumption 

of natural rewards, which entail pleasurable feelings and ensure our survival. This 

physiological function might also lead to the consumption of drugs of abuse due to their 

overstated reinforcing properties that, in turn, elicits a dysregulation of the rewarding 

system. A commonly observed consequence from this overactivity is the onset of 

psychiatric disorders, such as substance use disorder (Volkow et al., 2019; Maldonado 

et al., 2021). 

The best characterized reward circuit in the CNS involves dopamine neurons in the VTA, 

which project to the NAc. This is a crucial pathway for the recognition of rewards in the 

environment and for initiating their consumption. However, dopaminergic neurons in the 

VTA also innervate other brain regions, including the amygdala, hippocampus, and 

frontal and limbic cortices, among other areas (Russo and Nestler, 2013). These regions 

are inter-connected in complex ways and receive several afferent neurons from different 

neurotransmission systems, which regulate their activity. One of these modulators is the 

orexin system. Immunohistochemical studies have reported dense orexin projections 

from the LHA to the VTA, in addition to a large distribution of both OX1R and OX2R in 

this region in a similar proportion (Peyron et al., 1998; Marcus et al., 2001). Indeed, direct 

administration of OXA and OXB into the VTA increased dopamine release in mPFC and 

NAc, thus highlighting the VTA as an important site of action for orexins to mediate 

rewarding effects (Vittoz et al., 2008). Orexins are able to induce an increased cell firing 

of dopamine neurons by direct depolarization, as well as an indirect effect through the 

interaction with other neurotransmitters within the VTA (Korotkova et al., 2003; Borgland 

et al., 2008). Another reward-related structure is the ventral pallidum, which neurons 

receive dense projections from orexin neurons with the particularity that only OX1R is 

expressed in this structure (Peyron et al., 1998; Ch’ng and Lawrence, 2015). A study 

published by Ji and colleagues demonstrated that orexins directly activate GABAergic 

neurons in the ventral pallidum to achieve higher hedonic tone and prevent depressive-

like behaviour (Ji et al., 2019). Finally, the insular cortex, a less understood region in 

brain functional knowledge that mainly expresses OX1R, has also been related to 

rewarding properties in addiction experiments (Marcus et al., 2001; Hollander et al., 

2008). 
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Rewarding properties of several compounds are regulated by the orexin system. Hence, 

orexins induce food intake not only as a consequence of metabolic requirements, but 

also as a physiological response to hedonic feeding (Saper et al., 2002), as explained 

below (see section 2.3.4. Feeding behaviour and metabolism). Similarly, orexins also 

modulate the addictive-associated behaviour caused by the most common consumed 

drugs of abuse, including cocaine, opioids, alcohol, nicotine, and cannabinoids 

(McGregor et al., 2021). For instance, OX1R antagonism decreased operant responding 

for cocaine in discrete trials with limited infusions per hour (España et al., 2010), in 

protocols with extended access to cocaine (Schmeichel et al., 2017), and in rats that 

displayed an addicted-like phenotype (James et al., 2019). Conversely, infusion of OXA 

or OXB in the PVT increased alcohol intake in an intermittent access procedure, an effect 

that was reversed by OX2R blockade (Barson et al., 2015, 2017). These are only a few 

examples demonstrating the involvement of the orexin system in the neural mechanisms 

mediating the rewarding and addictive properties of several drugs of abuse. For that 

reason, normalizing the orexin function with novel therapeutic approaches may offer the 

opportunity to improve the clinical management of drug addiction (Mehr et al., 2021). 

Indeed, the National Institute of Drug Abuse has recognized orexin antagonist and/or 

negative allosteric modulators among their list of priority targets for new medications to 

cope with the opioid crisis (Rasmussen et al., 2019). 

2.3.3. Stress resilience 

Stress can be defined as the state of disturbed homeostasis that occurs in case of real 

or perceived threat (Misiak et al., 2020). This physiological reaction may induce a 

maladaptive response when it is repeatedly presented over a considerable period of 

time. Convincing evidence indicates that stress has a key role in the aetiology of several 

mental diseases, including mood (i.e., major depressive and bipolar disorders), anxiety, 

and fear-related disorders (i.e., posttraumatic stress disorder (PTSD), panic, and 

phobias) (Smoller, 2016; Barbano et al., 2019). The orexin system is a major modulator 

of the stress response, since the most relevant stress-sensitive brain areas receive 

dense hypothalamic projections from orexin neurons (Peyron et al., 1998). On the one 

hand, the amygdala involves diverse nuclei that mainly express OX1R, except for the 

lateral amygdala in which OX2R is much more abundant than OX1R (Marcus et al., 

2001). Importantly, the amygdala also receives indirect orexin projections through 

noradrenergic neurons from the LC (Sears et al., 2013; Soya et al., 2017) and 

serotonergic neurons from the dorsal raphe (Hasegawa et al., 2017). Another important 

region regulating stress is the PVN, which presents an abundant expression of both 
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orexin receptors, although OX2R has a prominent role in this nucleus (Marcus et al., 

2001; Cluderay et al., 2002).  

Clinical and preclinical studies clearly differentiate between acute and repeated stress, 

given the pathological consequences resulting from the second type. Indeed, several 

studies have described the involvement of the orexin system in acute stress reactions, 

whereas less is known about the role of orexins in chronic stress. 

2.3.3.1. Acute stress 

The acute stress response is a spontaneous and natural reaction against potential 

threats and unpredictable events. It prepares the body to cope in a survival situation by 

increasing arousal through the hypothalamic-pituitary-adrenal (HPA) axis activation, 

among other mechanisms (Sargin, 2019). Central administration of orexins induces an 

acute stress reaction which produces grooming, burrowing and face washing in rats  (Ida 

et al., 1999). Accordingly, orexin deficient mice presented the opposite effect by reducing 

the activity in a resident-intruder paradigm, thus indicating a diminished behavioural 

response to stress (Kayaba et al., 2003). An interesting study recently published by 

Yaeger and co-workers indicates that both antagonism or genetic knockdown of OX1R 

in the basolateral amygdala (BLA) switches the behavioural expression in the Stress 

Alternatives Model. In this test, smaller mice are placed with a larger novel aggressor 

and given the opportunity to exit through escape tunnels. Blockade or downregulation of 

OX1R induced a stress-resilient response (i.e. escape), in comparison to the control mice 

that presented a stress-sensitive response (i.e. stay) (Yaeger et al., 2022). Reciprocally, 

acute stress augments orexin neuron activity. In this sense, a single restraint in rats 

increased the percentage of active orexin neurons marked with cFos, an indicator of 

neuronal activity (Grafe et al., 2017). 

The molecular basis underlying these alterations mainly relies on the HPA axis and the 

sympathetic nervous system, which are essential components to initiate stress-coping 

mechanisms. On the one hand, orexins favour HPA axis response to acute stress at all 

levels, as well as HPA activation promotes orexin activity. For example, icv infusion of 

orexins activates corticotropin-releasing factor (CRF)-expressing neurons and increases 

downstream HPA hormones: adrenocorticotropic hormone (ACTH) and corticosterone 

(Kuru et al., 2000; Al-Barazanji et al., 2001). Moreover, ACTH increased levels are 

mediated by OX1R and OX2R in the pituitary (Date et al., 2000). Orexins also act 

peripherally on the adrenal glands, thus stimulating glucocorticoid secretion (Mazzocchi 

et al., 2001). In the opposite direction, activation of the HPA axis by CRF administration 

increases orexin neuron activity, as revealed by electrophysiological data of mice slices 
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(Winsky-Sommerer et al., 2004). On the other hand, sympathetic nervous system 

activation is acutely induced by orexins. Sympathetic activity signs, such as blood 

pressure, heart rate, and renal sympathetic nerve activity are significantly increased by 

orexin central administration in rats (Shirasaka et al., 1999). Accordingly, orexin knockout 

(KO) mice exhibited attenuated heart rate and blood pressure in the resident-intruder 

test (Kayaba et al., 2003). 

2.3.3.2. Repeated stress 

The role of the orexin system on the modulation of repeated stress response remains to 

be clearly defined. While acute stress positively and reciprocally correlates with orexin 

activation, the role of the orexin system in repeated stress depends on several factors 

such as the intensity, type, and duration of the stressor. Also, the ability to habituate to 

the stressful stimuli is a key element to determine the activity of the orexin system. For 

example, repeated restraint in male rats for five days (30 min per day) decreased both 

OXA levels in the CSF and orexin neuronal activation (Grafe et al., 2017). Conversely, 

14 days of repeated restraint (2 h per day) in male mice produced the opposite effect, an 

increase of orexin mRNA transcripts in the BLA (Kim et al., 2015). Taking this 

comparison into account, a stronger-intensity and longer-duration stressor may probably 

cause a lack of habituation which would explain the increased orexin activity. In another 

study, unpredictable chronic mild stress (UCMS; different stressors randomly presented) 

in male mice produced a significant activation of orexin neurons in the dorsomedial and 

perifornical hypothalamic area (Nollet et al., 2011). Therefore, variations in the type of 

stressor prevent habituation which, in turn, increases orexin activity. In conclusion, the 

intensity, duration, and type of stressor stimuli are critical parameters to induce or 

prevent habituation in a repeated stress paradigm, which seems to negatively correlate 

with orexin activity. 

A dysregulation of the orexin system has been observed in several stress-related 

neuropsychiatric illnesses, including mood, anxiety, and fear-related disorders. In this 

sense, mood disorders are linked to a hypofunction of the orexin system, although 

several studies on the opposite direction have also been published. For instance, house 

isolation, a commonly used stressor, induced anhedonia-like symptoms in the resident-

intruder social defeat paradigm. These animals displayed reduced levels of both orexin 

peptides in the hypothalamus, mPFC and VTA (Nocjar et al., 2012). Another study 

revealed that OXA administration exerted antidepressant-like effect in mice that 

underwent chronic social defeat stress (Chung et al., 2014). In contrast, UCMS-induced 

depressive-like behaviour in male mice showed increased orexin neuron activity. In the 



THE OREXIN/HYPOCRETIN SYSTEM 

29 
29 

same study, chronic administration of the DORA almorexant promoted antidepressant-

like effects in the tail suspension test (Nollet et al., 2011). In human studies, plasma OXA 

levels of both unipolar and bipolar depressive patients are decreased (Ünler et al., 2022), 

as well as CSF levels of OXA in depressive suicidal patients (Brundin et al., 2007). 

However, another clinical study has shown increased OXA plasma levels in major 

deressive and bipolar disorder patients (Li et al., 2021).  

Clearer results have been obtained in studies evaluating anxiety and fear-related 

behaviours. A key study by Suzuki and co-workers reported an anxiety-like behaviour in 

the elevated plus maze and light-dark tests after central administration of OXA in male 

mice and rats (Suzuki et al., 2005). In the same vein, cat odor-induced anxiety in rats 

was attenuated by the OX1R antagonist SB-334867. This anxiogenic effect induced an 

overactivation of some stress-related brain areas, such as the PVN and dorsal 

premammilary nucleus, which was reduced by OX1R blockade (Vanderhaven et al., 

2015). A clinical investigation with adolescents aged 12-18 years indicated that serum 

OXA levels were significantly higher in adolescents with anxiety disorders in comparison 

with healthy individuals (Akça et al., 2020). Similarly, a strong positive correlation has 

been extensively reported between the severity of fear-related diseases and the orexin 

system activation. For example, icv infusion of OXA impaired fear extinction in mice in 

both contextual and cued tests, while the OX1R antagonist SB-334867 facilitated this 

response (Flores et al., 2014). In agreement, the activity of orexin neurons was 

negatively correlated with successful extinction of conditioned fear in rats (Sharko et al., 

2017). The underlying mechanisms of the orexin system modulating fear extinction have 

been widely addressed in the present thesis (Article 2). 

2.3.4. Feeding behaviour and metabolism 

Orexins were originally known to modulate feeding behaviour since central 

administration in rats induced food intake (Sakurai et al., 1998). Further research has 

replicated this effect in different animal species, even in zebrafish (Yokobori et al., 2011). 

The main orexin projections-receiving structure involved in feeding and body-weight 

regulation is the arcuate nucleus of the hypothalamus, which neurons mainly express 

OX2R (Marcus et al., 2001). Indeed, microinjection of OXA into such region produced a 

significant activation of neuropeptide Y-expressing neurons, which reciprocally connect 

with LHA orexin neurons (Muroya et al., 2004; Fu et al., 2004). Also, BNST modulates 

feeding behaviour, among many other functions, like reward and arousal. This region 

receives dense projections from the LHA and both orexin receptors are expressed, 

although OX1R is more prominent (Peyron et al., 1998; Marcus et al., 2001).  
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Preclinical studies have made important progress investigating the role of the orexin 

system in the regulation of feeding behaviour and metabolic processes. In this sense, an 

induced hypofunction of the orexin system by OX1R antagonism or anti-orexin antibody 

attenuated food consumption (Haynes et al., 2000; Yamada et al., 2000). Given the key 

role of the orexin system in reward and motivation, orexins also stimulate hedonic 

feeding. Hence, chronic palatable food exposure activated orexin neurons by enhancing 

orexin signalling to several brain output areas in rodents. In mice exposed to a high-fat 

diet, changes in orexin neuronal activity have been found (Horvath and Gao, 2005) and 

different studies report increased prepro-orexin mRNA levels in rats and monkeys 

exposed to a high-fat diet also during early life (Beck et al., 2006; True et al., 2018). 

Additionally, OX1R antagonism not only altered operant seeking behaviour for standard 

food in food-restricted mice (Sharf et al., 2010), but also reduced both motivational and 

primary reinforcement in rats trained to seek for high-palatable food, even under satiation 

(Choi et al., 2010). These findings support the hypothesis that the orexin system is 

involved in compulsive eating, food-seeking behaviour, and food craving associated with 

the failure of homeostatic control of food consumption (Pich and Melotto, 2014). For that 

reason, diverse clinical and preclinical studies have reported orexin implications in the 

psychopathology and treatment of eating disorders, such as bulimia nervosa, anorexia 

nervosa, and binge eating disorder (Janas-Kozik et al., 2011; Piccoli et al., 2012; 

Sauchelli et al., 2016). 

The orexin system also monitors humoral and neural indicators of energy balance. 

Indeed, activity of orexinergic cells is inhibited by increased levels of glucose and leptin, 

a hormone mainly released from the adipose tissue which attenuates food consumption 

and increases body energy expenditure (Yamanaka et al., 2003; Burdakov et al., 2005). 

Conversely, a hypoglycaemic state or reduced levels of ghrelin, a gastric-derived 

hormone that increases the sensation of hunger, activate orexin neurons in the LHA 

(Briski and Sylvester, 2001; Toshinai et al., 2003). In accordance with these results, 

different studies have reported a significant increase of prepro-orexin and orexin 

receptors mRNA levels after fasting in rats (Cai et al., 1999; Lu et al., 2000). Therefore, 

orexin signalling is modulated according to the energetic requirements, to achieve a 

proper metabolic response. 

2.3.5. Cognition 

Recent research has determined a role for orexins in cognitive processes, in line with 

orexin projections and expression of both receptors in cognitive-related brain areas, 

essentially the hippocampus. This complex structure expresses both OX1R, mainly in 
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the dentate gyrus and CA1, and OX2R in CA3 (Elahdadi Salmani et al., 2022). Also, 

medial and lateral septum play a secondary role in cognitive processes, thus presenting 

considerable levels of OX2R (Marcus et al., 2001). Therefore, preclinical studies with 

mice have demonstrated an involvement of the orexin system in hippocampal-dependent 

social and spatial memory (Yang et al., 2013; Aitta-aho et al., 2016; Mavanji et al., 2017), 

as well as a regulatory role in cognitive flexibility, in a sex-specific manner (Durairaja and 

Fendt, 2021). Moreover, intranasal OXA administration improved age-related cognitive 

dysfunctions in a rodent model of aging (Calva et al., 2020). These data reveal the 

potential benefits of targeting the orexin system for cognitive-related disorders. 

Neurodegenerative diseases presenting severe cognitive disruption, such as AD or PD, 

have been associated with orexin dysregulations. Some reports addressing AD showed 

increased CSF orexin levels (Liguori et al., 2014; Gabelle et al., 2017), whereas others 

sustain that orexin levels remain within the normal range or below (Fronczek et al., 2012; 

Slats et al., 2012). However, normalizing orexin levels through the activation of 

cholinergic neurons, which are critical for cognitive function and remain degenerated in 

AD (Shekari and Fahnestock, 2021), improved attentional processing and ameliorated 

cognitive decline (Zajo et al., 2016; Erichsen et al., 2021). Another mechanism that 

partially explains cognitive deficiencies in AD are sleep disturbances (Friedman et al., 

2007; Liguori et al., 2016). Consistently, knocking out the orexin gene in a transgenic AD 

mouse model decreased the formation of Aβ plaques and attenuated sleep 

fragmentation, whereas rescuing orexinergic neurons increased wakefulness and 

induced Aβ accumulation (Roh et al., 2014). 

Patients with PD showed less orexin immunoreactive neurons compared to matched 

controls (Fronczek et al., 2007; Thannickal et al., 2007). Further research confirmed that 

orexin levels were inversely correlated with disease severity and progression, as well as 

with cognitive dysfunction (Asai et al., 2009; Huang et al., 2021). Indeed, preclinical 

studies have used transgenic mouse models of PD, such as A53T mice, which displays 

early social cognitive alterations and hippocampus-dependent memory impairment 

(Paumier et al., 2013). Chemogenetic activation of orexin neurons reversed alterations 

in sociability in this mouse PD model, as well as spatial and object recognition memory 

(Stanojlovic et al., 2019). Thus, loss of orexin neurons and hypofunctional orexinergic 

transmission occur in PD, contributing to the cognitive impairments of the disease. 

Orexin replacement therapy could potentially attenuate cognitive clinical manifestations 

of PD and delay disease progression. 
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2.4. Therapeutic agents targeting the orexin system 

Since its discovery, the orexin system has become one of the most profoundly studied 

neuroregulatory systems. Cumulative research in this field has given rise to a wide 

variety of physiological functions in which orexins are described to be involved, as 

mentioned above. For that reason, pharmaceutical companies have been encouraged 

to develop more than 140 clinical trials to date, by testing diverse orexin-targeting 

candidates for different pathological conditions. Sleep/wake disorders are the most 

studied, although many others like substance use disorders, mood and anxiety disorders, 

and cognitive impairments are also addressed by modulating the orexin system. These 

efforts entail an important economic burden, thus highlighting the increased expectation 

for the orexin system to become a suitable target for many non-well treated disorders 

such as insomnia and narcolepsy. 

2.4.1. Orexin receptor antagonists 

At least, 50 OX1R and/or OX2R selective antagonists have been characterized (Perrey 

and Zhang, 2020). They are broadly divided into single orexin receptor antagonists 

(SORAs) and dual orexin receptor antagonists (DORAs). 

The first SORA was SB-334867, an OX1R-selective antagonist initially tested for sleep 

and feeding dysregulations (Rodgers et al., 2001; Smith et al., 2003). Chronic insomnia 

is defined as difficulty initiating and/or maintaining sleep on at least 3 nights per week for 

at least 3 months (Ohayon, 2002). Currently, benzodiazepines are the most commonly 

prescribed drugs for the treatment of this condition (Riemann et al., 2017). These 

compounds are positive allosteric modulators of the GABAA receptors, thus inhibiting 

neuronal activity. Despite their efficacy, benzodiazepines present important side effects 

such as residual sedation throughout the day, memory impairment, and abuse and 

physical dependence (Edinoff et al., 2021). As orexins play an important role in the 

maintenance of arousal, orexin receptor antagonism has been purposed as a novel 

alternative strategy to treat insomnia. However, SB-334867 failed to obtain convincing 

results, as one of the main issues of OX1R antagonism is the nonselective binding to 

other receptors like adenosine and serotonin receptors. OX2R antagonists such as MK-

1064 present major specificity than OX1R antagonists (Roecker et al., 2014). 

Nevertheless, effectiveness of SORAs is substantially decreased when compared with 

DORAs. For that reason, most of the current clinical trials addressing the orexin system 

are based on the development of DORAs. Daridorexant and Suvorexant, both DORAs, 

are the only orexin-targeting drugs recently approved by the European Medicines 

Agency (EMA) and the Food and Drug Administration (FDA) in Europe and the United 
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States, respectively. Lamborexant, another DORA, has been licensed only by the FDA 

(Subramanian and Ravichandran, 2022). These drugs are currently used to treat sleep 

latency and sleep maintenance in insomnia cases. 

Recent and increasing evidence suggests that orexins could also play an important role 

in the pathophysiology of several tumors, as orexin receptors have been detected in 

different types of neoplasms. Specially, in gastrointestinal tumors, but also cervix, 

prostate, kidney, adipose tissue, testicles, and hematological malignances (e.g., 

lymphomas). A positive correlation has been found between orexin receptors and the 

progression of cancer, thus indicating that orexin antagonism might have a potential 

therapeutic effect (Couvineau et al., 2018, 2022; Alain et al., 2021). 

2.4.2. Orexin receptor agonists 

Many orexin receptor antagonists have been so far synthesized and, conversely, only a 

few non-peptide orexin receptor agonists are currently available (Nagahara et al., 2015; 

Hong et al., 2021). Orexin receptor agonism has emerged as a promising therapeutic 

avenue for the treatment of diverse pathologies, including narcolepsy and other disorders 

with excessive daytime sleepiness. Currently, these pathologies are mainly treated with 

systemic psychostimulants like modafinil or dexamphetamine, which produce severe 

side effects such as arrhythmias, high blood pressure, insomnia, and weight loss, among 

others. An interesting strategy for such disorders is the orexin replacement therapy. In 

human studies, OXA has been intranasal administered to reverse orexin neurons 

deficiency, thus inducing an arousal state. However, these therapies have not 

demonstrated efficacy, most likely due to insufficient brain exposure. Other 

administration routes already studied in animal models of narcolepsy, such as intrathecal 

injection, may be a viable option which requires further investigation in humans. On the 

other hand, non-peptide low molecular weight, bioavailable and brain penetrant OX2R 

agonists are appealing due to the main role of OX2R in wake-promoting states. 

Promising candidates like TAK-925 are currently tested in early phases of clinical trials 

with healthy volunteers and individuals with narcolepsy (Evans et al., 2022). An 

increased wakefulness with the absence of adverse effects would strongly convert this 

candidate into a suitable therapy to treat narcolepsy and other excessive daytime 

sleepiness disorders. 

2.5. Interaction between the orexin and the endocannabinoid systems 

The orexin and the endocannabinoid systems are concomitantly expressed in diverse 

regions throughout the CNS (e.g., amygdala, hypothalamus, raphe nuclei, LC), thus 

sharing physiological functions (Maldonado et al., 2006; Wittmann et al., 2007; Tsujino 
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and Sakurai, 2009; Häring et al., 2015). In accordance with the overlapping distribution 

in concrete brain areas, electron microscopy studies with Chinese hamster ovary cells 

revealed the presence of CB1R-OX1R heterodimers (Hilairet et al., 2003), which was 

further confirmed by in-vitro experiments in different cell types (Ellis et al., 2006; Ward et 

al., 2011), and in ex-vivo studies with embryonic mouse hypothalamic neurons 

(Imperatore et al., 2016). Likewise, OX2R was demonstrated to be capable of forming 

constitutive heteromeric complexes with CB1R, by using a bioluminescence energy 

transfer (BRET) assay (Jäntti et al., 2014). A recent investigation with microglial cells 

from animal models of AD has also shown the ability of CB2R to interact with OX1R in 

order to generate functional heterodimers (Raïch et al., 2022). Hence, heteromerization 

of orexin with cannabinoid receptors might give rise to the optimization of current and 

new pharmacological strategies. 

Besides receptors coupling, the orexin and the endocannabinoid systems are tightly 

linked through the downstream molecular signalling pathway after the activation of 

GPCR orexin receptors (Berrendero et al., 2018). Specifically, Gq-dependent activation 

of PLC produces diacylglycerol, which in turn is used as a substrate by the membrane-

associated enzyme DAGL to produce the endocannabinoid 2-AG (Turunen et al., 2012). 

A recent study with obese and high-fat content diet mice observed increased OXA and 

2-AG levels in these groups, compared with control mice. Accordingly, blockade of OX1R 

with SB-334867 diminished 2-AG levels, thus improving biochemical alterations 

associated with the obese phenotype (Forte et al., 2021). A similar discovery associating 

the orexin and the endocannabinoid systems is the role that the orexin system plays in 

the regulation of compulsive reward-seeking behaviour in obese mice, thus modulating 

dopaminergic transmission through 2-AG/CB1R-mediated retrograde signalling (Tunisi 

et al., 2021). These biochemical interactions entail a cross-modulation of the main 

functions exerted by the orexin and the endocannabinoid systems, as detailed 

hereunder.  

A growing body of evidence indicates a functional cross-talk between the orexin and the 

endocannabinoid systems. In this respect, the endocannabinoid system has been shown 

to be involved in the effects of orexins, mainly in food intake and energy balance, 

rewarding and motivation, and nociception (Berrendero et al., 2018). For that purpose, 

2-AG can retrogradely modulate the release of neurotransmitters after the activation of 

orexin receptors (PLC-DAGL pathway), as previously explained. Moreover, CB1R 

located in presynaptic terminals might also regulate neurotransmission release that 

further activates/inhibits orexinergic neurons. For instance, an interesting study 
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demonstrated that orexigenic effect induced by OXA was blocked through the peripheral 

administration of the CB1R antagonist rimonabant (Crespo et al., 2008). The 

endocannabinoid system might regulate food intake by modulating orexin activity, since 

administration of the CB1R inverse agonist AM251 decreased OXA immunoreactivity in 

the hypothalamus, and significantly reduced food intake (Merroun et al., 2015). 

Concerning nociception, a key study revealed that OX1R activation in the periaqueductal 

gray (PAG; a midbrain region crucial for initiating descending pain inhibition) slices 

increased 2-AG synthesis, thus inhibiting GABAergic tone, and increasing PAG neuronal 

activity (Ho et al., 2011). Finally, a comprehensive study with male mice demonstrated a 

common molecular mechanism between the orexin and the endocannabinoid systems 

in drug addiction. In this case, stress-induced cocaine relapse entailed a clear activation 

of orexin neurons in the LH, and increased OXA levels in the VTA. Consequently, 2-AG 

was synthesized via PLC-DAGL pathway, and retrogradely inhibited GABA release by 

CB1R activation. As a result, inhibition of the inhibitory tone evoked an overactivation of 

VTA dopaminergic neurons, thus increasing rewarding properties and the subsequent 

cocaine relapse (Tung et al., 2016). These are only a few examples of the increasing 

evidence demonstrating a biochemical and functional interaction between the 

endocannabinoid and the orexin systems (Figure 10). However, this interaction remains 

to be elucidated in the case of fear behaviour, thus becoming one of the main objectives 

in the present thesis (Article 2). 

 

Figure 10. Endocannabinoid and orexin systems molecular interactions. (Adapted from 

Berrendero et al, 2018). 
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3. FEAR RESPONSE 

Fear entails an evolutionary-preserved emotional response, which allows individuals to 

recognise threatening situations in order to avoid or reduce damage and ensure its 

survival. This defensive response is present in many animal species, thus highlighting 

the crucial relevance of coping with dangerous environments (Tovote et al., 2015). A 

group of behavioural, hormonal, autonomic and physiological reactions underly such 

response to properly react against potential threats. For instance, the behavioural natural 

response to fear in animal models is usually referred to as freezing behaviour, a 

measurable parameter in the Pavloavian fear conditioning paradigm consisting of a 

complete absence of movement, except for breathing (Blanchard and Blanchard, 2008; 

Flores et al., 2014). Moreover, other parameters have also been related to fear 

behaviour, such as the startle response, which is significantly increased under fear 

dysregulations in preclinical and human studies (Daldrup et al., 2015; Li et al., 2022). 

Another profoundly described mechanism is the HPA axis overactivity and the 

subsequent upregulation of its components (e.g., CRF receptors), which has been 

described as a consequence of fear activation in both animal models and humans 

(Heitland et al., 2016; Dunlop and Wong, 2019). These are some examples of the wide 

variety of underlying processes activated under threating conditions that evoke a fear 

response. 

Conceptually, fear can be classified as innate or learned, depending on the stimuli nature 

that triggers the aversive behaviour. Innate fear is a nonacquired response, which is 

natural to each animal species. Examples of innate fears include heights, fast 

approaching objects, pain or predators, among others. Avoid predatory detection is 

decisive for most animal species survival, although such threat is not common in 

humans. Analogously, we are usually challenged by social hazards like angry or fearful 

facial expressions. On the other hand, learned fears are captured throughout life for the 

exposure to harmful and traumatic situations (Ren and Tao, 2020). 

Once fear is acquired and consolidated, diverse neural circuits and their molecular 

mediators are activated to retain such emotional memory and avoid this threat in the 

future. However, a dysregulation of aversive memories may lead to detrimental effects, 

such as the inability to extinguish fear memories and the persistent somatization of this 

response. These pathological consequences are experimentally addressed by using 

different paradigms in humans and animal models, thus identifying new potential targets 

to develop accurate and effective treatments for these neuropsychiatric disorders.  
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3.1. Clinical classification of fear-related disorders 

Fear memories have been found to be pathologically retained in tow different cluster of 

psychiatric diseases in the DSM-5: trauma- and stressor-related disorders, and anxiety 

disorders (Figure 12). The first group includes mental illnesses in which diagnostic 

criterion explicitly requires exposure to an extreme stressor, such as sexual violence, 

severe injury, or life-threatening situations, by way of direct confrontation or witnessing 

(American Psychiatric Association, 2013). More Specifically, PTSD is a frequent 

psychopathology with a considerable lifetime prevalence (~10%) that has been 

recurrently addressed in basic and clinical studies. This mental disorder entails a 

temporary difficulty to accurately differentiate between safety and danger, and a frequent 

struggle to suppress fear in the presence of safety cues (Friedman et al., 2011; 

Williamson et al., 2021). Symptoms must persist at least one month (otherwise, it is 

considered acute stress disorder) and are classified in four different clusters: intrusive 

memories, avoidance of distressing memories, disturbed emotional states, and 

alterations of arousal and reactivity (Jorge, 2015) (Figure 11A). The presence of these 

symptoms is variable among individuals with PTSD. However, they end up causing a 

predominant inability of the daily tasks, (i.e., social and occupational functioning) and a 

comorbidity with other diseases, such as sleep disturbances, cardiovascular alterations, 

and substance use disorders, among others (Miller et al., 2017; Back and Jones, 2018; 

Kondev et al., 2021; O’Donnell et al., 2021) (Figure 11B). 

 

Figure 11. Clinical traits of posttraumatic stress disorder. (A) Venn diagram illustrating the 4 

main clusters of symptoms and the interactions among them. (B) Common pathologies 

associated to posttraumatic stress disorder. 
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Presenting similar clinical traits with the previous group of psychiatric diseases, anxiety 

disorders share features of excessive fear and anxiety, and related behavioural 

disturbances (Figure 12). Anxiety can be defined as the anticipation of future threat, 

characterized by a vigilance preparation state to detect future danger, and cautious or 

avoidant behaviour. However, some of the disorders listed in this group present fearful 

states: phobias (specific phobia, social phobia and agoraphobia) and panic disorders 

(American Psychiatric Association, 2013). Phobias are characterized by an excessive 

fear to an object or situation for more than six months, which impossibility to avoid it 

cause significant distress, tachypnoea, dizziness and feelings of pain, among many other 

symptoms. Specific phobias involve an oversized fear to particular objects or situations, 

like spiders, snakes, needles, blood or flying (American Psychiatric Association, 2013; 

Eaton et al., 2018). Individuals with social phobia, also termed as social anxiety disorder, 

present marked fear to be judged by other people when interacting with them, being 

observed or performing in front of others (American Psychiatric Association, 2013; 

Leichsenring and Leweke, 2017). Finally, agoraphobia is related to a perceived difficulty 

or inability to escape from situations, such as public transportation, open or enclosed 

spaces, a surrounding crowd and being outside of the home alone (American Psychiatric 

Association, 2013; Asmundson et al., 2014). On the other hand, panic disorder is defined 

by recurrent and unexpected panic attacks that occur without a clear reason. These 

attacks are characterized by the rapid onset of severe fear with at least four of the 

physical and psychological symptoms listed in the DSM-5, including palpitations, 

sweating, trembling and chest pain, among others (American Psychiatric Association, 

2013; Locke et al., 2015).  

In summary, excessive fear is a core process in PTSD, phobias and panic (Figure 12), 

although other psychiatric disorders may also present episodes of fear dysregulation at 

some stage. Despite this common clinical feature, the aetiology, diagnostic and 

symptoms are significantly different between them (American Psychiatric Association, 

2013). However, an effective pharmacological treatment for these fear-based 

psychopathologies is still distressingly underdeveloped. Symptomatic treatment (e.g., 

antidepressants or anxiolytics), in addition to psychotherapy and breathing exercises, 

are the only solution to attenuate the effects of these mental disorders (Kim et al., 2013; 

Charney et al., 2018; Garakani et al., 2020; Ziffra, 2021). Hence, elucidating the 

neurobiological mechanisms regulating fear response has become a must in 

neuroscience research to develop new and effective pharmacological strategies for fear-

related disorders, and constitutes the main objective of this thesis. 
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Figure 12. Clinical classification of trauma- and stressor-related disorders, and anxiety 

disorders based on DSM-5. Fear-related disorders are represented in red-coloured boxes.  
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3.2. Neurobiological substrates of fear learning and memory 

Understanding brain circuitry and the underlying molecular substrates regulating fear, 

allows us to find successful targets which modulation might become an effective 

treatment for fear-related disorders. As neural circuits responsible for defensive 

responses have been substantially preserved across evolution, most of the results and 

current knowledge is inferred from studies conducted with animal models, mainly rodent 

species (Namkung et al., 2022). 

3.2.1. Neuroanatomy of fear learning and memory 

Much research has been devoted to clearly elucidate the brain structures responsible for 

regulating fear behaviour. Although such a complex response requires many players, the 

three classical areas involved in fear learning and memory are the amygdala, the mPFC, 

and the hippocampus (Sierra-Mercado et al., 2011). In order to better clarify the role of 

fear circuitry, it is important to understand the fear conditioning test primarily used in 

preclinical research, as explained below (See section 3.3.1. Experimental approaches of 

fear evaluation). Briefly, classical (Pavlovian) fear conditioning is based on a strong 

associative learning process in which a neutral conditioned stimulus (CS) is paired with 

an aversive unconditioned stimulus (US). After this association (i.e., fear conditioning), 

re-exposure to CS alone entails a fear response that will progressively decrease, since 

the animal starts a dissociative learning by decoupling CS from US (i.e., fear extinction) 

(Pavlov, 1927; Estes and Skinner, 1941) (Figure 14). 

Fear learning or conditioning is mainly conducted by the amygdala. This multiple nuclei-

composed area receives several inputs carrying the CS and US information, thus 

integrating them and orchestrating a fear response through the different projections to 

central and peripheral structures. Specifically, BLA is a subdivision of this area that 

includes lateral, basal, and accessory basal nuclei (LeDoux, 2007). The lateral amygdala 

receives the auditory sensory information (i.e., CS) via two excitatory glutamatergic 

pathways: a direct projection from the medial geniculate nucleus and the adjacent 

posterior intralaminar nucleus of the thalamus, and an indirect pathway arising from the 

auditory thalamus that relays the information via the auditory cortex (McCabe et al., 

1993; Campeau and Davis, 1995; Luchkina and Bolshakov, 2019). While auditory 

information of a simple CS, such as a pure tone, might be conveyed with either pathway, 

complex auditory stimuli require at least the thalamo-cortico-amygdala pathway 

(Romanski and LeDoux, 1992; Boatman and Kim, 2006). Conversely, the hippocampus 

assembles the contextual inputs to generate a single representation of the whole 

environment, thus sending this information to the basal and accessory basal amygdala 
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(Maren and Holt, 2000; Bissiere et al., 2011; Chaaya et al., 2018). In a simpler way, the 

aversive information (i.e., US) is transmitted to the lateral amygdala from the 

somatosensory thalamus and somatosensory cortex (Shi and Cassell, 1998; Lanuza et 

al., 2004). However, some other mechanisms have been postulated depending on the 

stimulus nature (Shi and Davis, 1999; Orsini and Maren, 2012; Herry and Johansen, 

2014). Once both stimuli reach the mentioned nuclei of the amygdala, these signals 

converge into the BLA by generating lasting synaptic enhancements in the CS inputs 

(Romanski et al., 1993; Luchkina and Bolshakov, 2019). Also, projections from PL 

(dorsal anterior cingulate cortex in humans) to the BLA are necessary in this process to 

properly generate learned fear memories (Corcoran and Quirk, 2007; Chen et al., 2022). 

It is at this point that synaptic plasticity plays a key role to correctly encode conditioned 

fear memory as a result of the US-CS association (Luchkina and Bolshakov, 2019). 

Finally, somatosensory inputs received by the BLA are accurately processed within intra-

amygdala micro-circuits and transmitted to the central nucleus to further mediate 

physiological manifestations of fear through projections to the hypothalamus and 

downstream structures in the brainstem (Keifer et al., 2015; Tovote et al., 2015; Carli 

and Farabollini, 2022) (Figure 13). 

 

Figure 13. Diagram illustrating brain circuitry of fear-related learning. ACx, auditory cortex; 

BLA, basolateral amygdala; CeA, central nucleus of the amygdala; CS, conditioned stimulus; LA, 

lateral nucleus of the amygdala; MGm, medial geniculate nucleus; MGv, ventral geniculate 

nucleus; mPFC, medial prefrontal cortex; PIN, posterior intralaminar nucleus of the thalamus; US, 

unconditioned stimulus; vHPC, ventral hippocampus (Adapted from Luchkina and Bolshakov, 

2019). 
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Compared to fear learning or conditioning, fear extinction is the reverse process since it 

supresses the original aversive memory. The ability to correctly extinguish conditioned 

fear memories is essential for an adaptative control of fear response. Indeed, individuals 

with the aforementioned fear-related disorders show clear alterations on the underlying 

mechanisms regulating fear extinction, thus becoming a critical hallmark of such 

emotional disorders. The neural circuitry recruited for the extinction of fear memories is 

similar to that involved in fear learning or conditioning in both humans and rodents 

(Namkung et al., 2022). Accordingly, the amygdala presents a central role in this process 

by regulating the transition between states of high and low fear through two different 

populations of neurons in the basal nucleus. This region can rapidly switch the balance 

of activity between these opposite neuronal populations, depending on the afferent 

projections from the mPFC and the hippocampus (Herry et al., 2008). Interestingly, the 

mPFC is characterized by a profoundly studied ambivalence in the regulation of fear. 

Whereas PL is responsible for fear acquisition and expression, IL (ventromedial 

prefrontal cortex in humans) manages the extinction of aversive memories by 

suppressing signal flows within the amygdala and thereby decreasing fear response 

(Milad and Quirk, 2002; Milad et al., 2004; Bukalo et al., 2015). A key study performed 

by Sierra-Mercado and colleagues demonstrated that inactivation of IL with the GABAA 

receptor agonist muscimol, while preserving PL, impaired fear extinction in the auditory 

fear conditioning and extinction test, thus supporting the essential role of IL in the 

extinction of aversive memories (Sierra-Mercado et al., 2011). However, recent 

controversial research has pointed an indirect effect of PL in the extinction process via 

IL activation (Marek et al., 2018b). Analogous to fear conditioning, the hippocampus 

presents an important contribution to the extinction of fear memories, mainly those 

involving contextual cues (Sierra-Mercado et al., 2011; Lacagnina et al., 2019). During 

contextual fear extinction, the hippocampus prevents fear expression inhibiting output 

neurons in the central amygdala by direct activation of selected inhibitory neurons of the 

BLA (Farinelli et al., 2006), and indirectly activating IL neurons that projects to the BLA 

(Hugues et al., 2006). As a result, the central amygdala sends the final response to 

downstream structures in the brainstem, based on the afferent projections from the 

mPFC and the hippocampus. Moreover, inhibitory micro-circuits in this output region also 

act as a critical factor within the brain networks mediating fear extinction (Whittle et al., 

2021). 

3.2.2. Neurochemical substrates of fear learning and memory 

The multiple underlying mechanisms modulating fear response are specific to each 

structural level. Therefore, several neurotransmitter and neuromodulatory systems 
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regulate neural projections carrying the CS and US to the BLA, synaptic plasticity 

modulators allow the association between both stimuli, and outputs from the central 

amygdala activate peripheral mechanisms, mainly the glucocorticoid system. This 

machinery accurately orchestrates the correspondent fear behaviour. 

In the last few years, significant progress has been made to elucidate the global set of 

molecular systems modulating conditioned fear acquisition and extinction, in animal 

models. Interestingly, the endocannabinoid system plays an important role in stress 

recovery by regulating fear (Maldonado et al., 2020), thus becoming one of the main 

objectives of the current thesis. Hence, CB1R KO mice present clear deficiencies in 

short- and long-term extinction in auditory fear-conditioning tests, as well as rimonabant-

treated wild-type mice. This behaviour remains unaltered in the acquisition of fear 

memory (Marsicano et al., 2002). Conversely, fewer and non-conclusive studies have 

investigated the role of CB2R in fear extinction. In this sense, a study performed with 

CB2R KO mice presented no differences in fear learning or conditioning, compared to 

wild-type animals. In accordance with these results, CB2R blockade with AM630 had no 

effect in the same behavioural test (Li and Kim, 2016). However, the role of CB2R in the 

extinction of fear memories has not been studied yet. This gap in knowledge represents 

one of the main objectives widely addressed along the present thesis (Articles 2 and 3). 

Besides the endocannabinoid system, other neurotransmitter systems are known to 

modulate fear response, including dopamine, noradrenaline, serotonin, GABA and 

glutamate (Bukalo et al., 2014). Analogously, diverse neuropeptides have also been 

shown to exert an important role in fear behaviour. As previously detailed, the orexin 

system is deeply involved in both fear consolidation and extinction (Flores et al., 2014). 

Elucidating the underlying mechanisms regulating such response is one of the main 

goals of this thesis (Article 2). Furthermore, other neuropeptides regulate fear response, 

such as neuropeptide Y and S, which administration enhances the extinction of fear 

memories (Gutman et al., 2008; Jüngling et al., 2008). Altogether, final balance from the 

multiple mediators involved in the transmission of fear-related stimuli is decisive for the 

subsequent fear response. 

In order to achieve a suitable association between CS and US, and create fear 

memories, plastic changes among BLA neurons are required. To execute such 

remodelling process, the brain-derived neurotrophic factor (BDNF) is one of the main 

neurotrophins that promotes neuronal proliferation, synaptic plasticity, and long-term 

potentiation in the CNS (Kowiański et al., 2018). Hence, BDNF is described as an 

essential factor to properly encode fear memory acquisition and extinction, by interacting 

with tropomyosin-related kinase B (TrkB) receptor (Ou and Gean, 2006; Meis et al., 
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2020). In accordance with this theory, heterozygous BDNF mice exhibited impaired fear 

learning (Meis et al., 2018), as well as conditional knockout BDNF mice presented 

deficiencies in the extinction of fear memories (Heldt et al., 2007). On the other hand, 

intra-IL administration of recombinant BDNF facilitates cued-fear extinction in rats 

(Peters et al., 2010). Other neurotrophic factors have also been associated to fear 

response, such as the tropomyosin-related kinase C (TrkC). Consistently, mice 

overexpressing TrkC receptor presented a strong fear-related phenotype, with increased 

anxiety-like behaviour and panic reaction (Dierssen et al., 2006). In conclusion, key 

elements modulating neural plasticity in fear-related structures, mainly in the BLA, are 

required for an appropriate fear learning and extinction. 

Finally, to correctly generate fear response, efferent neurons from the central amygdala 

reach diverse downstream structures, including the hypothalamus, which initiates the 

HPA axis activation (Gray et al., 1989; Keifer et al., 2015). Briefly, HPA axis is commonly 

activated by stress-related stimuli, such as fear (Dunlop and Wong, 2019). Such 

neuroendocrine cascade begins with the release of CRF from the paraventricular 

nucleus of the hypothalamus. This hormone stimulates the secretion of ACTH in the 

anterior pituitary (also named adenohypophysis), that reaches the adrenal cortex and 

increases the production and release of cortisol in humans, or corticosterone in rodents 

(Spencer and Deak, 2017; Leistner and Menke, 2020). Among other functions, this 

steroid hormone facilitates active coping with threatening situations by binding to 

glucocorticoid and mineralocorticoid receptors, thus exerting both rapid, non-genomic 

and slow, genomic actions (de Kloet et al., 2008; de Quervain et al., 2017). It is also 

reported that glucocorticoid system enhances the consolidation and extinction of fear 

memories, since blockade of such receptors impair both behavioural processes, 

whereas agonism produces the opposite effect (Yang et al., 2006; Rodrigues et al., 2009; 

Blundell et al., 2011). For that reason, PTSD patients ameliorated fear-related symptoms 

with low doses of daily-administered cortisol (Aerni et al., 2004). Overall, peripheral 

systems are crucial elements for the execution of fear response, as well as for the 

regulation of fear learning and memories. 

3.3. Research on fear dysregulations 

Much of our understanding about the pathophysiology and the subsequent discovery of 

molecular targets for fear-related disorders is based on basic research. Hence, selecting 

the appropriate behavioural protocol to correctly assess fear response, and the most 

representative animal model that mimics the human disease, is crucial to increase our 

knowledge about such complex psychiatric disorders.  
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3.3.1. Experimental approaches of fear evaluation 

Diverse behavioural tasks are commonly used in preclinical research to evaluate fear 

response in different conditions. Most of the tests are based on classical (Pavlovian) 

conditioning, which entails an associative learning through the relation between a neutral 

CS and an aversive US (Pavlov, 1927; Estes and Skinner, 1941). Once this association 

is encoded, re-exposure to the CS alone induces a fear response that can be quantified 

in a variety of ways, the most common are the freezing behaviour and the startle 

response, measured in the fear conditioning and the fear-potentiated startle tests, 

respectively (Figure 14). 

The fear conditioning test has become part of the standard arsenal of behavioural tasks 

employed to measure fear response in animal models. First, animals are freely moving 

in a specific context to explore it and get habituated, until a neutral stimulus, such as a 

tone, light or the physical context surrounding the animal (CS), is repeatedly paired with 

an aversive stimulus, like an electric footshock (US). In order to achieve a fear memory 

consolidation, animals are usually housed in their cages for 24 hours. Then, they are 

placed in the same context or a different one with the CS alone. Given the CS-US 

association, subsequent re-exposure to CS induces a fear response that is measured by 

the freezing behaviour throughout the test. Since US is not presented anymore, animals 

start to dissociate both stimuli, thus decreasing the time animals spend freezing (Bouton 

and Bolles, 1980; Maren, 2001; Tovote et al., 2015). Conceptually, many authors 

describe this process as a new memory creation that is put before the fear memory 

(Myers and Davis, 2007; Quirk et al., 2010; Zhang et al., 2020). However, this aversive 

memory is not fully erased, as later exposure to CS still evokes a fear response, usually 

referred to as fear relapse (Yoshii et al., 2017; Lacagnina et al., 2019) (Figure 14A). 

Based on the same Pavlovian paradigm, fear-potentiated startle test is measured with 

the startle response amplitude in the presence of CS, compared to basal conditions (no 

CS) (Davis et al., 1993; Falls, 2002; Groenink et al., 2023). In this test, animals 

significantly increase their startle response under fear conditions and gradually decrease 

with repeated presentations of CS alone (Jones et al., 2005) (Figure 14B). Moreover, 

some other parameters can be recorded to physiologically determine the fear state 

during or after each test, such as heart rate and blood pressure (Davern and Head, 2011; 

Hsu et al., 2012; Liu et al., 2013). 
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Figure 14. Behavioural tasks measuring fear response in rodent models. (A) Pavlovian fear 

conditioning and extinction and (B) fear-potentiated startle test (Modified from Tovote et al, 2015). 

 

In contrast to the Pavlovian fear paradigm, operant conditioning (also named 

instrumental conditioning) can be used to assess another fear-related feature: threat 

avoidance. This test entails a behavioural pattern that is guided by the association of the 

stimuli with the subsequent punishment or reinforcement. Depending on the behavioural 

task, operant conditioning paradigm might entail the execution or suppression of the 

escape response during CS presentation in order to avoid deleterious consequences, in 

the active and passive avoidance test, respectively (Bolles, 1970; Jiao et al., 2015; 

LeDoux et al., 2017). 

In a less invasive manner, similar behavioural tests assessing fear response have been 

employed in humans. Indeed, we can naturally undergo classical fear conditioning in the 

presence of traumatic events. For example, in 2017 a terrorist attack took place in the 

centre of Barcelona, when an uncontrolled-driven van crashed into pedestrians for more 

than 500 meters. Some witnesses and injured people were reported to develop some 

kind of fear-related disorders, since an aversive stimulus (i.e., the terrorist attack) was 

automatically associated with other neutral stimuli (e.g., the street where it happened) 

(Querol et al., 2021). Such events can be translationally reflected in experimental 

research with humans, by using the classical fear conditioning paradigm and recording 
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different outcomes, such as fear-potentiated startle eye blink response, heart period, 

pupil size and skin conductance response (Staib et al., 2015; Khemka et al., 2017; Bach 

et al., 2018; Bach and Melinscak, 2020). Creating a new fear memory to dissociate both 

stimuli is essential to correctly extinguish aversive memories, as demonstrated by 

preclinical research. As a consequence, extinction-based exposure therapies are 

commonly used for the treatment of fear-related disorders in order to alleviate anxiogenic 

symptomatology (Gonçalves et al., 2012; McLean et al., 2022). 

3.3.2. Animal models of aberrant fear response 

There is a pressing need to develop translationally-relevant animal models of impaired 

fear response, given the alarming epidemiology of anxiety disorders, which one of the 

main features is an excessive and enduring fear (Craske et al., 2017). The main impaired 

fear-related trait underlying these psychiatric diseases is the extinction of fear memories. 

Hence, preclinical research has focused on the accurate generation of animal models 

(mainly rodents) with alterations in such features, by disrupting a neural circuit or region, 

exposure to environmental insults, genetic manipulations, or the combination of different 

alterations (Goode and Maren, 2014; Singewald and Holmes, 2019). These experimental 

approaches arguably have a considerable predictive validity to elucidate important 

aspects of the pathophysiology of fear-related disorders. 

Manipulating specific brain areas during fear behaviour evaluation is a useful tool to 

preclinically decipher the role of each region in fear extinction. The key brain areas 

involved in the extinction of aversive memories (i.e., amygdala, mPFC and hippocampus) 

have been widely studied by local lesioning, pharmacological activation/inactivation, 

electrical stimulation, interregional disconnection, and optogenetic approaches. 

Moreover, other secondary fear-related areas have been also analysed, such as the 

PAG, VTA, BNST, and striatum, among others (Tovote et al., 2015). An example of such 

experimental model is the study performed by Do-Monte and co-workers with male rats, 

in which optogenetic activation or silencing of glutamatergic neurons in IL during fear 

extinction and relapse allowed to better understand the role of IL in each fear process, 

in a neuronal- and temporal-specific manner (Do-Monte et al., 2015). Similar studies with 

this type of preclinical approach have revealed relevant results that increase our 

knowledge in this field (Sierra-Mercado et al., 2011; Arico et al., 2017; Bloodgood et al., 

2018; Marek et al., 2018a). Thus, animal models with functional alterations in one of the 

multiple nodes of the neural fear circuitry report meaningful information about the role of 

such region in the fear response.  
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Animals models of impaired fear extinction can be also generated by exposure to 

environmental insults, such as stress, drugs and unhealthy diets, among others. These 

models represent a valuable translational approach since detrimental epigenetic factors 

are commonly related to our current society. In particular, stress has a leading role as a 

risk factor for the onset of anxiety, and trauma- and stressor-related disorders (American 

Psychiatric Association, 2013). As reported in one of the specific objectives of the 

present thesis, an extensive literature has described the effects of stress exposure in 

fear extinction in a wide variety of protocols, thus highlighting the importance of the type 

and chronicity of the stressor employed (Miracle et al., 2006; Maroun et al., 2013; Sillivan 

et al., 2017; Knox et al., 2018). In this sense, immobilization stress and single prolonged 

stress seem to induce a strong impairment on the extinction of aversive memories 

(Deslauriers et al., 2018). However, some other factors are also relevant for the effects 

of stress on fear extinction, including sex, age, and prior experience (Maren and Holmes, 

2016). Concerning sex differences, an interesting study with male and female rats 

showed significant deficits in the extinction of fear memories in male, but not female rats, 

as a consequence of peri-pubertal stress exposure (Toledo-Rodriguez et al., 2012). Also, 

a growing body of evidence emphasizes late childhood/adolescence as a window of 

vulnerability for the impairment of fear extinction, thus underscoring life stage as a key 

element in these protocols (Baker et al., 2016). Aside from stress, consumption of drugs 

and unhealthy food triggers adverse effects on fear extinction, with special attention to 

the aforementioned factors in stress protocols. For example, alcohol intake during 

adolescence disrupted fear extinction by altering neural plasticity in mPFC, in both male 

and female mice (Lawson et al., 2022). A similar study with high-fat/high-sugar diet 

during adolescence revealed fear extinction deficits and anxiety-like behaviour during 

adulthood, in male rats. This group of animals also exhibited biochemical disturbances 

in IL, with fewer parvalbumin-expressing cells, increased levels of FosB, and a clear 

trend towards increased microglial activity (Baker and Reichelt, 2016). Overall, a wide 

range of environmental insults, applied singly or in combination, has been found to impair 

fear extinction in animal models, to further identify novel mechanisms and therapeutically 

normalize extinction. 

Despite the moderate evidence considering genetics as a risk factor of developing a 

psychiatric disorder after trauma exposure (Stein et al., 2002; van Houtem et al., 2013; 

Purves et al., 2021), preclinical research has already generated diverse genetic models 

of impaired fear extinction. However, these models still remain in early stages of 

development and testing. Such experimental approaches are based on specific gene 

deletion or addition (e.g., knockout, knockin, overexpression), or a novel genetic 
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background (e.g., different animal strains). Hence, genetic engineering can alter the DNA 

makeup of an organism to obtain functional information of such gene-coded protein. In 

this vein, diverse genetically-modified animal models with disrupted fear extinction have 

been obtained by deleting, for instance, the serotonin transporter (5-HTT) gene, or by 

mutating the BDNF gene with a human polymorphism, among many other examples 

(Wellman et al., 2007; Soliman et al., 2010). On the other hand, fewer models are based 

on concrete mouse or rat strains presenting deficits in the extinction of fear memories, in 

order to identify potential genes involved in this function (Hefner et al., 2008; Mcguire et 

al., 2013). An appropriate example is the inbred mouse strain 129S1/SvImJ (S1), which 

characterization constitutes one of the main objectives of this thesis (Article 3). S1 mice 

show a clear impairment to extinguish both cued- and context-fear memories, in 

comparison to control mouse strains, such as C57BL/6J (BL6) (Hefner et al., 2008; Camp 

et al., 2012; Keum et al., 2016). Interestingly, S1 mice present similarities to fear-related 

patients, such as lower heart rate variability during fear extinction, and slow recovery of 

this parameter after fear relapse (Arditi-Babchuk et al., 2009; Camp et al., 2012; 

Chalmers et al., 2014). Neural activity in key fear-related areas is consistent with the 

phenotype observed, since an hyperexcitability has been detected in PL and central 

amygdala, and hypoactivity in IL and basal amygdala (Hefner et al., 2008; Fitzgerald et 

al., 2014; Park and Chung, 2019). Moreover, PL-BLA projections in S1 remained 

abnormally high after extinction compared to BL6 mice, whereas IL-BLA circuit failed to 

switch to an inhibitory pathway at the same time (Park and Chung, 2020).These 

observations have been also reported in PTSD patients during fear relapse, thus 

increasing the translational relevance of these studies (Milad et al., 2009; Garfinkel et 

al., 2014). Altogether, genetic animal models with disrupted fear extinction have made a 

significant contribution to the identification of novel genes and the corresponding proteins 

involved in the pathophysiology of fear-related disorders.
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General Objective 

Increasing prevalence of psychiatric disorders characterized by the presence of 

pathological fear is reported in today’s society. Therefore, the main goals of the present 

thesis are to identify potential risk factors that may induce the onset of these pathologies 

by focusing on THC and stress exposure, and to better understand the neurobiological 

mechanisms involved in fear dysregulations through the orexin system and a specific 

mouse model of aberrant fear extinction.  

 

Specific Objectives 

1. To evaluate the consequences of THC treatment, as well as the effects of 

concomitant THC and stress exposure during adolescence in the extinction of 

aversive memories in the adulthood (Article 1). 

2. To analyse the neurobiological alterations of adolescent THC treatment, as well 

as THC and stress exposure, in the adulthood (Article 1). 

3. To study the role of the endocannabinoid system in the impairment of fear 

extinction induced by OXA (Article 2). 

4. To decipher the precise components of the endocannabinoid system and their 

neuroanatomical localization involved in the impairment of aversive memories 

promoted by OXA (Article 2). 

5. To assess specific behavioural traits of the 129S1/SvImJ inbred mouse strain, a 

well-established mouse model of impaired fear extinction (Article 3). 

6. To investigate the role of the endocannabinoid system in the observed phenotype 

of the 129S1/SvImJ inbred mouse strain (Article 3). 
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MAIN CONCLUSIONS OF THE ARTICLE 

 

In this article, we observed an impaired fear extinction in adult male mice, as a 

consequence of the interaction between cannabis administration and stress exposure 

during the adolescence. This long-term behavioural impairment was associated with 

biochemical disturbances, including an altered glucocorticoid tone, dysregulations of the 

fear circuit, and structural plasticity alterations in the BLA. 

My contributions in the present article are the participation in all the behavioural and 

biochemical experiments, excluding the radioimmunoassay experiment used to analyse 

plasma corticosterone levels and the immunoblot analysis of CB1R. I was also involved 

in data curation and the dissemination of results. 
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H I G H L I G H T S

• Concomitant THC and stress adolescent exposure impairs fear extinction in adulthood.

• Concomitant THC and stress adult exposure does not alter fear extinction.

• IL and BLA activity is reduced due to simultaneous THC/stress adolescent exposure.

• Concomitant THC/stress adolescent exposure alters BLA structural plasticity.

A R T I C L E I N F O

Keywords:
Δ9-tetrahydrocannabinol
Stress
Adolescence
Fear extinction
Dendritic spines
Amygdala

A B S T R A C T

Δ9-tetrahydrocannabinol (THC) consumption during adolescence is reported to be a risk factor for the appear-
ance of psychiatric disorders later in life. The interaction between genetic or environmental events and can-
nabinoid exposure in the adolescent period can also contribute to exacerbate behavioural deficits in adulthood.
Here we investigate the effects of THC treatment as well as the consequences of concomitant THC and stress
exposure during adolescence in the extinction of fear memory in adult mice. Adolescent mice treated with THC
and exposed to stress exhibit impaired cued fear extinction in adulthood. However, no effect was observed in
animals exposed to these two factors separately. Notably, resistance to fear extinction was associated with de-
creased neuronal activity in the basolateral amygdala (BLA) and the infralimbic prefrontal cortex, suggesting a
long-term dysregulation of the fear circuit. These changes in neuronal activation were paralleled with structural
plasticity alterations. Indeed, an increase of immature dendritic spines in pyramidal neurons of the BLA was
revealed in mice simultaneously exposed to THC and stress. Corticosterone levels were also enhanced after the
cued fear conditioning session in the same experimental group. These results show that an interaction between
cannabis exposure and stress during adolescence may lead to long-term anxiety disorders characterized by the
presence of pathological fear.

1. Introduction

Cannabis remains the most widely used illicit substance worldwide.
The regular use of cannabis often begins during adolescence which is of
particular concern because this period is crucial to generate efficient

neuronal pathways by constant neuroplastic shaping, synaptic re-
organization and neurochemical changes (Sturman and Moghaddam,
2011). Pharmacological and/or environmental factors affecting the
endocannabinoid system during the adolescent period can lead to al-
tered brain maturation considering the important role played by this
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system in the neurodevelopmental changes that occur during this time
(Fernández-Ruiz et al., 2000; Harkany et al., 2007). As a consequence,
preclinical and epidemiological data suggest that adolescent cannabi-
noid exposure may increase the risk for the appearance of psychiatric
diseases in adult life (Malone et al., 2010; Higuera-Matas et al., 2015),
including emotional dysregulation. Recent studies relate cannabis use
in adolescence with amygdala hypersensitivity to signals of threat
(Spechler et al., 2015), and with an increased likelihood of having
posttraumatic stress disorder symptoms in adulthood (Lee et al., 2018).
Other disturbances associated with adolescent cannabis use may in-
clude psychotic-like symptoms, cognitive deficits, and increased ad-
diction vulnerability (Silins et al., 2014; Renard et al., 2016).

Most psychiatric disorders involve multiple ethiopathological fac-
tors that can interact across the lifespan and trigger disease onset (Caspi
and Moffitt, 2006). The interaction between cannabis consumption and
genetic or environmental factors during adolescence may have a crucial
influence in the detrimental effects of this drug later in life (Rubino and
Parolaro, 2016). Adult mice with genetic mutations in some genes in-
volved in schizophrenia (O'Tuathaigh et al., 2012; Long et al., 2013;
Ballinger et al., 2015) or exposed to stressful events early in life
(Llorente-Berzal et al., 2011; Zamberletti et al., 2012; Klug and van den
Buuse, 2012) showed altered behavioural responses due to Δ9-tetra-
hydrocannabinol (THC) adolescent treatment. This interaction of can-
nabis exposure and genetic/environmental events produces protective
or negative effects depending on the genetic profile, sex, and stress level
(Rubino and Parolaro, 2016).

The most consistent consequences of adolescent cannabinoid ex-
posure are related to long-term impairments in cognitive function.
Thus, numerous studies have shown working memory deficits in ani-
mals exposed to different cannabinoid agonists during adolescence
(Renard et al., 2016). The consequences in emotional memory have
been less studied, although adolescent THC administration did not
produce lasting effects in this behaviour (Ballinger et al., 2015; Rubino
et al, 2009a, 2009b). However, whether adolescent cannabinoid ex-
posure alone or in combination with environmental factors such as
stress affects the extinction of fear memory in adult life remains to be
elucidated. Cannabis consumption and stressful events are often asso-
ciated (Ketcherside and Filbey, 2015). The effects in adulthood of
cannabis consumption during adolescence may be exacerbated by stress
exposure in this period of life. Moreover, stress and fear responses share
common neural circuits, and the neuronal structures involved in fear
acquisition and extinction are also highly sensitive to stress effects
(Stockhorst and Antov, 2016).

Here, we reveal that concomitant THC and stress adolescent ex-
posure induces long-term impairment in fear extinction. This effect is
associated with reduced neuronal activity and structural plasticity
changes in key limbic brain regions. These findings suggest that THC
chronic consumption under stress conditions during adolescence may
increase the risk for the appearance of anxiety disorders related to
trauma exposure.

2. Materials and methods

2.1. Animals

Adolescent female and male, and adult male C57BL6/J mice
(Charles River, France) were used in these experiments. Animals were
housed 3–5 per cage in a room with controlled temperature (21± 1 °C),
and humidity (55 ± 10%) and with a 12 h light/12 h dark cycle. All
behavioural studies were conducted during the light period. Food and
water were available ad libitum. Animal procedures were performed in
accordance with the guidelines of the European Communities Council
Directive 2010/63/EU and approved by the local ethical committee
(CEEA-IMAS-UPF), and the statement of compliance with standards for
use of laboratory animals by foreign institutions nr. 5388-01 approved
by the National Institutes of Health. All behavioural data were obtained

by experimental observers blinded to the experimental conditions.

2.2. Drugs

THC stored at 100mg/ml in ethanol (THC-Pharm-GmbH, Germany)
was diluted in 5% Tween-80 and physiological saline solution to
achieve doses of 3, 6 and 12mg/kg (5ml/kg of body weight).

2.3. Experimental designs

2.3.1. Adolescent THC treatment
The long-term effects of THC administration in anxiety-like re-

sponses, locomotor activity, and fear conditioning expression and ex-
tinction were evaluated in adolescent male and female mice.
Adolescence, which is a vulnerable period for the onset of neu-
ropsychiatric disorders, covers the complete time span from childhood
(shortly before puberty) to adulthood, including the pubertal period
(Schneider, 2013). The timing of human adolescence is difficult to de-
fine (Schneider, 2008), and therefore the exact timing of this period in
laboratory rodents represents a challenge in animal research
(Schneider, 2013). Starting at PND 35, mice were subcutaneously ad-
ministered with increasing doses of THC (PND 35–39: 3mg/kg, PND
40–44: 6mg/kg, and PND 45–49: 12mg/kg) or vehicle during 15 days
in order to counter the development of drug tolerance (Renard et al.,
2017). Similar protocols using escalating doses of THC during adoles-
cence have been previously used in numerous studies (Rubino et al.,
2008; Llorente-Berzal et al., 2013; Cadoni et al., 2015). Moreover,
comparable time frames for adolescent cannabinoid treatment in both
male and female rodents have been previously reported (Biscaia et al.,
2003; Rubino et al., 2008; Realini et al., 2011; Bortolato et al., 2014;
Zamberletti et al., 2014). Male and female mice could be at different
stages of the development at the onset and during the treatment sche-
dule. However, the objective of our study was to evaluate in adult mice
the possible effects of THC treatment during the adolescent period, a
crucial life stage for the neuronal development. From PND 50 to 69,
animals remained undisturbed. At PND 70, behavioural evaluation was
carried out in the order described in Fig. 1A for male and in Fig. S1 for
female mice. The interval of time between adolescent THC or vehicle
treatment and adult behavioural experiments is similar to those used in
previous reports (Quinn et al., 2008; Llorente-Berzal et al., 2013). On
the other hand, long-term stress of injection effects during adolescence
(Keeley et al., 2015; Simone et al, 2018a, 2018b) have been previously
reported, which may reflect a greater vulnerability of adolescent ani-
mals to repeated physical stress exposure. However, control groups
were injected with vehicle in our experimental protocols suggesting
that the effects observed in mice treated with THC were due to this
drug.

2.3.2. Concomitant THC and stress adolescent exposure
To assess the interaction between THC and mild stress, adolescent

male mice treated with THC or vehicle, as previously described, were
exposed to different stressors: forced swimming, tail suspension and
restraint. Similar stressors, applied singly or in combination, either
acutely or chronically, have been used in previous studies to investigate
the role of stress in fear processing (Maren and Holmes, 2016). At the
end of each 5-days vehicle or THC exposure, one stressor was applied as
shown in Fig. 2A. Moreover, two additional stressors were applied at
PND 60 (forced swimming) and 65 (tail suspension) (Fig. 2A). Beha-
vioural evaluation was carried out at PND 70 in the order shown in
Fig. 2A.

2.3.3. Concomitant THC and stress adult exposure
To evaluate whether the long-term effects of simultaneous THC and

stress exposure were age dependent, a similar experimental design was
performed in adult male mice (Fig. S2A). Starting at PND 56, mice were
subcutaneously administered with increasing doses of THC (PND
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56–60: 3mg/kg, PND 61–65: 6mg/kg, and PND 66–70: 12mg/kg) or
vehicle during 15 days. At the end of each 5-days THC exposure one
stressor was applied as previously described (Fig 2A and Fig. S2A). Two
additional stressors were applied at PND 80 (forced swimming) and 85
(tail suspension). Behavioural evaluation was carried out at PND 90 in
the order described in Fig. S2A.

2.4. Stress procedure

2.4.1. Forced swimming
Mice were placed in a clear Plexiglas cylinder containing water

(20 ± 1 °C) for 6min. The depth of the container and the volume of
water were enough to prevent the animal from touching the bottom,
thus forcing mice to swim.

Fig. 1. Adolescent THC treatment does not modify fear memory processing in adult mice. (A) Schematic representation of the experimental design. Body weight of
adolescent (B) male mice during the 15 days of treatment with THC (PND 35–39: 3mg/kg, PND 40–44: 6mg/kg, and PND 45–49: 12mg/kg) or vehicle. Locomotor
activity expressed as horizontal counts of adult (C) mice after adolescent THC or vehicle treatment. (D) Anxiety-like behaviour in the EPM expressed as the
percentage of time spent in the open arm of adult mice after adolescent THC or vehicle treatment. (E) Freezing levels scored during contextual fear conditioning in
adult mice treated with THC or vehicle during adolescence. (F) Freezing levels scored during cued fear conditioning (S1) in adult mice treated with THC or vehicle
during adolescence. (F) Time course of the freezing levels scored during cued fear extinction trials in adult mice exposed to THC or vehicle during adolescence. Data
are expressed as mean ± SEM (n=10 mice per group). ★p < 0.05 (comparison between THC and vehicle). PND: postnatal day. EPM: elevated plus maze. S:
session.

R. Saravia et al. Neuropharmacology 144 (2019) 345–357

347



2.4.2. Tail suspension
Animals were suspended by a 15 cm thin string hanged from a metal

rod and stuck with adhesive tape 1 cm from the tip of the tail. The front
paws were sufficiently distant to the ground to avoid mice touching it.
Tail suspension was performed during 6min.

2.4.3. Restraint
Stress was induced by immobilizing the animal with a restrainer

apparatus. Mice were placed individually inside a 50ml conical tube
with 0.5 cm air holes for breathing without access to food or water for
30min.

Fig. 2. Concomitant THC and stress exposure during adolescence impairs fear extinction in adulthood. (A) Schematic representation of the experimental design for
(B–G). (B) Body weight of adolescent male mice during the 15 days of treatment with THC (PND 35–39: 3 mg/kg, PND 40–44: 6 mg/kg, and PND 45–49: 12mg/kg)
and stress exposure (n= 15–16 mice per group). (C) Locomotor activity expressed as horizontal counts and (D) anxiety-like behaviour in the EPM expressed as the
percentage of time spent in the open arm in adult mice after adolescent THC, stress, or concomitant THC/stress exposure (n= 8 mice per group). (E,F) Freezing levels
scored during (E) contextual and (F) cued fear conditioning (session 1) in adult mice after adolescent THC, stress, or concomitant THC/stress exposure (n=15–16
mice per group). (F) Time course of the freezing levels scored during cued fear extinction trials in adult mice after adolescent THC, stress, or concomitant THC/stress
exposure (n=15–16 mice per group). (G) AUC values for the percentage of freezing during cued fear extinction trials. Data are expressed as mean ± SEM.
★p < 0.05; ★★p < 0.01 (comparison between THC and vehicle groups in (B); comparison between stress and non-stress mice in (D); comparison between THC/
stress and THC/non-stress mice in (F) and (G)). PND: postnatal day. EPM: elevated plus maze. S: session. (Fisher LSD test).
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2.5. Behavioural experiments

2.5.1. Locomotor activity
Changes in horizontal activity were assessed by using locomotor

activity boxes (9× 20×11 cm, Imetronic, France). Mice were placed
in locomotor cages with low luminosity. Activity was measured as the
total number of horizontal photocell counts during 15min.

2.5.2. Elevated plus maze
Elevated plus maze was performed to evaluate anxiety-like re-

sponses (Rubino et al., 2008). The maze consisted of four arms
(16× 5 cm) extended from a central square (5× 5 cm) shaping a cross.
Two opposite arms were delimited by vertical walls (closed arms),
whereas the two other opposite arms had unprotected edges (open
arms). The apparatus was elevated 30 cm above the floor and indirectly
illuminated from the top (50–60 lux in the open arm). A 5min trial was
conducted by placing each animal in the central square and facing one
of the open arms. The performance was recorded with a video camera
system located above the maze. Results are expressed as the total en-
tries to the closed and open arms, and the percentage of time spent in
the open arms with respect to the total amount of time spent in both
arms. An arm entry was counted when the animal moved both front
paws into the arm.

2.5.3. Fear conditioning
Training and testing were conducted as described previously with

some modifications (Bilkei-Gorzo et al., 2012; Na et al., 2012; Flores
et al., 2014; Soria-Gómez et al., 2015). Mice were individually placed in
a shuttle chamber (LE918, Panlab, Barcelona) surrounded by a sound-
attenuating cabinet (Flores et al., 2014). The chamber floor was formed
by parallel stainless-steel bars connected to a scrambled shock gen-
erator. On the training day, mice were habituated to the chamber
during 180 s before the exposure to an acute beeping 30 s sound (80 dB)
repeated 3 times with a 10 s silenced interval. Each animal received an
unconditioned stimulus (US) (0.7 mA footshock during 2s) paired with
the end of each sound (conditioned stimulus, CS). After the third shock,
the animal remained 30 s in the shuttle chamber. To test context-in-
duced fear conditioning, mice were placed in the shuttle chamber 24 h
after the training. Fear memory was assessed as the percentage of time
that mice spent freezing during the first 3 min. Freezing response, a
rodent's natural response to fear, was evaluated by direct observation
and defined as complete lack of movement, except for respiration for
more than 1 s. To evaluate cued fear conditioning (session 1), mice
were re-exposed to the CS in a novel environment (a wide dark cy-
linder) 24 h after context acquisition. Mice were allowed to adapt for
3min to the new environment which was followed by 30 s of the sound
used in the training day. This sound was repeated 4 times with a 10 s
interval. Freezing was scored during the time the sound was active.
After the last sound trial, mice remained in the cylinder for 30 s.

2.5.4. Extinction training
Extinction training was initiated 24 h after the cue-dependent fear

conditioning test. Mice were placed in the fear conditioning cylinder
with a novel environment as described above. Mice were given once
daily extinction training sessions for 5 days (sessions 2–6). The per-
centage of freezing time was calculated by following the same experi-
mental procedure as in the session 1. The habituation time was reduced
to 1 min as mice were previously adapted to the new context. Data from
fear extinction in adult male mice exposed to THC and stress during the
adolescent period were expressed as percentage of freezing behaviour
and as area under the curve (AUC). AUC was calculated by using a
standard trapezoid method, AUC = [0.5 × (B1+
B2) × h] + [0.5 × (B2+ B3) × h] + … [0.5 × (Bn + Bn+1)×h],
where Bn were the percentage of freezing behaviour for each mouse
and h was the time (days) passed between the consecutive measure-
ments (Gibaldi and Perrier, 1975).

2.6. Immunoblot analysis

Amygdala tissue was extracted 25 days after the last THC or vehicle
administration (PND74). Tissue was immediately frozen and store at
−80 °C. Amygdala was homogenized in 30 vol lysis buffer containing
protease and phosphatase inhibitors. Samples were then centrifugated
to eliminate any solid residue. Equal amounts of protein samples (20μg/
well) were separated in 10% polyacrylamide gels before electrophoretic
transfer onto to nitrocellulose membranes (Bio-Rad). Membranes were
blocked during 1 h in 5% bovine serum albumin (BSA)-T-TBS prior
incubation for 2 h with the primary antibodies: CB1 cannabinoid re-
ceptor (CB1R) (rabbit polyclonal, 1:500) and anti-glyceraldehyde-3-
phosphate dehydrogenase (GAPDH, mouse monoclonal, 1:15000) form
Frontier Institute (Cb1-Rb-Af380-1) and Santa Cruz Biotechnology (sc-
32233), respectively. Then, membranes were rinsed 3 times and in-
cubated for 1 h with their corresponding secondary antibodies coupled
to horseradish peroxidase: rabbit (1:10000) and mouse (1:10000) from
Cell Signaling. Immunochemiluminescence was produced by incubation
of the membranes with West-femto ECL substrate (Thermo Fisher
Scientific). Images of immunoreactive bands were acquire on a
ChemiDoc XRS System (Bio-Rad) and quantified by The Quantity One
software v4.6.3 (Bio-Rad). The values obtained for CB1R were nor-
malized to the detection of GAPDH in the same sample and expressed as
a percentage of the control group (Vehicle-Non stress) (Fig. S3).

2.7. Plasma corticosterone quantification

Blood samples were collected at different time points: immediately
after restraint (PND 49), at PND 67 (basal), and 30min after training
(PND 72), cued-fear conditioning (session 1) (PND 74) and cued-fear
extinction (session 5) (PND 78) (Fig. 3A). Blood samples were obtained
from the tail in tubes containing ethylenediaminetetraacetic acid.
Double-antibody radioimmunoassay (RIA) was used to determine
plasma corticosterone levels. RIA used 125I-corticosterone-carbox-
imethyloxime-tyrosine-methyl ester (ICN-Biolink 2000, Spain), syn-
thetic corticosterone (Sigma, Spain) as the standard, and an antibody
raised in rabbits against corticosteronecarboxi-methyloxime-BSA kindly
provided by Dr G. Makara (Institute of Experimental Medicine, Buda-
pest, Hungary). Plasma corticosteroid-binding globulin was inactivated
by low pH. All samples to be statistically compared were quantified in
the same assay to avoid inter-assay variability.

2.8. Immunofluorescence

Two h after the last cued fear extinction session or just before be-
havioural testing, mice were deeply anesthetized by ip injection
(0.2 ml/10g body weight) of a mixture of ketamine (100mg/kg) and
xylazine (20mg/kg) prior to rapid intracardiac perfusion. Mice were
intracardically perfused with 4% paraformaldehyde (PFA) solution.
Brains were removed from skull and post-fixed in PFA for 24 h at 4 °C.
Then, brains were transferred to a solution of 30% sucrose in PB 0.1M
and kept at 4 °C. Coronal sections of 30 μm containing the prelimbic
(PL) and infralimbic (IL) prefrontal cortex (from bregma
1.98mm–1.54mm) and the basolateral amygdala (BLA) (from bregma
−1.22mm to −1.82mm) were obtained using a microtome. Brain
slices were stored in a solution of 5% sucrose PB 0.1M. Free floating
slices were rinsed in PB 0.1M and after blocked in a solution containing
3% donkey serum and 0.3% Triton X-100 in PB 0.1M (DS-T-PB) during
2 h at room temperature. Slices were incubated overnight with the
primary antibody anti-c-Fos in DS-T-PB at 4 °C (1:500, rabbit, Santa
Cruz Biotechnology) (sc-7202). Next day, after three rinses with PB
0.1M, slices were incubated with the secondary antibody AlexaFluor-
555 donkey anti-rabbit (1:500, Life Technologies) at room temperature
for 2 h in DS-T-PB. Then, slices were rinsed three times and mounted
with Mowiol onto glass slides coated with gelatin.
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2.9. Immunofluorescence image analysis

The stained sections were analyzed at 10× objective using a Leica
DMR microscope (Leica Microsystems, Wetzlar, Germany) equipped
with a digital camera Leica DFC 300FX (Leica Microsystems). For PL
and IL analysis, a 430 μm sided square region of interest (ROI) was
delimited for quantification. The expression of cFos in the images was
quantified using the ImageJ analysis software. The option “particle
counting” under a fixed threshold configuration was used to detect cFos
positive cells. For all areas, 4 images per mice were quantified. Data are
expressed as density of cFos positive cells per mm2 (6–9 mice per each
experimental condition).

2.10. Ballistic labeling with the fluorescent dye DiI

Mice were deeply anesthetized after the last cued fear extinction
session by ip injection (0.2 ml/10g body weight) of a mixture of keta-
mine (100mg/kg) and xylazine (20mg/kg) prior to rapid intracardiac
perfusion. Mice were perfused with 10ml of PBS 0.1M, pH 7.5 followed
by 40ml of 4% (PFA) in PB 0.1M. Brains were postfixed in 4% PFA for
10min. Then, brains were kept in PBS 0.1M for 12 h. Brain coronal
sections (100 μm) containing the amygdala (from bregma −1.22mm to
−1.82mm) were obtained by using a vibratome (Leica VT 1000 S) and
kept in PBS 0.1M until fluorescent labeling processing. Brain slices were

labeled by ballistic delivery of fluorescent dye DiI (Molecular Probes)
using a gene gun apparatus (Helios Gene Gun System, Bio-Rad) as de-
scribed previously (Gan et al., 2009) and postfixed with PFA for 4 h at
room temperature to further preserve structures and to allow the dif-
fusion of the dye DiI. Sections were placed on microscope gelatine-
coated slides and coverslipped with mounting medium (Mowiol).
Images were acquired using a confocal microscope (Leica TCS Sp5
STED) with a glycerol immersion lens (63X/1.30). Individual pyramidal
neurons from the BLA were chosen for spine analysis based on several
criteria, as previously described (Saravia et al., 2017). Briefly, (i) there
was minimal or no overlap with other labeled cells to ensure that
processes from different cells would not be confused, (ii) at least 3
primary dendrites needed to be visible for cells to be used for analysis
and (iii) distal dendrites (from secondary dendrites to terminal den-
drites) were examined. In addition, we chose only one apical or basal
dendrite per neuron and quantified a minimum of 6 dendrites per an-
imal. To calculate spine density, a minimum dendrite length of 20 μm
long was required. All images of dendrites were taken at different z
levels (0.13 μm depth intervals) to examine the morphology of dendritic
spines. Reconstruction of dendrites and spine classification was per-
formed using the IMARIS software (Bitplane). Protrusions from den-
drites were classified into 5 types based on their morphology: class 1 or
stubby protuberances were 0.5 μm in length, lacked a large spine head,
and did not appear to have a neck; class 2, or mushroom-shaped spines

Fig. 3. Concomitant THC and stress exposure during adolescence increases corticosterone plasma levels after cued fear conditioning in adulthood. (A) Schematic
representation of the experimental design for (B–E). Blood samples were collected at different time points, as indicated by the asterisk, and plasma corticosterone
levels were measured (B) immediately after restraint (PND 49), 30min after (C) fear conditioning training (PND 72), (D) cued fear conditioning (session 1) (PND 74)
and (E) cued fear extinction (session 5) (PND 78). Data are expressed as mean ± SEM (n=7–8 mice per group). ★★p < 0.01 (comparison between stress and non-
stress mice in (B); comparison between THC/stress and THC/non-stress mice in (D)). PND: postnatal day. (Fisher LSD test).
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were between 0.5 and 1.25 μm in length and were characterized by a
short neck and large spine head; class 3, or thin spines ranged between
1.25 and 3.0 μm and had elongated spine necks with small heads; class
4, or filipodia were 1.0 and 2.5 μm in length and were characterized by
a large neck without spine head; and class 5 or branched spine ranged
between 1.25 and 3.0 μm and had elongated spine necks with 2 or more
spine heads. Quantification of dendritic spine densities was performed
in blind conditions.

2.11. Data analysis

Data were analyzed by using unpaired Student t-test, two-way
ANOVA or two-way ANOVA with repeated measures followed by sub-
sequent post hoc analysis (Fisher LSD) when required. The Pearson
correlation coefficient was used to analyse the relationship between
cFos expression and freezing values. A p value < 0.05 was used to
determine statistical significance. The statistical analysis was performed
using STATISTICA (StatSoft) software.

3. Results

3.1. Adolescent THC treatment does not modify fear extinction in adulthood

Adolescent male mice were treated with increasing doses of THC
during 15 days (PND 35–39: 3mg/kg, PND 40–44: 6mg/kg, and PND
45–49: 12mg/kg). Body weight was daily evaluated along THC treat-
ment. When mice reached adulthood, the effects of adolescent THC
administration on fear memory processing were analyzed (Fig. 1A).
Possible changes in locomotor activity and anxiety-like behaviour were
also examined (Fig. 1A). The weight gain of mice treated with THC was
lower than those exposed to vehicle (Fig. 1B), as previously reported
(Rubino et al., 2008; Stopponi et al., 2014; Scherma et al., 2016). An
anxiogenic-like effect induced by a high dose of THC could explain the
changes in body weight. Indeed, one week after the finishing of the
treatment, a higher level of anxiety-like behaviour in adolescent ro-
dents exposed to THC compared to controls was found in the elevated
plus maze (EPM) test in previous studies (Stopponi et al., 2014). Non-
specific inhibition of ingestion, secondary to the sedative effects of THC
could also be involved in this effect on body weight. Locomotor activity
(p=0.96, Student t-test) (Fig. 1C) and anxiety-like responses
(p=0.44, Student t-test) (Fig. 1D) (Fig. S2A) of adult mice were not
affected by the chronic treatment with THC. The administration of THC
did not modify the acquisition of fear memory as shown by similar
freezing behaviour in both contextual (p= 0.94, Student t-test) and
cued (p=0.78, Student t-test) fear conditioning tests (Fig. 1E and F
(Session1)). In addition, cued fear extinction was similar in adult ani-
mals exposed to THC or vehicle (Fig. 1F). Thus, two-way ANOVA of
repeated measures showed no interaction between THC treatment and
day (F5,130= 1.22, p=0.30) (Fig. 1F).

In an additional experiment, fear memory processing was not
modified either in female mice (Fig. S1), in spite of the different sen-
sitivity observed in several behavioural responses after treatment with
cannabinoid agonists between sexes (Rubino and Parolaro, 2011). Our
results indicate that THC administration during adolescence does not
alter locomotion, anxiety and fear memory processing in adult male and
female mice.

3.2. Concomitant THC and stress exposure during adolescence impairs fear
extinction in adulthood

Cannabis consumption and environmental factors, such as stressful
events, often coexist during adolescence and these factors could ex-
acerbate the detrimental effects of cannabis use in adulthood. To test
this hypothesis, we evaluated the consequences of simultaneous ado-
lescent THC and stress exposure on locomotion, anxiety-like behaviour
and fear memory processing in adult male mice. For this purpose, one

stressor was applied at the end of each THC exposure period as shown
in Fig. 2A. Two additional stress exposures were applied before beha-
vioural evaluation (Fig. 2A). Adolescent mice receiving THC, in-
dependently of stress exposure, showed again a significant resistance to
gain weight (Fig. 2B). Locomotor activity during adulthood was not
modified by THC treatment, stress exposure or by the interaction of
both factors (Fig. 2C). Mice that underwent stress, independently of
THC exposure, showed an increase in anxiety-like behaviour. Thus,
adolescent stressed mice spent significantly less time in open arms in
the EPM (stress effect: F1,60= 4.17, p < 0.05) (Fig. 2D), without sig-
nificant interaction between THC and stress. This effect was not due to
differences in the total number of entries (Fig. S2B). The acquisition of
fear memory was not altered in adult mice exposed to stress, THC or
both factors simultaneously during adolescence. Thus, freezing levels
were similar in both contextual (F1,58= 2.62, NS) and cued
(F1,59= 2.69, NS) fear conditioning tests (Fig. 2E and F (Session 1)).
Notably, concomitant THC and stress exposure impaired cued fear ex-
tinction (Fig. 2F). Two-way ANOVA with repeated measures revealed a
significant interaction between THC and stress (F1,59= 9.38,
p < 0.01), without other two-way or three-way interactions. Two-way
ANOVA analyzed for each individual session revealed a significant in-
teraction between stress and THC from session 4 to session 6
(F1,59= 10.26, p < 0.01 at session 4; F1,59= 5.45, p < 0.05 at session
5; F1,59= 15.56, p < 0.01 at session 6). Subsequent post hoc analysis
showed higher freezing levels in mice simultaneously exposed to THC
and stress in comparison with those treated with THC (p < 0.05 at
session 5; p < 0.01 at session 4 and 6), exposed to stress (p < 0.01 at
session 4, 5 and 6), and vehicle non-stress mice (p < 0.01 at session 4
and 6; p < 0.05 at session 5) (Fig. 2F). In agreement, freezing levels
expressed as AUC (Fig. 2G) were higher in mice exposed simultaneously
to THC and stress in comparison with the other experimental condi-
tions, as revealed by two-way ANOVA (interaction THC x stress:
F1,59= 8.51, p < 0.01) and post hoc analysis (p < 0.01). We next
evaluated whether the impairment in cued fear extinction could be
related to an alteration of CB1R levels in the amygdala. CB1R in this
brain region plays a crucial role in the modulation of fear processing
(Gunduz-Cinar et al., 2013). Western blot analysis showed no differ-
ences in total CB1R levels in the amygdala of adult mice exposed to
THC and/or stress during the adolescent period (interaction THC x
stress: F1,19= 1.99, p=0.17) (Fig. S3). This result suggests that, under
our experimental conditions, impairment in fear extinction is not in-
fluenced by a reduced expression of CB1R in the amygdala of adult
animals. However, changes in the efficacy or efficiency of the receptor
binding can occur independently from the status of the receptor den-
sity, contributing to the observed phenotype.

To elucidate whether immature brain represents a period of devel-
opment more susceptible to the effects of THC and stress, we compared
the consequences of exposing the same type of stressors and THC
treatment during adolescence and adulthood period (Fig. S4A). For this
purpose, changes in behaviour in adult male animals were evaluated
exactly 20 days following the final day of THC administration (Fig.
S4A), as previously studied after exposure during the adolescent period.
Notably, no differences in cued fear processing were observed between
the different experimental groups exposed to THC and/or stress in
adulthood period (Fig. S4B and C), suggesting that adolescence is a
sensitive window for the harmful consequences of concomitant THC
and stress exposure.

3.3. Concomitant THC and stress exposure during adolescence increases
corticosterone levels following cued fear conditioning session

Stress during early-stages can impair fear extinction by modulation
of glucocorticoid activity (Green et al., 2011). Therefore, we next
evaluated possible changes in plasma corticosterone levels due to THC
and stress exposure during adolescence at different time points
(Fig. 3A). Corticosterone levels measured immediately after restraint
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stress exposure were significantly increased in stressed mice (stress
effect: F1,27= 300.43, p < 0.01) (Fig. 3B), without influence of THC
treatment (Veh-non stress: 68.38 ± 8.8 ng/ml; Veh-stress:
333.57 ± 11.57 ng/ml; THC-non stress: 82.25 ± 19.44; THC-stress:
365.38 ± 19.12 ng/ml). Basal levels of corticosterone after previous
THC and stress exposure (PND 67) were unaltered in the different ex-
perimental groups (Fig. S5). Corticosterone levels measured 30min
after fear conditioning training were higher than in basal conditions,
but remained similar in all experimental groups (Fig. 3C). Interestingly,
previous simultaneous exposure to THC and stress increased plasma
corticosterone 30min after cued fear conditioning testing, as shown by
two-way ANOVA (interaction treatment x stress: F1,27= 5.76,
p < 0.05) (Fig. 3D), and post hoc analysis (p < 0.01), THC-stress
(132.88 ± 8.06 ng/ml) versus THC-non stress mice (89.13 ± 5.33 ng/
ml) (Fig. 3D). This imbalance of corticosterone activity was temporal
since similar levels were again observed after the fifth cued extinction
session (Fig. 3E). These results suggest that glucocorticoid sensitization
after cued fear conditioning may contribute to the extinction deficits
revealed in mice exposed to THC and stress during the adolescent
period.

3.4. Impaired fear extinction induced by concomitant THC and stress
exposure is associated with reduced activity of the infralimbic prefrontal
cortex and the basolateral amygdala

To identify the brain areas responsible for the resistance to fear
extinction induced by simultaneous THC and stress exposure, we ana-
lyzed the possible activation of brain regions closely involved in the
extinction circuit by using cFos immunofluorescence. cFos expression in
the PL, IL and BLA was evaluated 2 h after the last cued fear extinction
session, as behavioural alteration remained present at this time point.
cFos expression in the PL was not altered in the different experimental
groups (F1,20= 1.05, NS) (Fig. S6). Interestingly, IL activation was re-
duced by the previous concomitant exposure to THC and stress
(p < 0.01), as shown by two-way ANOVA (interaction treatment x
stress F1,32= 6.70, p < 0.05) (Fig. 4A and B). Values of cFos expres-
sion in the IL for the different experimental groups were the following:
Veh-non stress: 247.10 ± 16.10 cFos + cells/mm2; Veh-stress:
249.47 ± 25.36 cFos + cells/mm2; THC-non stress: 253.76 ± 8.92
cFos + cells/mm2; THC-stress: 171.00 ± 12.16 cFos + cells/mm2).
Likewise, simultaneous THC and stress adolescent exposure reduced the
activity of the BLA as revealed by two-way ANOVA (interaction treat-
ment x stress F1,28= 4.51, p < 0.05), and post hoc analysis
(p < 0.05) (Fig. 4C and D). Values of cFos expression in the BLA for the
different experimental groups were the following: Veh-non stress:
144.03 ± 12.21 cFos + cells/mm2; Veh-stress: 149.97 ± 14.12
cFos + cells/mm2; THC-non stress: 138.60 ± 7.98 cFos + cells/mm2;
THC-stress: 108.83 ± 9.75 cFos + cells/mm2). These results show that
the impaired fear extinction induced by adolescent THC and stress ex-
posure is associated with reduced activity of the IL and the BLA, which
are key regions involved in the extinction of aversive memories. Indeed,
a significant negative correlation (p < 0.05) between fear memory
(freezing values) and IL activity (density of cFos + cells) was observed
(Fig. 4E), whereas a clear tendency (p= 0.058) was revealed in the BLA
(Fig. 4F). In an additional experiment cFos expression was analyzed in
the BLA and the IL in adult mice exposed to THC and stress during the
adolescence just before and after the fear conditioning and extinction
paradigm. These experiments were carried out in order to investigate
whether the reduction in the activity of these brain areas was due to the
THC-stress treatment or if these changes were influenced by the dy-
namic interplay among THC, stress and fear conditioning/extinction.
Simultaneous THC and stress adolescent exposure reduced the activity
of the BLA (interaction THC x stress: F1,23= 9.52, p < 0.05) (Fig. S7A)
and the IL (interaction THC x stress: F1,22= 5.66, p < 0.05) (Fig. S7B)
after cued fear extinction, as previously reported. Interestingly, cFos
expression was higher in adult animals exposed to THC and stress

during the adolescence that did not undergo fear conditioning/extinc-
tion in both the BLA (p < 0.05) (Fig. S7A) and the IL (p < 0.01) (Fig.
S7B) in comparison with mice that followed the behavioural paradigm.
These results suggest that the reduced activity observed in the BLA and
the IL depends on the dynamic effect of THC-stress exposure followed
by fear conditioning and extinction behavioural testing.

3.5. Impaired fear extinction induced by concomitant THC and stress
exposure is associated with structural plasticity alterations in the basolateral
amygdala

Stress has been reported to alter structural plasticity in the amyg-
dala (Leuner and Shors, 2013), affect fear extinction (Maren and
Holmes, 2016), and THC exposure during adolescence can induce
changes in dendritic spines in several brain regions (Rubino and
Parolaro, 2016). Given the crucial role played by the BLA in fear ex-
tinction, we investigated whether concomitant exposure to THC and
stress could affect structural plasticity in this brain area. Mice were
sacrificed after the last cued extinction session and brains were pro-
cessed for ballistic delivery to label whole neurons with the dye DiI.
Total dendritic spine density of BLA pyramidal neurons was not mod-
ified by THC, stress or by the combination of both factors (Fig. 5A).
Dendritic spines are dynamic and can be classified into different cate-
gories depending on their morphology (stubby, mushroom, thin,
branched and filopodia). Density of mushroom (mature) spines was
reduced in adolescent mice treated with THC (independently of stress
exposure) (p < 0.01), as revealed by two-way ANOVA (treatment ef-
fect: F1,23= 9.35, p < 0.01) (Fig. 5B and C). THC treatment increased
the density of thin (immature) spines (treatment effect: F1,23= 7.43,
p < 0.05) (Fig. 5B and C). Notably, this effect was mainly due to the
concomitant exposure to THC and stress as revealed by post hoc com-
parisons. Thus, THC-stress mice showed higher density of thin spines in
comparison with THC-non stress (p < 0.05), vehicle-stress
(p < 0.05), and vehicle-non stress (p < 0.01) mice (Fig. 5B and C).
These data suggest that changes in the density of immature spines in the
BLA might be involved in the impairment of fear extinction associated
with the combination of THC and stress exposure during the adoles-
cence.

4. Discussion

To the best of our knowledge, this is the first study demonstrating
synergistic detrimental effects of simultaneous adolescent THC and
stress exposure on the extinction of aversive memory in adulthood.
Notably, impaired fear extinction was associated with a temporal im-
balance of plasmatic corticosterone levels, decreased activity of key
regions involved in fear regulation, such as the IL and the BLA, and
changes in structural plasticity revealed by increased immature den-
dritic spines density in pyramidal neurons of the BLA.

The administration of THC during adolescence in male and female
mice did not induce any modification in locomotor activity, anxiety-like
responses, and fear regulation later in life. Controversial results have
been previously reported after adolescent THC exposure since general
anxiety by using EPM was not modified in adult rats (Rubino et al.,
2008; Cadoni et al., 2015), whereas an anxiogenic-like effect was re-
vealed in adult CD1 mice (Murphy et al., 2017). In agreement with our
data, no lasting effects by adolescent THC exposure were previously
observed in aversive memory as revealed by the lack of deficits in
passive avoidance task (Rubino et al, 2009a, 2009b) or cued and con-
textual fear conditioning (Ballinger et al., 2015). However, a long-
lasting impairment of fear conditioning has been described after
chronic administration of the synthetic cannabinoid WIN 55,212-2
during adolescence (Gleason et al., 2012; Tomas-Roig et al., 2017),
which has a higher intrinsic activity on cannabinoid receptors than THC
(Kuster et al., 1993). On the other hand, repeated adolescent CB1R
antagonism induced greater contextual fear memory recall in adult
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Fig. 4. Impaired fear extinction in adulthood induced by concomitant adolescent THC and stress exposure is associated with a reduced activity of infralimbic
prefrontal cortex and basolateral amygdala. (A,C) Density of cFos-expressing cells in (A) IL and (C) BLA 2 h after the last cue extinction session of adult mice exposed
to THC, stress, or concomitant THC/stress during adolescence (n=8–9 mice per group). (B,D) Schematic representation of the anatomical location of (B) IL and (D)
BLA adapted from Paxinos and Franklin's stereotaxic atlas (Paxinos and Franklin, 2001), and representative images of both regions obtained by fluorescence
microscopy after direct labelling with rabbit polyclonal antiserum to cFos. (E,F) Correlation between fear memory (freezing values) and (E) IL and (F) BLA activity
(density of cFos + cells) after the last cue extinction session. Scale bar represents 100 μm. Data are expressed as mean ± SEM. ★p < 0.05; ★★p < 0.01
(comparison between THC/stress and THC/non stress mice). IL: infralimbic prefrontal cortex. BLA: basolateral amygdala. (Fisher LSD test).
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female, but not male, rats in comparison with control animals (Simone
et al., 2018b). Fear extinction, which has not been previously eval-
uated, was not affected in either male or female mice by adolescent
THC treatment under our experimental conditions.

Although the exact cause of most psychiatric illnesses is not well
known, it is becoming clear that many of these conditions are caused by
the combination of genetic and environmental factors or by the asso-
ciation between different environmental events (Caspi and Moffitt,
2006; Rubino and Parolaro, 2016). Stress has a critical role in the de-
velopment of many psychiatric conditions including trauma-related
disorders (Maren and Holmes, 2016). Fear extinction deficits have been
reported following exposure to various types of stressors in either an-
imal models (Maren and Holmes, 2016) or humans (Hartley et al.,
2014). Thus, adolescent rodents exposed to chronic stress usually show
impaired extinction when tested as adults (Judo et al., 2010; Ishikawa

et al., 2012; Toledo-Rodriguez et al., 2012; Skelly et al., 2015), al-
though different results have been reported depending on the sex and
the modality, chronicity and precise timing of stress exposure during
adolescence (Morrissey et al., 2011; McCormick et al., 2013; Schayek
and Maroun, 2015; Deng et al., 2017). We found that adolescent stress
exposure enhanced anxiety-like behaviour, but did not modify fear
conditioning in adult mice. In contrast, concomitant adolescent THC
and stress exposure induced an impairment of fear extinction in
adulthood without affecting the acquisition of fear memory or general
anxiety. Notably, the effect of this THC/stress exposure was age-de-
pendent as revealed by the lack of deficits in fear extinction when the
same exposure was performed directly in adulthood. Impaired extinc-
tion was not observed by the individual exposition to each factor sug-
gesting synergistic detrimental consequences of adolescent cannabis
and stressful events. In this regard, chronic adolescent treatment with

Fig. 5. Impaired fear extinction in adulthood induced by
concomitant adolescent THC and stress exposure is as-
sociated with structural plasticity alterations in the ba-
solateral amygdala. (A) Overall dendritic spine density,
(B) analysis of spine morphology and (C) representative
DiOlistics staining of BLA pyramidal neurons after the
last cue extinction session of adult mice exposed to THC,
stress, or concomitant THC/stress during adolescence
(n=6–8 mice per group). Arrows indicate thin (in-
mature) spines. Scale bar represents 2 μm. Data are ex-
pressed as mean ± SEM. ★p < 0.05 (comparison be-
tween THC/stress and THC/non stress mice);
★★p < 0.01 (comparison between THC and vehicle
groups). BLA: basolateral amygdala. (Fisher LSD test).

R. Saravia et al. Neuropharmacology 144 (2019) 345–357

354



THC induced a deficit in cued fear conditioning only in adult mice with
a mutation in disrupted-in-schizophrenia 1 gene (Ballinger et al., 2015),
although the influence of this genetic and environmental interaction in
fear extinction was not evaluated in this study.

Animals simultaneously exposed to THC and stress during adoles-
cence showed a temporal imbalance of plasmatic corticosterone levels
in the adult period as revealed by the increase of this hormone fol-
lowing the cued fear conditioning session. Although the association
between glucocorticoids and fear extinction is complex, this enhance-
ment of the hypothalamic-pituitary-adrenal (HPA) axis activity could
participate in the extinction deficits and changes in structural plasticity
revealed in our study. Thus, a single exposure to immobilization stress
in adult male mice activates the HPA axis by increasing corticosterone
plasma levels (Andero et al., 2011). A week after this stress exposure
mice present impaired cued-fear extinction and enhanced levels of
corticosterone after both fear acquisition and fear extinction
(Sawamura et al., 2016). Moreover, acute corticosterone administration
in adult rats induced dendritic hypertrophy of BLA neurons and en-
hanced anxiety 12 days after the treatment (Mitra and Sapolsky, 2008;
Kim et al., 2014).

IL and BLA are key structures involved in the neurobiological sub-
strate underlying fear extinction (Sierra-Mercado et al., 2011). IL fa-
cilitates the activation of the subpopulation of BLA neurons directly
involved in fear extinction (Herry et al., 2008). Several studies evalu-
ating immediately-early gene (IEG) expression conclude that impaired
fear extinction is associated with reduced activity of the cortico-
amygdala circuit (Herry and Mons, 2004; Holmes and Singewald,
2013), while increased IEG levels in those brain areas is related to a
complete extinction of conditioned fear (Herry and Mons, 2004; Flores
et al., 2014). Notably, our data reveal a reduced cFos expression in the
IL and the BLA in adult mice simultaneously exposed to THC and stress
during the adolescent period suggesting the existence of a long-lasting
dysregulation of the fear circuit. In contrast, PL activity was not mod-
ified consistent with a role for this brain area in fear expression, but not
extinction (Sierra-Mercado et al., 2011). Besides these modifications on
brain region activity, we found structural plasticity changes in pyr-
amidal neurons of the BLA in adulthood as a consequence of adolescent
THC treatment, alone or in combination with stress. A decrease of
mushroom (matures) dendritic spines was revealed in mice previously
exposed to THC congruent with previous studies showing reduced spine
density in the dentate gyrus of the hippocampus (Rubino et al., 2009b)
and the prefrontal cortex (Rubino et al., 2015) of adult male and female
rats, respectively. Interestingly, simultaneous adolescent THC and stress
exposure induced an increase of thin (immatures) spines in pyramidal
neurons of the BLA in adult mice. These dendritic morphology mod-
ifications in BLA neurons associated with the decreased activity of this
nucleus could be responsible of the deficits in the extinction of aversive
memories. In agreement, fear extinction deficits following acute stress
have been related to dendritic retraction in pyramidal neurons of both
BLA (Maroun et al., 2013) and IL (Moench et al., 2016).

In summary, our data show lasting neurobiological changes asso-
ciated with resistance to fear extinction due to concomitant adolescent
THC and stress exposure. This study identifies a potential social group
highly vulnerable to develop anxiety disorders characterized by pa-
thological fear after cannabis consumption, which contains multitude
bioactive compounds (ElSohly et al., 2017). Although our study was
performed using pure THC, significantly higher THC concentrations in
cannabis derived extracts over the years have been reported (Cascini
et al., 2012; ElSohly et al., 2016), which could cause an increase of the
total amount of THC consumed. This increase poses higher risk of
cannabis use, particularly among adolescents (ElSohly et al., 2016).
Taking into account the high rate of cannabis intake during this period
which usually entails stressful events, the combination of both factors
may increase the risk to suffer anxiety disorders in the adult period.
Indeed, the exposure to stressful events during adolescence that often
occur in cannabis consumers may represent an important risk factor to

suffer anxiety disorders in adulthood.
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Figure S1. Adolescent THC treatment does not modify fear memory processing in 

adult female mice. (A) Schematic representation of the experimental design for (B-

F). (B) Body weight of adolescent mice during the 15 days of treatment with THC 

(PND 35-39: 3 mg/kg, PND 40-44: 6 mg/kg, and PND 45-49: 12 mg/kg) or vehicle. 

(C) Locomotor activity expressed as horizontal counts of adult mice after adolescent 

THC or vehicle treatment. (D) Anxiety-like behaviour in the EPM expressed as the 

percentage of time spent in the open arm of mice after adolescent THC or vehicle 

treatment. (E) Freezing levels scored during contextual fear conditioning in mice 

treated with THC or vehicle during adolescence. (F) Time course of the freezing 

levels scored during cued fear extinction trials in adult mice exposed to THC or 

vehicle during adolescence. Data are expressed as mean  SEM (n = 10 mice per 

group). p<0.05 (comparison between THC and vehicle). PND: postnatal day. 

EPM: elevated plus maze. S: Session.  
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Figure S2. Total number of entries in the elevated plus maze of (A) male mice treated 

with THC or vehicle during adolescence (n = 10 mice per group). (B) Total number of 

entries of male mice treated with THC or vehicle and exposed to stress during 

adolescence (n = 8 mice per group). Data are expressed as mean ± SEM.  
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Figure S3. CB1 receptor levels in adult mice treated with THC or vehicle and exposed 

to stress during adolescence. Immunoblot analysis was used to determine total 

CB1 receptor levels in the amygdala. Displayed are representative blots showing 

CB1 receptor expression, as well as GAPDH levels as a loading control for each 

corresponding sample. Data are expressed as mean ± SEM of the densitometric value 

for CB1 receptors related to GAPDH, as a percentage of the Vehicle-No stress group (n 

= 5-6 mice per group).   
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Figure S4. THC and stress exposure during adulthood does not modify the extinction of 

cued fear memories. (A) Schematic representation of the experimental protocol. 

Freezing levels scored during the (B) context-dependent fear conditioning and (C) cue-

dependent fear conditioning (S1) of mice treated with THC and exposed to stress. (C) 

Time course of freezing behaviour scored during cued fear extinction trials of mice 

treated with THC and exposed to stress (n = 8 mice per group). Data are expressed as 

mean ± SEM.  
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Figure S5. Corticosterone levels during the resting phase of the experimental design of 

adult mice exposed to THC and stress during adolescence (n = 7-8 mice per group). 

Data are expressed as mean ± SEM. 
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Figure S6. cFos expression in the prelimbic prefrontal cortex of adult mice exposed to 

THC and stress during adolescence (n = 6 mice per group). Schematic representation of 

the anatomical location of the prelimbic prefrontal cortex adapted from Paxinos and 

Franklin stereotaxic atlas. Data are expressed as mean ± SEM.  
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Figure S7. cFos expression is higher in adult animals exposed to THC and stress during 

the adolescence that do not undergo fear conditioning/extinction, in comparison with 

mice that followed the behavioural paradigm. (A,B) Density of cFos-expressing cells in 

(A) BLA and (B) IL before fear conditioning/extinction and 2 h after the last cue 

extinction session of adult mice exposed to THC, stress, or concomitant THC/stress 

during adolescence (n = 6-7 mice per group). Data are expressed as mean  SEM. 

p<0.05 (comparison between THC/stress mice before and after FC 

conditioning/extinction paradigm in (A)); p<0.01 (comparison between THC/non-

stress and THC/stress mice in (A) and (B); comparison between THC/stress mice before 

and after FC conditioning/extinction paradigm in (B)). IL: infralimbic prefrontal cortex. 

BLA: basolateral amygdala. FC: fear conditioning. 
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1. Introduction 

Orexin-A/hypocretin-1 (OXA) and Orexin-B/hypocretin-2 (OXB) are 
neuropeptides of the lateral hypothalamus that project throughout the 
brain [1,2] and bind two G protein-coupled receptors, orexin receptor-1 
(OX1R) and (OX2R) [1,2]. The orexin system is involved in diverse 
physiological functions including fear regulation [3,4], consistent with 
the existence of orexin neuronal projections to several limbic areas [5]. 

Pharmacological blockade or genetic deletion of OX1R impaired 
contextual and cued fear conditioning [6–9] in rodents. Moreover, OX1R 
antagonism facilitated fear extinction consolidation [8,10,11], while 
OXA administration impaired this response [8]. Accordingly, the ac
tivity of orexin neurons was negatively correlated with successful 
extinction of conditioned fear in rats [12]. Reactivity to CO2 was 
significantly predictive of orexin activity in the lateral hypothalamus, 
and in turn high orexin activity was associated with poor extinction 
[13]. In humans, several studies have also described a relationship be
tween orexins and fear and anxiety. Individuals with narcolepsy, a 
condition associated with a loss of orexin neurons [14], showed reduced 
amygdala activity and failed to acquire fear memory during aversive 
conditioning [15]. Patients with panic anxiety have elevated levels of 
OXA in the cerebrospinal fluid (CSF) [16]. However, a clinical study 
showed a reduction of OXA levels in the CSF and plasma of combat 
veterans with chronic PTSD and these levels were negatively correlated 
with PTSD severity [17]. Recently, an interaction between genetic 
polymorphisms of the OX1R and ghrelin genes was shown to affect PTSD 
symptom severity [18]. 

The endocannabinoid system (ECS), composed of two main re
ceptors, the cannabinoid type-1 and type-2 receptors (CB1R and CB2R, 
respectively), their ligands, i.e. the endocannabinoids anandamide 
(AEA) and 2-arachidonoylglycerol (2-AG), and the enzymes involved in 
endocannabinoid metabolism [19] is an important neuromodulatory 
system crucial for appropriate fear extinction [20]. AEA through CB1R 
activation in the basolateral amygdala (BLA) facilitates fear extinction 
[21,22]. However, the role played by 2-AG in this response is less 
evident, and it has been suggested that an optimal level of this endo
cannabinoid is required for appropriate processing of fear responses [23, 
24]. Several reports have described the existence of functional in
teractions between orexins and 2-AG, mainly in the regulation of noci
ception, reward and food intake [25,26]. However, whether the ECS is 
part of the neurobiological substrates underlying the modulation that 
orexins exert on fear remains to be clarified. 

In this study, we investigated the participation of the ECS in the fear 
extinction deficits induced by orexin-A. Understanding the neurobio
logical mechanisms involved in these effects is essential to identify novel 
targets for the treatment of anxiety disorders characterized by patho
logical fear. 

2. Material and methods 

2.1. Animals 

Experiments were performed using male C57BL/6 J mice (Jackson 
Laboratories) and the recently characterized eGFP-CB2R mice (gener
ated by Dr. Julián Romero and Dr. Cecilia J. Hillard) and their wild-type 
controls (8–12 weeks old) [27]. eGFP-CB2R mice result in the expression 
of the enhanced green fluorescent protein (eGFP) reporter gene under 
the control of the endogenous mouse CB2R promoter. eGFP-CB2R mice 
were backcrossed for at least five generations to C57BL/6 J mice. Mice 
were housed in cages holding a maximum of 5 mice per cage and 
maintained in a temperature (21.1 ± 1 ºC)- and humidity (55 ±
10%)-controlled room. Mice implanted with unilateral or bilateral 
cannulae were individually housed to avoid cannulae shifting or 
removal. Food and water were available ad libitum. Lightning was 
maintained in 12 h light/dark cycles (light on at 8:00 AM and off at 8:00 
PM). All experiments were performed during the light phase. Mice were 

handled daily for 3 days before the beginning of the experiments. All 
behavioural experiments were performed under blind conditions. 
Experimental procedures were conducted in the animal facilities of 
Universidad Francisco de Vitoria in Madrid, Spain, in accordance with 
the guidelines of the European Communities Directive 2010/63/EU and 
the Spanish Regulations RD 1201/2005 and 53/2013 regulating animal 
research and approved by the local ethical committee (CEEA-UFV). 

2.2. Drugs 

OXA (synthesized by Dr. David Andreu, Proteomics and Protein 
Chemistry, UPF, Barcelona) was dissolved in physiological saline and 
administered by intracerebroventricular (i.c.v.) route at 0.75nmol⋅µl− 1 

or intra-BLA (0.375nmol/0.5 µl/side). This dose was based on previous 
studies [8]. The FAAH inhibitor URB597 (3 mg⋅kg− 1) (Sigma) and the 
MAGL inhibitor JZL184 (8 mg⋅kg− 1) (Tocris), dissolved in physiological 
saline and in a solution of 15% dimethyl sulfoxide (DMSO), 5% Tween 
and 80% saline respectively, were administered by intraperitoneal (i.p.) 
route (5 ml⋅kg− 1 body weight). The DAGL inhibitor O7460 (synthesized 
by Dr. Vincenzo Di Marzo, Pozzuoli, Italy) was dissolved in 10% DMSO 
and 90% saline, and a volume of 1 µl was administered i.c.v. at 1 µg⋅µl− 1. 
The CB1R and CB2R antagonists, rimonabant (0.1, 0.5 and 1 mg⋅kg− 1) 
(Tocris) and AM630 (0.5, 3 and 5 mg⋅kg− 1) (Sigma) respectively, were 
administered i.p. (10 ml⋅kg− 1 body weight). Rimonabant was dissolved 
in a solution of 5% ethanol, 5% cremophor and 90% saline. AM630 was 
dissolved in a solution of 10% DMSO, 10% Tween 80% and 80% saline 
for i.p. and in DMSO/saline (2:1) for intra-BLA infusion (3 µg/0.5 
µl/side). The CB2R agonist JWH133 (2 mg⋅kg− 1) (Tocris) was dissolved 
in a solution of 10% DMSO, 10% Tween 80% and 80% saline, and 
administered by i.p. route (10 ml⋅kg− 1 body weight). This dose was 
based on previous studies [28]. Ketamine hydrochloride (7.5 mg⋅kg− 1) 
and dexmedetomidine hydrocloride (0.5 mg⋅kg− 1) were mixed and 
dissolved in saline, and administered i.p. (6 ml⋅kg− 1 body weight). 

2.3. Behavioural experiments 

2.3.1. Contextual fear conditioning and extinction 
Mice were contextually fear-conditioned as performed in preceding 

experiments and based on previous results of our group [8,10]. The test 
chamber (LE116, Panlab) was made with black methacrylate walls and a 
transparent front door. This chamber (25 ×25×25 cm) was located in
side a soundproof module with a ventilation fan in order to provide a 
background noise and attenuate surrounding sounds. The chamber floor 
was constructed of parallel stainless-steel bars of 2 mm of diameter 
spaced at 6 mm intervals and was connected to a scrambled shock 
generator (LE100–26 module, Panlab). A high-sensitivity weight trans
ducer (load cell unit) was used to record and analyse the signal gener
ated by the animal movement intensity. Experimental software 
PACKWIN V2.0 automatically calculated the percentage of immobility 
time for each experimental phase. Before each trial, the chamber floor 
and walls were cleaned with 70% ethanol and then water to avoid ol
factory cues. On the conditioning session, mice were individually placed 
in the chamber during 180 s before the exposure to the first uncondi
tioned stimulus (US) in the absence of any stimulus to habituate mice to 
the new environment. After the US (0.7 mA footshock for 1 s), mice were 
left for 60 s to associate the US with the conditioned stimulus. A second 
shock was given and then mice remained in the chamber for additional 
60 s. Fear extinction trials (E1-E5) were performed 24, 48, 72, 96 and 
120 h after the conditioning day. 

To study the consolidation of fear extinction, pharmacological 
treatments were administered immediately after the extinction session, 
except OXA which was administered 20 min later. Fear memory was 
assessed as the percentage of time that mice spent freezing during the 
first 3 min of each 5-minutes trial. Freezing behaviour, a rodent’s nat
ural response to fear, was automatically evaluated and defined as 
complete lack of movement, except for breathing for more than 800 ms. 

M. Ten-Blanco et al.                                                                                                                                                                                                                           
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Data from fear extinction were expressed as percentage of freezing 
behaviour and as area under the curve (AUC). AUC was calculated by 
using a standard trapezoid method, AUC = [0.5 × (B1 + B2) × h] + [0.5 
× (B2 + B3) × h] + … [0.5 × (Bn+ Bn+1) × h], where Bn were the 
percentage of freezing behaviour for each mouse and h was the time 
(days) passed between the consecutive measurements. Biochemical 
studies were carried out after the second extinction trial. 

2.3.2. Locomotor activity 
Locomotor activity was evaluated as previously reported [8]. 

Changes in locomotor activity were assessed by using locomotor activity 
boxes (27 ×27×21 cm, Cibertec). Mice were placed in locomotor cages 
with low luminosity. Activity was measured as the total number of 
infrared beams crossed by the animal every 5 min for 20 min. 

2.4. Stereotaxic surgery and infusion procedure 

Surgical procedures for i.c.v. infusion of OXA and intra-BLA 
administration of AM630 and OXA were performed as previously re
ported [8]. 

2.4.1. Intracerebroventricular infusion 
Mice were anesthetized with a ketamine/dexmedetomidine mixture 

and positioned in a stereotaxic frame (KOPF Instruments). A small hole 
was drilled on the left or the right side of the skull randomly and an 
unilateral cannula (26 gauge, Plastics One) was implanted vertically into 
the left/right lateral ventricle according to Paxinos and Franklin [29] 
(from bregma: AP, − 0.20 mm; ML, +/-1.00 mm; DV, 2.25 mm). The 
cannula was subsequently fixed to the skull with dental cement and 
closed with a dummy cap (33-gauge internal cannula, Plastics One). 
Mice were housed individually and allowed 3 days of post-operative 
recovery before behavioral experiments began. Microinjection proced
ure of OXA (0.75 nmol⋅µl) was performed by connecting the cannula of 
freely moving mice to an injection cannula (33-gauge internal cannula, 
Plastics One) connected to a polyethylene tubing (PE-20, Plastics One) 
attached to a 10 µl microsyringe (Model 1701 N SYR, Cemented NDL, 26 
ga, 2 in, point style 3, Hamilton Company). A total volume of 1 µl was 
injected at a constant rate of 1 µl⋅min by using a microinfusion pump 
(Harvard Apparatus, Holliston). The injection cannula was removed 1 
min after OXA infusion to prevent drug reflux. After completion of the 
behavioral experiments, 0.05% methylene blue solution (Sigma) was 
infused to check the correct position of the cannula. Only those mice 
with correct injection sites were included in the statistical analysis. 

2.4.2. Intra-amygdala microinjection 
Stereotaxic surgery was performed as explained above. Bilateral 

guide cannulae (26 gauge, Plastics One) were implanted vertically into 
the basolateral amygdala (BLA) according to Paxinos and Franklin [29] 
(from bregma: AP, − 1.70 mm; ML, +/-3.35 mm; DV, − 3.00 mm). Mi
croinjections of AM630 (3 µg/0.5 µl/side) and OXA (0.375 nmol//0.5 
µl/side) were performed by inserting an injection cannula (33 gauge, 
Plastics One) into the guide cannula, which extended 1 mm beyond to 
reach the BLA. Drugs and vehicles were delivered at a constant rate of 
0.5 µl⋅min− 1 during 1 min. Injection cannula was removed from the 
guide cannula 1 min after infusion to prevent drug reflux. After 
completion of the behavioral experiments, coronal sections of each brain 
were stained with toluidine blue and the injection sites were histologi
cally verified to be within the BLA. Only those mice with correct injec
tion sites were included in the statistical analysis. 

2.5. Measurement of endocannabinoid levels 

Endocannabinoid quantification was performed as previously re
ported [30]. Tissues were homogenized in 5 vol of chlor
oform/methanol/Tris–HCl 50 mM (2:1:1) containing 1 pmol of 
d8-anandamide (AEA) and d5–2-arachidonoylglycerol (2-AG). 

Deuterated standards were synthesized from d8-arachidonic acid and 
ethanolamine or glycerol, or from d4-ethanolamine. Homogenates were 
centrifuged at 13,000 g for 16 min (4 ◦C), the aqueous phase plus debris 
were collected and extracted again twice with 1 vol of chloroform. The 
organic phases from the three extractions were pooled and the organic 
solvents evaporated in a rotating evaporator. Lyophilized extracts were 
resuspended in chloroform/methanol 99:1 by vol. The solutions were 
then purified by open bed chromatography on silica. Fractions eluted 
with chloroform/methanol 9:1 by vol. (containing AEA and 2-AG) were 
collected and the excess solvent evaporated with a rotating evaporator, 
and aliquots analyzed by isotope dilution-liquid chromatogra
phy/atmospheric pressure chemical ionization/mass spectrometry 
(LC-APCI–MS) and allowing the separations of 2-AG and AEA. MS 
detection was carried out in the selected ion monitoring mode using m/z 
values of 356 and 348 (molecular ion +1 for deuterated and undeu
terated AEA), and 384.35 and 379.35 (molecular ion +1 for deuterated 
and undeuterated 2-AG). Values were expressed as pmol or fmol per mg 
of lipid extract. 

2.6. Quantitative RT-PCR analysis 

Amygdala, prefrontal cortex and hippocampus tissues were extracted 
10 min after the end of the extinction trial and immediately frozen at −
80ºC. Total RNA was purified with the RiboPure™ Kit (Invitrogen) for 
amygdala and prefrontal cortex, and the RNeasy Mini Kit (QIAGEN) for 
hippocampus, according to the manufacturer’s instructions. Reverse 
transcription was performed with 0.8 µg of total RNA and the Super
Script™ II Reverse Transcriptase (Invitrogen). PCR reactions were 
conducted using PrimePCR™ Probe Assay (Bio-Rad) to quantify mRNA 
levels for DAGLα (Unique Assay ID: qMmuCIP0032590), MAGL (Unique 
Assay ID: qMmuCIP0042348), NAPE-PLD (Unique Assay ID: qMmu
CIP0035707), FAAH (Unique Assay ID: qMmuCEP0055480), CB1R 
(Unique Assay ID: qMmuCEP0038879), CB2R (Unique Assay ID: 
qMmuCEP0039299) and CX3CR1 (Unique Assay ID: qMmu
CEP0058111) using GAPDH expression (Unique Assay ID: qMmu
CEP0039581) as endogenous control gene for normalization. PCR assays 
were carried out with the CFX Connect Real-Time PCR Detection System 
(Bio-Rad). The fold changes in gene expression of OXA-treated animals 
in comparison with controls were calculated using the 2-ΔΔCt method. 

2.7. Tissue preparation, immunofluorescence and image analysis 

Immunofluorescence was performed as previously reported [27]. 

2.7.1. Tissue preparation for immunofluorescence 
Mice were deeply anesthetized 30 min after the extinction trial by i. 

p. injection of the ketamine/dexmedetomidine solution and fixed by 
intracardiac perfusion with cold phosphate buffer saline (PBS) followed 
by freshly prepared cold 4% paraformaldehyde. Then, the brain was 
post-fixed overnight in the same fixative and dehydrated by sequential 
transfer to 15% and 30% sucrose solutions. Coronal frozen sections of 
30 µm thickness were obtained in a cryostat from 0.82 to − 1.82 mm 
relative to bregma for BLA, from 1.98 to 1.54 mm relative to bregma for 
prefrontal cortex and from − 1.46 to − 2.18 mm relative to bregma for 
hippocampus. Brain sections were preserved in cryoprotective solution 
until use. 

2.7.2. Immunofluorescence 
Floating brain sections were washed with tris buffer saline (TBS) 

before overnight incubation at 4 ºC with the designated primary anti
bodies diluted in TBS containing 1% bovine serum albumin (BSA, 
Sigma) and 1% Triton X-100 (Sigma). Antibodies used in this study were 
chicken antibody against green fluorescent protein (GFP) (1:1500, 
Abcam) and rabbit polyclonal antibody to Iba1 (1:1000, Wako). After 
primary antibody incubations, sections were washed three times in TBS 
followed by incubations with designed secondary antibodies at 37 ºC for 
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2 h. Secondary antibodies used in this study were Alexa 488-conjugated 
goat anti-chicken IgY and Alexa 555-conjugated goat anti-rabbit IgG 
(both from Invitrogen). Slices were washed three times in TBS, mounted 
on subbed slides, air dried, and coverslipped using Fluoromount-G 
(Invitrogen). 

2.7.3. Image analysis 
The stained sections were analysed at 10 x objective using the up

right microscope Nikon 90i (Nikon and Axioimager M2, Zeiss) equipped 
with a DXM 1200 F camera. Images (1024 × 1024 pixels) were obtained 
by using two different laser lines (488 and 561 nm) and further analysed 
in ImageJ software. GFP+ cells were counted (cells per area) in coronal 
sections of BLA (from − 0.82 to − 1.82 mm relative to bregma), pre
frontal cortex (from 1.98 to 1.54 mm relative to bregma) and hippo
campus (from − 1.46 to − 2.18 mm relative to bregma). Colocalization of 
GFP with microglial cells was quantified using the ImageJ manual par
ticle counting option. The option “freehand selections” was used to limit 
the area of BLA and the microglial soma perimeter. For prefrontal cortex 
analysis, a 540 µm side square region of interest (ROI) was delimited for 
quantification. Four to six images per brain area of each animal were 
analysed. 

2.8. Microglial depletion through chow treatment 

The colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 
was provided by Plexxikon (Plexxikon Inc) and formulated in AIN-76A 
chow at dose of 1200 parts per million (Research Diets). Blockade of 
maintained CSF1R induces continuous microglial depletion. C57BL/6 
mice received PLX5622 or control chow for 4 days after stereotaxic 
surgery recovery and throughout the behavioural test. The selected dose 
and duration of PLX5622 treatment were based on previous studies 
showing 80% microglial depletion with the same dose and similar 
treatment duration [31]. 

2.9. Statistical analysis 

Comparisons between two groups were assessed by Student’s t tests. 
Multiple-group comparisons were performed by one-way or two-way 
analysis of variance (ANOVA), as appropriate. Repeated-measurement 
ANOVA was used for serial freezing and locomotion responses. Subse
quent Fisher’s LSD post-hoc test was only used when ANOVA interaction 
effects were significant. Pearson correlation coefficient was used to 
analyse the strength of relationship between two variables. All data were 
expressed as mean ± SEM. The statistical analysis was performed using 
Statistica (StatSoft) software. The level of significance was p < 0.05 in 
all experiments. 

3. Results 

3.1. Impairment of fear extinction induced by OXA is mediated by 2-AG 

First, we evaluated the effect of 2-AG and AEA in the extinction of 
fear memories by inhibiting the activity of monoacylglycerol lipase 
(MAGL) and fatty acid amide hydrolase (FAAH), the enzymes that 
degrade 2-AG and AEA respectively, in a contextual fear conditioning 
paradigm (Fig. 1A). The MAGL inhibitor JZL184 (8 mg⋅kg− 1, ip), but not 
the FAAH inhibitor URB597 (3 mg⋅kg− 1, ip), significantly impaired fear 
extinction as showed the increase of freezing behaviour and AUC 
(Fig. 1B,C) when compared to the control group. Locomotor activity was 
not modified in mice 24 h after acute administration of JZL184 (8 
mg⋅kg− 1, ip) (Fig. S1), demonstrating that the changes observed in 
freezing behaviour were not due to unspecific effects on locomotion. 
OX1R activation in response to OXA promotes diacylglycerol (DAG) 
production which in turn is used by diacylglycerol lipases (DAGL) as a 
substrate for 2-AG synthesis [26,32]. Interestingly, the pretreatment 
with the specific DAGL inhibitor O7460 (1 µg⋅µl− 1, icv) before OXA 

(0.75nmol⋅µl− 1, icv) (Fig. 1A) prevented the impairment of fear 
extinction induced by the neuropeptide (Fig. 1D,E). Taken together, 
these results suggest that OXA recruits 2-AG to regulate fear extinction. 

Next, we studied whether acute OXA infusion, at the same dose that 
produces impairment of fear extinction, increases 2-AG levels in 
amygdala, prefrontal cortex and hippocampus, key brain regions related 
to contextual fear regulation [33]. An enhancement of 2-AG was 
observed in the amygdala 10 min, but not 30 min, following OXA 
administration (Fig. 1F). In the prefrontal cortex, 2-AG increased 
30 min, but not 10 min, after OXA injection (Fig. 1G). Surprisingly, a 
decrease of 2-AG was found in the hippocampus 30 min after OXA 
infusion (Fig. 1H). There were no significant differences between saline 
and OXA treatment groups at 60 min (Fig. S2), while AEA levels were 
not modified in any brain area at the different time points analysed 
(Fig. S3 and S4). All together, these data suggest that OXA induces 
resistance to fear extinction through increased levels of 2-AG, probably 
in the amygdala. 

3.2. Impaired fear extinction is associated with increased 2-AG levels in 
the amygdala and hippocampus 

To further study the role played by 2-AG in the extinction deficit 
exerted by OXA, we measured endocannabinoid levels just before and 
10 min after the second extinction session in mice treated with saline or 
OXA (0.75nmol⋅µl− 1, icv) after the first extinction trial (Fig. 2A). As 
expected, OXA impaired fear extinction in comparison with control mice 
(Fig. 2B). No changes in 2-AG levels were observed between groups in 
any brain area before the extinction session (Fig. 2C,D,E). Notably, 2-AG 
levels increased in the amygdala and hippocampus (Fig. 2C,E), but not in 
the prefrontal cortex (Fig. 2D), after the extinction session in animals 
treated with OXA that do not extinguish fear (Fig. 2B). Indeed, a sig
nificant correlation between fear memory (freezing values) and 2-AG 
levels was observed in the amygdala (Fig. 2F). No correlation was 
found neither in the prefrontal cortex nor in the hippocampus (Fig. S5). 
OXA did not modify AEA levels analysed before and after the extinction 
session in any brain region (Fig. S6). These results suggest that an 
optimal level of 2-AG is required for appropriate processing of fear re
sponses and that high amygdalar and hippocampal 2-AG levels induced 
by OXA infusion are related to extinction deficits. 

3.3. Impairment of fear extinction induced by OXA is associated with 
increased expression of CB2R in the amygdala 

Given the role played by 2-AG in the extinction deficit induced by 
OXA, we determined the effects of OXA (0.75nmol⋅µl− 1, icv) on gene 
expression of the endocannabinoid-synthesizing and degrading en
zymes, as well as CB1R and CB2R. Brain tissue was removed 10 min after 
the second extinction session, in OXA- or saline-treated mice after the 
first session. In the amygdala, OXA infusion increased the mRNA 
encoding for DAGLα (Fig. 3A), but not MAGL, suggesting that the 
enhancement of 2-AG previously observed is due to the increase in the 
synthesis of this endocannabinoid. However, N-acyl phosphatidyletha
nolamine phospholipase D (NAPE-PLD) expression, but not FAAH, was 
also elevated after OXA treatment (Fig. 3A), indicating that increased 
expression of AEA biosynthetic enzymes was not sufficient alone to 
cause here elevation of the levels of the corresponding endocannabi
noid. Notably, quantitative RT-PCR analysis showed an increase of CB2R 
expression (~53%), but not CB1R, in the amygdala of mice treated with 
OXA that are resistant to fear extinction (Fig. 3A). By contrast, no 
changes were observed in the expression of any of these genes either in 
the prefrontal cortex or the hippocampus (Fig. 3B,C). 

To study the specific location of the CB2R in the amygdala, we used 
the recently characterized eGFP-CB2R mice [27], in which the expres
sion of enhanced green fluorescent protein (eGFP) is under the control of 
the endogenous mouse CB2R promoter. These mice were treated with 
saline or OXA (0.75nmol⋅µl− 1, icv) after the first session trial, and brain 
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Fig. 1. Impaired fear extinction induced by OXA is modulated by 2-AG. (A) Schematic representation of the experimental design for behavioural tests. (B,C) Time 
course of the freezing levels during contextual extinction trials (interaction day x treatment: F8,120 = 2.28, p < 0.05) (B) and AUC values (treatment effect: F2,30 =

7.17, p < 0.01) (C) in mice treated immediately after each extinction session with JZL184 (8 mg⋅kg− 1, ip), URB597 (3 mg⋅kg− 1, ip) or VEH (n = 8− 3 mice per group). 
(D,E) Time course of the freezing levels during contextual extinction trials (day x pretreatment x treatment interaction (F4,128 = 3.16, p < 0.05) (D) and AUC values 
(pretreatment x treatment interaction (F1,32 = 4.11, p < 0.05) (E) in mice treated with O7460 (1 µg⋅µl, icv) immediately after each extinction session, 20 min before 
OXA (0.75 nmol⋅µl− 1, icv) infusion (n = 8–10 mice per group). (F,G,H) Levels of 2-AG in amygdala (F2,14 = 6.56, p < 0.01) (F), prefrontal cortex (F2,15 = 4.26, 
p < 0.05) (G) and hippocampus (F2,15 = 5.56, p < 0.05) (H), in homogenates extracted 10 and 30 min after acute OXA (0.75nmol⋅µl− 1, icv) infusion (n = 5–6 mice 
per group). Data are expressed as mean ± SEM. *p < 0.05, **p < 0.01 (compared with VEH in (B,C), VEH-SAL in (D,E) and SAL in (F,G,H)); #p < 0.05, ##p < 0.01 
(comparison with O7460-OXA group). OXA: orexin-A; VEH: vehicle; SAL: saline; E1-E5: extinction trials 1–5; AUC: area under the curve; 2-AG: 2- 
arachidonoylglycerol. 
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tissue was perfused 30 min after the second extinction session (Fig. 3D). 
Additional control mice were injected with saline or OXA and perfused 
24 h later without exposing to footshock (Fig. 3D). In agreement with 
quantitative RT-PCR analysis, an enhancement of eGFP signal in the BLA 
(~29%) was found in mice infused with OXA 20 min after the first 
extinction session in comparison with saline-treated mice (Fig. 3E,J), 
suggesting an association between impaired extinction and increased 
eGFP (CB2R) expression. Interestingly, most of the eGFP+ cells (~80%) 
co-localized with Iba1, a commonly used marker of microglia (Fig. 3H, 
J), indicating that CB2R-dependent eGFP expression takes place mainly 
in microglial cells. Moreover, a significant increase in the perimeter of 

microglia soma was observed in eGFP+ cells (Fig. 3I), independently of 
saline or OXA treatment. This result indicates that the expression of 
CB2R is associated with a shift of microglia morphology to a reactive 
state which is characterized by larger amoeboid soma [34]. No changes 
in eGFP signal were observed either in the prefrontal cortex or the 
hippocampus due to OXA infusion (Fig. 3F,G). Basal expression of CB2R 
was scarce as shown by the low eGFP immunoreactivity in mice that 
were not exposed to footshock, in the different brain areas evaluated 
(Fig. 3E,F,G). Moreover, OXA administration by itself did not modify 
CB2R expression (Fig. 3E,F,G). Taken together, these data suggest that 
fear extinction deficits induced by OXA are associated with increased 

Fig. 2. High levels of 2-AG in the amygdala and hippocampus are associated with impaired fear extinction. (A) Schematic representation of the experimental design 
for behavioural test. OXA (0.75 nmol⋅µl− 1, icv) or SAL were injected 20 min after E1, and brain tissue was obtained immediately before or 10 min after E2. (B) Time 
spent freezing by SAL- and OXA-treated mice during E1 and E2 (n = 9–12 mice per group) (interaction day x treatment: F1,19 = 7.69, p < 0.05). (C) 2-AG levels in the 
amygdala before (pre-extinction) and 10 min after (post-extinction) E2 (interaction experimental condition x treatment: F1,20 = 4.76, p < 0.05) (n = 6 mice per 
group). (D) 2-AG levels in the prefrontal cortex before (pre-extinction) and 10 min after (post-extinction) E2 (n = 6 mice per group). (E) 2-AG levels in the hip
pocampus before (pre-extinction) and 10 min after (post-extinction) E2 (interaction experimental condition x treatment: F1,18 = 7.32, p < 0.05) (n = 4–6 mice per 
group). (F) Correlation between fear memory (freezing values) and 2-AG levels in the amygdala after E2 in mice treated with SAL or OXA 20 min following E1. Data 
are expressed as mean ± SEM. *p < 0.05, **p < 0.01 (compared with SAL). OXA: orexin-A; SAL: saline; E1-E2: extinction trials 1–2; 2-AG: 2-arachidonoylglycerol. 
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expression of CB2R in microglial cells of the BLA. 

3.4. CB2R mediates the impairment of fear extinction induced by OXA 

2-AG is a full agonist of CB1R and CB2R [35]. Therefore, in view of 
the role played by 2-AG in the impairment of fear extinction induced by 
OXA, we studied the cannabinoid receptor subtype involved in this ef
fect. A low dose of the CB1R antagonist rimonabant (0.5 mg⋅kg− 1, ip) 
(Fig. 4A) was used to rule out an intrinsic effect of this cannabinoid 
ligand. Interestingly, pretreatment with rimonabant potentiated the 
resistance of fear extinction induced by OXA (0.75nmol⋅µl− 1, icv) 
(Fig. 4B,C). On the contrary, blockade of the CB2R with the specific 
antagonist AM630 (3 mg⋅kg− 1, ip) (Fig. 4D) completely prevented the 
extinction deficit induced by OXA (Fig. 4E,F). Locomotor activity was 

not modified in mice 24 h after acute administration of OXA 
(0.75nmol⋅µl− 1, icv), rimonabant (0.5 mg⋅kg− 1, ip), and AM630 
(3 mg⋅kg− 1, ip) (Fig. S7). Pretreatment with rimonabant or AM630 
before OXA also did not alter locomotion 24 h later (Fig. S7). Moreover, 
rimonabant injection (0.5 mg⋅kg-1, ip) before OXA (0.75nmol⋅µl− 1, icv) 
during four days did not induce changes in locomotor activity measured 
24 h after the last administration day (fifth day) (Fig. S8). These data 
demonstrate that the changes observed in freezing behaviour were not 
due to unspecific effects on locomotion. As a whole, these results are in 
agreement with the increased expression of CB2R previously observed in 
the BLA of mice treated with OXA. Moreover, the potentiation of the 
extinction deficits induced by the per se inactive dose of rimonabant 
could reflect a blockade of a compensatory and/or simultaneous facili
tation of fear extinction through activation of CB1Rs. 

Fig. 3. Impaired fear extinction induced by OXA is associated with increased expression of CB2R in the amygdala. (A,B,C) Gene expression of the endocannabinoid 
synthesizing and degrading enzymes, CB1R and CB2R in amygdala (A), prefrontal cortex (B) and hippocampus (C) 10 min after E2 in mice treated with SAL or OXA 
(0.75 nmol⋅µl, icv) 20 min following E1 (n = 8–12 mice per group). (D) Schematic representation of the experimental design for (E-I) biochemical experiments. (E,F, 
G) GFP staining in the basolateral amygdala (interaction experimental condition x treatment: F1,11 = 7.59, p < 0.05) (E), prefrontal cortex (experimental condition: 
F1,10 = 43.89, p < 0.001) (F) and hippocampus (experimental condition: F1,10 = 76.28, p < 0.001 (G) of eGFP-CB2R mice injected with SAL or OXA and sacrificed 
24 h later without receiving footshock, and mice exposed to fear conditioning and sacrificed 30 min after E2, treated with SAL or OXA 20 min following E1 (n = 4–5 
mice per group). (H) Percentage of GFP+ cells expressing Iba1 in the basolateral amygdala of eGFP-CB2R mice after E2, treated with SAL or OXA 20 min following E1 
(n = 4–5 mice per group). (I) Soma perimeter of microglia in GFP+ and GFP- cells in the basolateral amygdala of eGFP-CB2R mice sacrificed after E2, treated with 
SAL or OXA 20 min following E1 (eGFP effect: F1,14 = 37.35, p < 0.01) (n = 4–5 mice per group). (J) Representative images of the basolateral amygdala of eGFP- 
CB2R mice labelling GFP (green), Iba1 (red) and colocalization of GFP and Iba1. The sale bar represents 20 µm. Data are expressed as mean ± SEM. *p < 0.05, 
**p < 0.01 (compared with SAL or GFP- cells); ##p < 0.01 (compared with NO SHOCK group). OXA: orexin-A; SAL: saline; E1-E2: extinction trials 1–2. 
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Given that CB2Rs underpin the fear extinction deficits of OXA, as 
suggested by their blockade by AM630, direct-acting CB2R agonists 
should also promote fear extinction resistance. Accordingly, the CB2R 
agonist JWH133 (2 mg⋅kg− 1, ip), administered immediately after each 
extinction session, impaired fear extinction (Fig. 4G,H), confirming a 
novel functional role for CB2R in the modulation of fear extinction. 

3.5. Intra-amygdala infusion of the CB2R antagonist AM630 prevents the 
fear extinction deficits promoted by OXA 

Considering the behavioural and biochemical data previously 

described, we next evaluated the possible direct participation of CB2Rs 
located in the amygdala in the extinction deficits induced by OXA. For 
this purpose, mice were bilaterally implanted with cannulae into the 
BLA and received intra-structure microinjections of AM630 (3 µg/ 
0.5 µl/side) immediately after each contextual extinction session and 
OXA (0.375nmol/0.5 µl/side) 20 min later. Notably, pretreatment with 
AM630 into the BLA completely blocked the impaired fear extinction 
induced by intra-BLA infusion of OXA (Fig. 5A,B). Representative 
location of the injection sites and a characteristic image of bilateral 
cannulae positions (Fig. 5C,D) are shown. This result demonstrates an 
unequivocal role for amygdalar CB2R in the impaired fear extinction 

Fig. 4. Impaired fear extinction induced by OXA is mediated by CB2R. (A,D) Time course of the freezing levels during contextual extinction trials in mice treated 
with the CB1R antagonist rimonabant (0.1, 0.5 and 1 mg⋅kg− 1, ip) (A) or the CB2R antagonist AM630 (0.5, 3 and 5 mg⋅kg− 1, ip) (D) immediately after each extinction 
session (n = 12–24 mice per group). (B,C,E,F) Time course of the freezing levels during contextual extinction trials (interaction pretreatment x treatment: F1,35 =

4.53, p < 0.05) (B), (interaction pretreatment x treatment: F1,38 = 5.80, p < 0.05) (E) and AUC values (interaction pretreatment x treatment: F1,35 = 5.28, p < 0.05) 
(C), (interaction pretreatment x treatment: F1,38 = 5.78, p < 0.05) (F) in mice treated with rimonabant (0.5 mg⋅kg− 1, ip) (n = 7–12 mice per group) (B,C) or AM630 
(3 mg⋅kg− 1, ip) (n = 9–11 mice per group) (E,F) immediately after each extinction session, 20 min before OXA (0.75 nmol⋅µl− 1, icv) infusion. (G,H) Time course of 
the freezing levels during contextual extinction trials (day x treatment interaction: F4,88 = 2.27, p < 0.05) (G) and AUC values (H) in mice treated with the CB2R 
agonist JWH133 (2 mg⋅kg− 1, ip) immediately after each extinction session (n = 11–13 mice per group). Data are expressed as mean ± SEM. *p < 0.05, **p < 0.01 
(compared with VEH or SAL); #p < 0.05, ##p < 0.01 (comparison between pretreatments). OXA: orexin-A; VEH: vehicle; SAL: saline; E1-E5: extinction trials 1–5; 
AUC: area under the curve. 
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promoted by OXA. 

3.6. Microglial depletion blocks the increase of CB2R expression in the 
amygdala and prevents the impairment of fear extinction induced by OXA 

To determine the contribution of amygdalar CB2R located in 
microglial cells in the fear extinction deficit induced by OXA, we used 
PLX5622, a colony-stimulating factor-1 receptor (CSF1R) antagonist, to 
pharmacologically deplete microglia in animals undergoing the fear 
extinction process. To this aim, 4 days before starting behavioural 
evaluation, both saline- and OXA-treated mice were given either control 
chow or PLX5622 chow (Fig. 5A). Notably, the impairment of fear 
extinction induced by OXA (0.75nmol⋅µl− 1, icv) was totally prevented in 
mice exposed to PLX5622 chow (Fig. 5B,C). PLX5622 chow exposure 
during four days did not modify locomotor activity evaluated 24 h later 
(Fig. S1). In agreement with previous reports [31,36], microglia were 
successfully deleted in the amygdala as shown by the dramatic decrease 
in the expression of the microglial marker CX3CR1 (~80%) by quanti
tative RT-PCR analysis in saline and OXA-treated mice exposed to 
PLX5622 chow (Fig. 5D). Moreover, the enhanced expression of CB2R in 
the amygdala of mice infused with OXA and exposed to control diet that 
are resistant to fear extinction was markedly decreased (~80%) due to 
PLX5622 chow exposure (Fig. 5E). However, as previously observed, 
mRNA expression of CB1R was not affected by either OXA infusion or by 
PLX5622 chow treatment (Fig. 5F). These data suggest that CB2Rs 
located in microglial cells of the amygdala may be involved in the fear 
extinction deficits induced by overactivation of the orexin system. 
(Fig. 6). 

4. Discussion 

Our data demonstrate a pivotal role for 2-AG in the impairment of 
fear extinction induced by OXA. Moreover, we reveal that CB2Rs, spe
cifically those located in the amygdala, are involved in the extinction 
deficit triggered by OXA. 

Orexins are implicated in the modulation of emotional behaviours 
[3,4], and activation of this system is related to poor extinction of 
conditioned fear. In humans, patients with panic anxiety symptoms 

show elevated CSF orexin concentrations [16]. Consistent with this, 
OX1R blockade facilitated fear extinction in animal models [8,11] and 
reduced CO2-induced fear and anxiety symptoms in humans [37]. A 
better understanding of the neurobiological mechanisms by which 
orexins regulate fear extinction may provide novel pharmacologic tar
gets for PTSD or panic disorders. 

OXA triggers biosynthesis of the endocannabinoid 2-AG via the PLC/ 
DAG/DAGLα pathway downstream to OX1R [25], a Gq-protein-coupled 
receptor. Functional interactions between orexins and endocannabi
noids have been reported, mainly in the regulation of pain [38–40], food 
intake [41,42], and cocaine relapse [43]. A general mechanism of these 
interactions implies OXA-induced synthesis of 2-AG and subsequent 
CB1R-dependent retrograde inhibition of GABA release, leading to 
disinhibition of different pathways in brain areas such as the peri
aqueductal grey matter [38] or the ventral tegmental area [43]. 

We investigated the possible involvement of 2-AG in the fear 
extinction deficit induced by OXA given that the ECS also plays an 
important role in the modulation of the extinction of aversive memories 
[20,21]. O7460, a selective inhibitor of DAGLs [44], which are the en
zymes in charge of 2-AG biosynthesis, prevented the impaired fear 
extinction elicited by OXA. Consistently, an early increase of 2-AG, but 
not AEA, was observed in the amygdala after the infusion of OXA at the 
same dose that impairs extinction. At a later time point, 2-AG levels 
increased in the prefrontal cortex, maybe due to an indirect effect of 
OXA rather than direct orexin-mediated stimulation of 2-AG biosyn
thesis. Intriguingly, the levels of 2-AG dramatically decreased in the 
hippocampus at the same later time point. OXA administration could 
modify, through the alteration of 2-AG levels, the communication be
tween these brain regions that underlies important cognitive and 
behavioural functions [45]. Indeed, the ECS is a fundamental regulator 
in synaptic plasticity and functional connectivity in the 
hippocampus-prefrontal cortex pathway [46]. 

Our data also demonstrate that high levels of 2-AG are related to 
resistance of fear extinction. Thus, 2-AG levels increased in the amyg
dala and the hippocampus, but not in the prefrontal cortex, after the 
extinction session in mice treated with OXA that did not extinguish fear. 
A significant correlation between fear memory (freezing values) and 2- 
AG levels was also found in the amygdala. Moreover, in agreement with 

Fig. 5. Intra-amygdala infusion of the CB2R antagonist AM630 blocks the impaired fear extinction induced by intra-amygdala administration of orexin-A. Mice were 
bilaterally cannulated in the BLA, and after recovery were subjected to contextual fear conditioning and extinction procedure. (A,B) Time course of the freezing levels 
during contextual extinction trials (interaction pretreatment x treatment: F1,28 = 7.33, p < 0.05) (A), and AUC values (interaction pretreatment x treatment: F1,28 
= 7.79, p < 0.01) (B), in mice treated with AM630 (3 µg/0.5 µl/side) immediately after each extinction session, 20 min before OXA (0.375nmol/0.5 µl/side) infusion 
(n = 8 mice per group). (C) Schematic representation of microinjections sites within the BLA. The number of dots in the figure is fewer than the actual number of 
animals used because of data overlapping. (D) Photomicrograph of a coronal section of a representative subject showing bilateral injection sites within the mice BLA. 
Data are expressed as mean ± SEM. **p < 0.01 (compared with VEH or SAL); #p < 0.05; ##p < 0.01 (comparison between pretreatments). OXA: orexin-A; VEH: 
vehicle; SAL: saline; E1-E5: extinction trials 1–5; AUC: area under the curve. 
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previous reports [23], the administration of JZL184, an inhibitor of 
MAGL which is responsible for 2-AG degradation, impaired fear 
extinction. Therefore, an optimal level of 2-AG could be required for 
appropriate processing of fear responses since mice deficient in DAGLα, 
which have reduced 2-AG brain levels, also exhibit impaired fear 
extinction [47]. This is feature also of germ-free mice [48], which are 
also characterised by lower brain 2-AG levels [49]. On the other hand, 
CB1R knockout mice and wild-type mice treated with the CB1R antag
onist rimonabant show resistance to fear extinction [21] and consis
tently, AEA facilitates fear extinction by CB1R activation in the BLA 
[22]. Taken together, these data suggest potentially opposing functions 
of AEA and 2-AG on fear extinction modulation indicating that endo
cannabinoid signalling could play a more complex role in the regulation 

of fear learning processes than previously thought. 
We next explored the cannabinoid receptor subtype involved in the 

mediation exerted by 2-AG in OXA-induced impaired fear extinction 
given that this endocannabinoid, unlike AEA, is a full agonist at CB1R 
and CB2R [35]. In this study we propose that CB2Rs located in the 
amygdala are involved in the fear extinction deficit produced by OXA 
infusion. This proposal is based on the following observations: (i) mRNA 
levels of CB2R increased in the amygdala, but not in the prefrontal 
cortex or the hippocampus, in mice treated with OXA and resistant to 
fear extinction. Importantly, a similar increase of CB2R was observed in 
the BLA by using eGFP-CB2R mice. Most of CB2Rs colocalized with 
microglial cells, which were activated by the presence of this cannabi
noid receptor subtype; (ii) systemic and intra-BLA CB2R antagonism 

Fig. 6. Microglial and CB2R depletion in the amygdala with PLX5622 chow prevents the impairment of fear extinction induced by OXA. (A) Schematic represen
tation of the experimental design. (B,C) Time course of the freezing levels during contextual extinction trials (interaction day x diet x treatment: F4,152 = 3.78, 
p < 0.01) (B) and AUC values (interaction diet x treatment: F1,38 = 14.77, p < 0.001) (C) in mice treated with SAL or OXA (0.75 nmol⋅µl− 1, icv) 20 min after each 
extinction session, and exposed to control or PLX5622 chow (n = 10–11 mice per group). (D-F) Gene expression of CX3CR1 (diet effect: F1,31 = 204.81, p < 0.001) 
(D), CB2R (interaction diet x treatment: F1,30 = 13.28, p < 0.01) (E), and CB1R (F) in the amygdala of mice treated with SAL or OXA (0.75nmol⋅µl, icv) 20 min after 
each extinction session, and exposed to control or PLX5622 chow. Tissue was extracted 10 min after the last extinction session (n = 7–10 mice per group). Data are 
expressed as mean ± SEM. **p < 0.01 (compared with SAL); #p < 0.05, ##p < 0.01 (comparison between diets). OXA: orexin-A; CTRL: control diet; SAL: saline; E1- 
E5: extinction trials 1–5; AUC: area under the curve. 
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with AM630 completely prevented the extinction deficit of OXA; (iii) 
administration of the selective CB2R agonist, JWH133, induced 
impairment of fear extinction; (iv) microglia depletion in the amygdala 
following exposure to PLX5622 chow reduced the increased expression 
of CB2R in OXA-treated mice, and suppressed the extinction deficit 
induced by the neuropeptide, suggesting a participation of CB2Rs 
located in microglial cells of the amygdala in this effect. Conversely, 
CB1R mRNA was not altered by microglia reduction, consistent with the 
main localization of this receptor in neurons. 

Although the CB2R was initially regarded as a peripheral cannabi
noid receptor, several studies indicate that this receptor is expressed in 
the CNS mainly under pathological conditions. Thus, brain CB2Rs are 
highly inducible in response to various insults [50–53] and have been 
involved in the regulation of different neurobiological processes 
including cognition, and mood-related (anxiety, depression) behaviours 
[54]. A recent study has shown an anxiolytic-like effect of 2-AG through 
CB2R activation in a model of innate predator-induced fear [53]. While 
evidence for a role of CB2R in anxiolytic-like effects is still sparse, MAGL 
inhibition has emerged as a potential target for anxiolytic drug discovery 
[55]. However, based on our data and as previously suggested [23], 
2-AG signalling and CB2R could play a different role in the modulation 
of unconditioned anxiety and stress responses versus conditioned fear 
behaviours, emphasizing the complexity of the ECS involvement in 
emotional regulation. It is noteworthy that, while deletion of CB2R was 
found to disrupt the consolidation of foot-shock aversive memories 
using the step-down inhibitory avoidance test [56], the possible 
involvement of CB2R in fear extinction learning has not been previously 
reported. The apparent opposing role for CB1R and CB2R in the regu
lation of fear extinction could explain why unselective activation of 
cannabinoid receptors by, e.g., cannabis preparations or Δ9-tetrahy
drocannabinol, has so far been found of controversial efficacy [57,58] to 
treat these disorders, despite the beneficial role played therein by 
CB1Rs. 

Our data reveal that the impairment of fear extinction induced by the 
overactivation of the orexin system is mediated by 2-AG and amygdalar 
CB2R stimulation. Moreover, although the intervention of other cell 
types cannot be ruled out, our results suggest that microglial cells of the 
amygdala could be responsible of this effect. A growing body of evidence 
demonstrates that CB2R is up-regulated in microglia in the context of 
neuroinflammatory diseases [59]. Given the presence of CB2R in acti
vated microglial cells of the amygdala during the extinction process, 
future experimental work will be necessary to elucidate the conse
quences of CB2R-mediated microglial activation during fear extinction. 
Indeed, altered microglial function and inflammation may contribute to 
fear dysregulation [60], and has been suggested to underlie the 
impairment of fear extinction in germ-free or antibiotic-treated mice 
[48]. Levels of the proinflammatory cytokine TNFα increased in 
microglia from mice during retention of fear memory [61] while altered 
blood concentrations of cytokine such as IL6, IL1β or TNFα were asso
ciated with PTSD disorder in humans [62]. 

5. Conclusions 

In summary, our multidisciplinary study revealed the involvement of 
2-AG and CB2R located in the amygdala in the impaired fear extinction 
induced by overactivation of the orexin system. In addition, based on 
our biochemical and behavioural data, microglial CB2Rs in this brain 
area seem to be involved in this effect, although this statement needs to 
be confirmed by further research. The discovery of this novel mecha
nism warrants the study of new approaches in the treatment of disorders 
characterized by pathological fear. 
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Writing – review & editing; África Flores: Conceptualization, Formal 
analysis, Investigation, Methodology, Writing- original draft; Inmacu
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[27] A. López, N. Aparicio, M.R. Pazos, M.T. Grande, M.A. Barreda-Manso, I. Benito- 
Cuesta, et al., Cannabinoid CB(2) receptors in the mouse brain: relevance for 
Alzheimer’s disease, J. Neuroinflamm. 5 (1) (2018) 158. 

[28] L. Sun, R. Dong, X. Xu, X. Yang, M. Peng, Activation of cannabinoid receptor type 2 
attenuates surgery-induced cognitive impairment in mice through anti- 
inflammatory activity, J. Neuroinflamm. 14 (1) (2017) 138. 

[29] G. Paxinos, K.B.J. Franklin, The Mouse Brain in Stereotaxic Coordinates, Academic 
Press, San Diego, CA, USA, 2001. 

[30] L. Palomba, A. Motta, R. Imperatore, F. Piscitelli, R. Capasso, F. Mastroiacovo, et 
al., Role of 2-arachidonoyl-glycerol and CB1 receptors in orexin-a-mediated 
prevention of oxygen-glucose deprivation-induced neuronal injury, Cells 9 (6) 
(2020) 1507. 

[31] R.A. Rice, J. Pham, R.J. Lee, A.R. Najafi, B.L. West, K.N. Green, Microglial 
repopulation resolves inflammation and promotes brain recovery after injury, Glia 
65 (2017) 931–944. 

[32] V. Di Marzo, L. De Petrocellis, T. Bisogno, The biosynthesis, fate and 
pharmacological properties of endocannabinoids, Handb. Exp. Pharm. 168 (2005) 
147–185. 

[33] S. Maren, K.L. Phan, I. Liberzon, The contextual brain: implications for fear 
conditioning, extinction and psychopathology, Nat. Rev. Neurosci. 14 (2013) 
417–428. 

[34] R.A. Kohman, J.S. Rhodes, Neurogenesis, inflammation and behavior, Brain Behav. 
Immun. 27 (2013) 22–32. 

[35] S. Zou, U. Kumar, Cannabinoid receptors and the endocannabinoid system: 
signaling and function in the central nervous system, Int J. Mol. Sci. 19 (3) (2018) 
833. 

[36] A. Adeluyi, L. Guerin, M.L. Fisher, A. Galloway, R.D. Cole, S.S.L. Chan, et al., 
Microglia morphology and proinflammatory signaling in the nucleus accumbens 
during nicotine withdrawal, Sci. Adv. 5 (10) (2019) eaax7031. 

[37] G. Salvadore, P. Bonaventure, A. Shekhar, P.L. Johnson, B. Lord, B.T. Shireman, et 
al., Translational evaluation of novel selective orexin-1 receptor antagonist JNJ- 
61393215 in an experimental model for panic in rodents and humans, Transl. 
Psychiatry 10 (1) (2020) 308. 

[38] Y.C. Ho, H.J. Lee, L.W. Tung, Y.Y. Liao, S.Y. Fu, S.F. Teng, et al., Activation of 
orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception 

via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition, 
J. Neurosci. 31 (2011) 14600–14610. 

[39] H.J. Lee, L.Y. Chang, Y.C. Ho, S.F. Teng, L.L. Hwang, K. Mackie, et al., Stress 
induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling 
in the mouse periaqueductal gray, Neuropharmacology 105 (2016) 577–586. 

[40] Y.H. Chen, H.J. Lee, M.T. Lee, Y.T. Wu, Y.H. Lee, L.L. Hwang, et al., Median nerve 
stimulation induces analgesia via orexin-initiated endocannabinoid disinhibition in 
the periaqueductal gray, Proc. Natl. Acad. Sci. USA 115 (2018) E10720–E10729. 

[41] G. Morello, R. Imperatore, L. Palomba, C. Finelli, G. Labruna, F. Pasanisi, et al., 
Orexin-A represses satiety-inducing POMC neurons and contributes to obesity via 
stimulation of endocannabinoid signaling, Proc. Natl. Acad. Sci. USA 113 (2016) 
4759–4764. 

[42] N. Forte, S. Boccella, L. Tunisi, A.C. Fernández-Rilo, R. Imperatore, F.A. Iannotti, et 
al., Orexin-A and endocannabinoids are involved in obesity-associated alteration of 
hippocampal neurogenesis, plasticity, and episodic memory in mice, Nat. 
Commun. 12 (1) (2021) 6137. 

[43] L.W. Tung, G.L. Lu, Y.H. Lee, L. Yu, H.J. Lee, E. Leishman, et al., Orexins contribute 
to restraint stress-induced cocaine relapse by endocannabinoid-mediated 
disinhibition of dopaminergic neurons, Nat. Commun. 7 (2016) 12199. 

[44] T. Bisogno, A. Mahadevan, R. Coccurello, J.W. Chang, M. Allarà, Y. Chen, et al., 
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Figure S1. Locomotor activity of VEH-, JZL184 (8 mg·kg-1, ip)- and JWH133 (3 mg·kg-1, ip)-treated mice (n = 7-8 

mice per group), and mice exposed to CTRL and PLX5622 chow (n = 7 mice per group). Locomotion was 

automatically assessed 24 hours after drug administration every 5 minutes during 20 minutes in locomotor activity 

cages. Data are expressed as mean ± SEM. AUC, area under the curve; VEH, vehicle; CTRL, control. 
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Figure S2. 2-AG levels in amygdala, prefrontal cortex and hippocampus 60 minutes after OXA (0.75 

nmol·µl-1, icv) administration (n = 5-6 mice per group). Data are expressed as mean ± SEM. 2-AG, 

2-arachidonoylglycerol; SAL, saline; OXA, orexin-A. 

 

 

0

10

20

30

40

50

SALINE OXA

2
-A

G
 (

p
m

o
l/

m
g 

lip
id

 e
xt

ra
ct

)

0

7

14

21

28

35

SALINE OXA

2
-A

G
 (

p
m

o
l/

m
g 

lip
id

 e
xt

ra
ct

)

0

7

14

21

28

35

SALINE OXA

2
-A

G
 (

p
m

o
l/

m
g 

lip
id

 e
xt

ra
ct

)

60 min 

AMYGDALA 

PREFRONTAL CORTEX 

SAL 

60 min 

SAL 

HIPPOCAMPUS 

SAL 

60 min 



3 
 
 

 

 

 

 

 

 

Figure S3. AEA levels in amygdala, prefrontal cortex and hippocampus 10 and 30 minutes after 

OXA (0.75 nmol·µl-1, icv) administration (n = 5-6 mice per group). Data are expressed as mean ± 

SEM. AEA, anandamide; SAL, saline; OXA, orexin-A. 
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Figure S4. AEA levels in amygdala, prefrontal cortex and hippocampus 60 minutes after OXA (0.75 

nmol·µl-1, icv) administration (n = 5-6 mice per group). Data are expressed as mean ± SEM. 2-AG, 

2-arachidonoylglycerol; SAL, saline; OXA, orexin-A. 
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Figure S5. No correlation between 2-AG levels and fear memory (percentage of freezing) in the 

prefrontal cortex and hippocampus scored during E2 of POST-extinction groups. POST-extinction 

groups (SAL- and OXA-treated mice (0.75 nmol·µl-1, icv); n = 6 mice per group in the prefrontal 

cortex; n = 4-6 mice per group in the hippocampus) were sacrificed 10 minutes after E2. OXA, orexin-

A; SAL, saline; 2-AG, 2-arachidonoylglycerol; E2, extinction trial 2; NS, non-significance. 
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Figure S6.  AEA levels in amygdala, prefrontal cortex and hippocampus of SAL- and OXA-treated 

(0.75 nmol·µl-1, icv) mice in both PRE- and POST-extinction groups. PRE-extinction mice were 

sacrificed immediately before E2, while POST-extinction mice were sacrificed 10 minutes after E2 

(n = 6 mice per group). Data are expressed as mean ± SEM.; AEA, anandamide; SAL, saline; OXA, 

orexin-A; E1 and E2, extinction trials 1 and 2. 
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Figure S7. Locomotor activity of SAL- and OXA-treated mice (0.75 nmol·µl-1, icv) (n = 7 mice per 

group), mice treated with VEH, AM630 (3 mg·kg-1, ip) and rimonabant (0.5 mg·kg-1, ip) (n = 7-8 

mice per group), and mice treated with VEH, AM630 (3 mg·kg-1, ip) or rimonabant (0.5 mg·kg-1, ip) 

20 minutes before SAL or OXA (0.75 nmol·µl-1, icv) administration (n = 5-6 mice per group). 

Locomotion was automatically assessed 24 hours after drug administration every 5 minutes during 

20 minutes in locomotor activity cages. Data are expressed as mean ± SEM. AUC, area under the 

curve; SAL, saline; OXA, orexin-A; VEH, vehicle; RIM, rimonabant. 
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Figure S8. Locomotor activity of mice treated with VEH or rimonabant (0.5 mg·kg-1, ip) 20 minutes 

before SAL or OXA (0.75 nmol·µl-1, icv) administration during 4 days (n = 6 mice per group). 

Locomotion was automatically assessed 24 hours after the last drug administration every 5 minutes 

during 20 minutes in locomotor activity cages. Data are expressed as mean ± SEM. AUC, area under 

the curve; SAL, saline; OXA, orexin-A; VEH, vehicle; RIM, rimonabant. 
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In this article, we observed phenotypic alterations in anxiety, fear extinction and 

sensorimotor gating in the S1 mouse strain, in comparison to BL6 mice. These changes 

were associated with a dysregulation of the endocannabinoid system in diverse brain 

regions, thus highlighting a CB2R increased expression in the amygdala, prefrontal 

cortex and hippocampus. Then, we demonstrated the involvement of such cannabinoid 

receptor subtype in the three aforementioned behaviours. 
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CB2 cannabinoid receptor
expression is increased in 129S1/
SvImJ mice: behavioral
consequences

Marc Ten-Blanco, Inmaculada Pereda-Pérez,
Cristina Izquierdo-Luengo and Fernando Berrendero*

Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain

Genetic and environmental factors are implicated in the etiology of

neuropsychiatric diseases. Inbred mouse strains, including the 129S1/SvImJ

(S1), constitute important models to study the influence of genetic factors in

these conditions. S1 mice displayed anxiogenic-like behavior, impaired fear

extinction, and increased prepulse inhibition (PPI) of startle reflex compared to

C57BL/6J (BL6) mice. Given the role played by the endocannabinoid system

(ECS) in these responses, we evaluated the expression of the ECS components

in different brain regions in S1 mice. Gene expression levels of the cannabinoid

type-1 and type-2 receptors (CB1R and CB2R) and the endocannabinoid

metabolizing enzymes varied depending on the brain region evaluated.

Notably, CB2R expression markedly increased in the amygdala, prefrontal

cortex and hippocampus in S1 mice. Moreover, CB2R blockade with

SR144528 partially rescued the anxiogenic phenotype in S1 mice, while

CB2R activation with JWH133 potentiated the deficits in fear extinction and

the PPI of startle reflex in this mouse strain. These data suggest that CB2R is

involved in the behavioral alterations observed in S1 mice and underline the

importance of this cannabinoid receptor subtype in the regulation of certain

central nervous system disorders.

KEYWORDS

anxiety, fear, prepulse inhibition, CB2 cannabinoid receptor, mouse

Introduction

Genetic predisposition and environmental factors contribute to the development of

psychiatric disorders (Uher, 2014). However, clearly more research is needed to fully

understand the causes underlying individual differences in risk and resilience for these

diseases, including genetic variation. Diverse genetically inbred mouse strains exist, which

represent exceptional models for studying the influence of genetic factors in

neuropsychiatric disorders (Moore et al., 2020). In this sense, the inbred 129S1/SvImJ

(S1) mouse strain displays poor fear extinction (Hefner et al., 2008), dysregulated

hypothalamic-pituitary-adrenal axis function (Camp et al., 2012), behavioral

alterations associated with increased stress reactivity (Rodriguez et al., 2020), and

OPEN ACCESS

EDITED BY

Rafael Franco,
University of Barcelona, Spain

REVIEWED BY

Francisco Navarrete Rueda,
Miguel Hernández University of Elche,
Spain
Laura Caltana,
University of Buenos Aires, Argentina

*CORRESPONDENCE

Fernando Berrendero,
fernando.berrendero@ufv.es

SPECIALTY SECTION

This article was submitted to
Neuropharmacology,
a section of the journal
Frontiers in Pharmacology

RECEIVED 21 June 2022
ACCEPTED 25 July 2022
PUBLISHED 23 August 2022

CITATION

Ten-Blanco M, Pereda-Pérez I,
Izquierdo-Luengo C and Berrendero F
(2022), CB2 cannabinoid receptor
expression is increased in 129S1/SvImJ
mice: behavioral consequences.
Front. Pharmacol. 13:975020.
doi: 10.3389/fphar.2022.975020

COPYRIGHT

© 2022 Ten-Blanco, Pereda-Pérez,
Izquierdo-Luengo and Berrendero. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Brief Research Report
PUBLISHED 23 August 2022
DOI 10.3389/fphar.2022.975020



sleep disturbances (Fritz et al., 2021). Therefore, this strain may

represent a useful model to elucidate distinct and overlapping

mechanisms underlying different maladaptive behaviors.

Considering the range of possible neurobiological

mechanisms involved in the S1 mice phenotype, the

endocannabinoid system (ECS), composed of two main

receptors, the cannabinoid type-1 and type-2 receptors (CB1R

and CB2R, respectively), their ligands, i.e., the endocannabinoids

anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and the

enzymes involved in endocannabinoid metabolism (Mechoulam

and Parker, 2013) could be a promising candidate. This

neuromodulatory system plays a crucial role in different

neurophysiological processes. Disturbances in the ECS, mainly

related to CB1R dysfunction, are associated with several

psychiatric conditions such as posttraumatic stress disorder

(Mayo et al., 2022), anxiety (Petrie et al., 2021) or

schizophrenia (Leweke et al., 2018), among others.

Interestingly, CB2R, initially regarded as a peripheral

cannabinoid receptor, has been recently involved in the

regulation of different neurobiological processes including

cognition and mood-related (anxiety, depression) behaviors

(Banaszkiewicz et al., 2020). In agreement with potential

modifications of the ECS as a molecular mechanism

contributing to the phenotypic alterations observed in

S1 strain, the selective fatty acid amide hydrolase (FAAH)

inhibitor AM3506 rescued fear extinction deficits in these

mice (Gunduz-Cinar et al., 2013) by increasing AEA levels in

the amygdala. This effect was dependent on CB1R activation in

this brain region since the fear-reducing effects of systemic

AM3506 were blocked by intra-amygdala infusion of the

CB1R antagonist rimonabant (Gunduz-Cinar et al., 2013).

The aim of this study was to analyze the expression of the main

components of the ECS in several brain areas of S1 strain compared

to C57BL/6J (BL6) mice. Considering the main change observed, we

also evaluated the consequences of the modulation of CB2R in

S1 mice in key neurobehavioral responses such as anxiety, fear

conditioning and extinction, and sensorimotor gating.

Material and methods

Animals

Experiments were performed using male 129S1/SvImJ (S1)

mice (Jackson Laboratories) and C57BL/6J (BL6) mice (Charles

River) at 8–10 weeks old. BL6 mice were chosen as the

comparison strain in this study because they represent one of

the most commonly used mouse lines in neuroscience research.

Moreover, previous work evaluating fear extinction in the

S1 strain typically used BL6 mice as a reference, since they

exhibit proper fear extinction, acquisition and recall

(Rodriguez et al., 2020). Mice were housed by strain

(maximum 5 per cage) and maintained in a temperature

(21.1 ± 1°C)- and humidity (55% ± 10%)-controlled room

under a 12-h light/dark cycle (lights on at 8:00 a.m.). Food

and water were available ad libitum. All experiments were

performed during the light phase. Mice were handled daily for

3 days before the beginning of the experiment. Experimental

procedures were conducted in the animal facilities of

Universidad Francisco de Vitoria in Madrid, Spain, in

accordance with the guidelines of the European Communities

Directive 2010/63/EU and the Spanish Regulations RD 1201/

2005 and 53/2013 regulating animal research and approved by

the local ethical committee (CEEA-UFV).

Drugs

The CB2R agonist JWH133 (5 mg/kg) (Tocris) was dissolved

in a solution of 10% DMSO, 10% Tween 80 and 80% saline. The

CB2R antagonist SR144528 (3 mg/kg) (Sigma) was dissolved in a

solution of 5% ethanol, 5% cremophor and 90% saline. Both

drugs were administered by intraperitoneal (ip) route (10 ml/kg

body weight). Doses were based on previous studies in mice

(Busquets-Garcia et al., 2011; Donvito et al., 2017) in mice.

Elevated plus maze test

Anxiety-like behavior was assessed by using a black maze

elevated 30 cm above the ground with four arms (25 cm × 5 cm)

set in a cross from a neutral central square (5 cm × 5 cm). Two

opposite arms were delimited by walls (closed arms) and

illuminated with 4–6 lux, whereas the two other opposite arms

had unprotected edges (open arms) and were illuminated with

40–50 lux. Pharmacological treatments were administered

30 min before the test. The total number of visits to the

closed and open arms, and the cumulative time spent in each

arm were observed through a videocamera system during 5 min.

Cued fear conditioning and extinction

Mice were cued fear-conditioned as performed in preceding

experiments with slight modifications (Flores et al., 2014). The test

chamber (LE116, Panlab, Harvard Instruments) was made with

blackmethacrylate walls and a transparent front door. This chamber

(25 cm × 25 cm × 25 cm) was located inside a soundproof module

with a ventilation fan in order to provide a background noise and

attenuate surrounding sounds. The chamber floor was constructed

of parallel stainless-steel bars of 2 mm of diameter spaced at 6 mm

intervals andwas connected to a scrambled shock generator (LE100-

26 module, Panlab, Harvard Instruments). A high-sensitivity weight

transducer (load cell unit) was used to record and analyze the signal

generated by the animal movement intensity. Experimental software

PACKWIN V2.0 automatically calculated the percentage of
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immobility time for each experimental phase. Before each trial, the

chamber floor and walls were cleaned with 70% ethanol and then

water to avoid olfactory cues. On the conditioning session, mice

were individually placed in the chamber during 180 s before the

onset of three cue tones (3 kHz, 90 dB, 30 s long, 10 s between

tones), each one co-terminatingwith a footshock (0.7 mA, 1 s). After

the last cue tone, mice remained in the chamber for 10 s. Fear

extinction sessions (E1–E5) were performed 24, 48, 72, 96 and 120 h

after the conditioning day in a different context (transparent

Plexiglas cylinder surrounded by white walls and a smooth

floor). In E1, mice were habituated to the new context during

180 s, whereas in E2–E5 this habituation time was reduced to 60 s.

After the habituation, mice were re-exposed to the CS (4 cue tones,

30 s long, 10 s between tones). To study the fear extinction process,

pharmacological treatments were administered 30 min before each

extinction session. Fear memory was assessed as the percentage of

time that mice spent freezing during the 4 cue tones of each

extinction session. Freezing behavior, a rodent’s natural response

to fear, was automatically evaluated and defined as complete lack of

movement, except for breathing for more than 800 ms. Data from

fear extinctionwere expressed as percentage of freezing behavior and

as area under the curve (AUC). AUC was calculated by using a

standard trapezoid method, AUC = [0.5 × (B1 + B2) × h] + [0.5 ×

(B2 + B3) × h] + . . . [0.5 × (Bn + Bn + 1) × h], where Bn were the

percentage of freezing behavior for each mouse and h was the time

(days) passed between the consecutive measurements.

Prepulse inhibition of startle reflex

Prepulse inhibition (PPI) of startle reflex, a measure of

sensorimotor gating, was assessed by using the StartFear

Combined System (Panlab, Harvard Instruments). Mice

were daily habituated to a Plexiglas cylinder located inside

the sound-attenuating chamber for 5 min with background

white noise (65 dB) 4 days prior to the test. The test started

with 5 min habituation in the cylinder and, immediately after,

mice were exposed to 5 pulse trials (120 dB, white noise,

40 ms). These trials were performed for startle

accommodation and were excluded in the final analysis.

The experimental protocol consisted of 10 blocks with 6 or

12 trials each, randomly presented to mice with an inter-trial

interval of 7–23 s. Blocks consisted of: no stimulus (6×)

(background white noise), pulse alone (12×) (120 dB, white

noise, 40 ms), pulse preceded by 4 prepulse intensities (12×

each) (4, 8, 12 and 16 dB above background noise, 20 ms,

100 ms before pulse) and the prepulses alone (6× each). A

background white noise was generated throughout the whole

experiment. Pharmacological treatments were administered

30 min before the test. Startle amplitude was detected by

PACKWIN V2.0 software. Percent PPI was calculated as

follows: 100 × (startle response – prepulse inhibited startle

response) / startle response.

Quantitative RT-PCR analysis

Amygdala, prefrontal cortex and hippocampus tissues were

extracted in basal conditions and immediately frozen at −80°C.

These brain areas were chosen based on their implication in the

behavioral responses evaluated in this study. Total RNA was

purified with the RiboPure™ Kit (Invitrogen) for amygdala and

prefrontal cortex, and the RNeasy Mini Kit (QIAGEN) for

hippocampus, according to the manufacturer’s instructions.

Reverse transcription was performed with 0.9 μg of total

RNA and the SuperScript™ II Reverse Transcriptase

(Invitrogen). PCR reactions were conducted using

PrimePCR™ Probe Assay (Bio-Rad) to quantify mRNA

levels for: CB1R (Unique Assay ID: qMmuCEP0038879),

CB2R (Unique Assay ID: qMmuCEP0039299), DAGLα
(Unique Assay ID: qMmuCIP0032590), MAGL (Unique

Assay ID: qMmuCIP0042348), NAPE-PLD (Unique Assay

ID: qMmuCIP0035707) and FAAH (Unique Assay ID:

qMmuCEP0055480), using GAPDH expression (Unique

Assay ID: qMmuCEP0039581) as endogenous control gene

for normalization. PCR assays were carried out with the

CFX Connect Real-Time PCR Detection System (Bio-Rad).

The fold changes in gene expression of S1 in comparison

with BL6 mice were calculated using the 2−ΔΔCt method.

Statistical analysis

Comparisons between two groups were assessed by Student’s

t tests. Multiple-group comparisons were performed by one-way

analysis of variance (ANOVA). Repeated-measurement ANOVA

was used for serial freezing responses and startle amplitude

response between the different prepulse intensities. Subsequent

Fisher’s LSD post-hoc test was only used when ANOVA

interaction effects were significant. All data were expressed as

mean ± SEM. The statistical analysis was performed using

Statistica (StatSoft) software. The level of significance was p <
0.05 in all experiments.

Results

Anxiogenic-like behavior, impaired fear
extinction, and increased prepulse
inhibition of startle reflex in S1 mice

First, we carried out a direct comparison between S1 and

BL6 mice in several neurobehavioral responses. Unconditioned

anxiety was evaluated by using the elevated plus maze (EPM).

S1 mice showed an anxiogenic-like effect (p < 0.01) (Figure 1A)

as revealed the decrease of the percentage of time spent in open

arms. No changes were observed in the total number of entries

(Figure 1B). Cued fear conditioning was not modified in

Frontiers in Pharmacology frontiersin.org03

Ten-Blanco et al. 10.3389/fphar.2022.975020



S1 mice as showed similar freezing behavior between S1 and

BL6 strains in the E1 session (Figure 1C). However, as

previously reported (Hefner et al., 2008; Whittle et al.,

2010), fear extinction was impaired in S1 mice as revealed

the increase of freezing behavior (F4,116 = 8.95, p < 0.001) and

area under the curve (AUC) (p < 0.001) (Figures 1C,D) when

compared to BL6 strain. Then, we performed the PPI test to

study effects on sensorimotor gating. S1 mice showed a

significant increase in basal PPI (F3,69 = 3.43, p < 0.05) in

comparison with BL6 mice (Figure 1E). This effect was

significant at the prepulses of 12 (p < 0.01) and 16 dB (p <
0.001) above background of 65 dB (Figure 1E). The mean PPI

score was ~51% higher in S1 than in BL6 mice (p < 0.01)

(Figure 1F). This effect was independent of baseline changes in

startle amplitude (Figure 1G), discarding an impact of startle

reaction in the PPI modifications observed.

FIGURE 1
Anxiety-like behavior, impaired fear extinction and increased prepulse inhibition in S1 compared to BL6 mice. (A,B) Percentage of time spent in
the open arms (A) and total number of entries in both closed and open arms (B) of the elevated plus maze test (n = 6–9 mice per group). (C,D) Time
course (C) and AUC values (D) of the freezing levels during cued fear extinction trials (n = 14–16 mice per group). (E–G) Percentage of prepulse
inhibition (E), mean of the percentage of prepulse inhibition (F) and startle response amplitude (G) (n = 11–14 mice per group). Data are
expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (comparison between BL6 and S1). BL6: C57BL/6J mice strain; S1: 129S1/SvImJ mice
strain; E1–E5: extinction trials 1–5; AUC: area under the curve.
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Increased CB2 cannabinoid receptor
expression in the amygdala, prefrontal
cortex and hippocampus in S1 mice

Given the role played by the ECS in the regulation of the

behavioral responses altered in S1 mice, we evaluated basal gene

expression of CB1R and CB2R, and the endocannabinoid-

synthesizing and degrading enzymes in this mouse strain.

S1 mice presented lower gene expression level of CB1R in the

amygdala (p < 0.01) (Figure 2A), without changes either in the

prefrontal cortex (Figure 2G) or the hippocampus (Figure 2M)

compared to BL6 mice. Notably, quantitative RT-PCR analysis

showed a robust increase of CB2R mRNA levels in the amygdala

(~47%) (p < 0.001) (Figure 2B), prefrontal cortex (~67%) (p <
0.001) (Figure 2H), and hippocampus (~39%) (p < 0.001)

(Figure 2N) in S1 mice. The expression of the enzyme in

charge of 2-AG synthesis DAGLα was significantly decreased

in the amygdala (p < 0.05) (Figure 2C), prefrontal cortex (p <
0.001) (Figure 2I), and hippocampus (p < 0.001) (Figure 2O),

while MAGL expression (enzyme that degrades 2-AG) was only

reduced in the prefrontal cortex (p < 0.01) in S1 strain (Figure 2J),

with no differences in the amygdala (Figure 2D) and the

hippocampus (Figure 2P). Finally, we analyzed the mRNA

levels of NAPE-PLD and FAAH, the enzymes responsible for

the synthesis and degradation of AEA, respectively. A decrease in

the expression of NAPE-PLD was found in the three brain

regions evaluated (amygdala, p < 0.05, Figure 2E; prefrontal

cortex, p < 0.001, Figure 2K; hippocampus, p < 0.01, Figure 2Q).

The expression of FAAH was significantly decreased in the

prefrontal cortex (p < 0.01) (Figure 2L) and the hippocampus

(p < 0.001) (Figure 2R), while no differences were observed in the

amygdala (Figure 2F) in S1 mice.

Pharmacological modulation of CB2
cannabinoid receptors triggers behavioral
changes in S1 mice

In view of the unexpected and strong basal increased

expression of CB2R in S1 strain, we studied the consequences

of the modulation of this cannabinoid receptor subtype in the

phenotypic alterations previously observed in these mice. The

acute administration of the CB2R antagonist SR144528 partially

prevented the anxiogenic phenotype of S1 mice in the EPM test,

FIGURE 2
Changes in gene expression of the endocannabinoid system compounds in the S1 strain compared with BL6. Gene expression levels of the
CB1R and CB2R, the 2-AG metabolizing enzymes DAGLα and MAGL, and the AEA metabolizing enzymes NAPE-PLD and FAAH in amygdala (A–F),
prefrontal cortex (G–L) and hippocampus (M–R) in BL6 and S1 mice (n = 6–10 mice per group). Data are expressed as mean ± SEM. *p < 0.05, **p <
0.01, ***p < 0.001 (comparison between BL6 and S1). BL6: C57BL/6J mice strain; S1: 129S1/SvImJ mice strain.
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as revealed one-way ANOVA (F3,30 = 11.81, p < 0.001) and post

hoc comparison between S1 groups treated with vehicle or

SR144528 (p < 0.05) (Figure 3A). No modification was

observed in the total number of entries between these two

groups (Figure 3B). Moreover, the injection of the CB2R

agonist JWH133 did not alter anxiety-like behavior in S1 mice

(Figure 3A). In contrast, JWH133 potentiated the resistance of

cued fear extinction in S1 mice as showed the increase of freezing

behavior (F12,144 = 3.73, p < 0.001) (p < 0.05 at E2, E4 and E5) and

AUC (F3,36 = 7.05, p < 0.001) (p < 0.05) (Figures 3C,D) when

compared to S1 mice treated with vehicle. However, the

administration of SR144528 did not modify fear extinction in

S1 mice (Figures 3C,D). A significant increase of PPI of startle

reflex was observed by the administration of JWH133 in S1 strain

(F9,138 = 2.70, p < 0.01) (Figure 3E). Thus, post hoc comparison

revealed differences between S1 mice treated with vehicle or

FIGURE 3
CB2R is involved in the anxiety-like behavior, fear extinction deficits and increased prepulse inhibition response of the S1 mice strain compared
to BL6 mice. (A,B) Percentage of time spent in the open arms (A) and total number of entries in both closed and open arms (B) of the elevated plus
maze test in BL6 and S1 mice treated with the CB2R agonist JWH133 (5 mg/kg, ip) or the CB2R antagonist SR144528 (3 mg/kg, ip) 30 min before the
test (n = 8–9 mice per group). (C,D) Time course (C) and AUC values (D) of the freezing levels during cued fear extinction trials in BL6 and
S1 mice treated with JWH133 (5 mg/kg, ip) or SR144528 (3 mg/kg, ip) 30 min before each extinction session (n = 7–12 mice per group). (E–G)
Percentage of prepulse inhibition (E), mean of the percentage of prepulse inhibition (F) and startle response amplitude (G) in BL6 and S1mice treated
with JWH133 (5 mg/kg, ip) or SR144528 (3 mg/kg, ip) 30 min before the test (n = 10–15 mice per group). Data are expressed as mean ± SEM. *p <
0.05, **p < 0.01, ***p < 0.001 (comparison between BL6-VEH and S1-VEH); $p < 0.05 (comparison between S1-VEH and S1-SR144528); #p < 0.05,
##p < 0.01 (comparison between S1-VEH and S1-JWH133). BL6: C57BL/6Jmice strain; S1: 129S1/SvImJmice strain; E1-E5: extinction trials 1–5; AUC:
area under the curve.
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JWH133 at the prepulses of 4 (p < 0.01), 8 (p < 0.01), and 12 dB

(p < 0.05) above background of 65 dB (Figure 3E). An overall

increase of PPI due to JWH133 treatment was observed when

representing mean PPI score (F3,46 = 13.07, p < 0.001) (p < 0.01)

(Figure 3F). However, the magnitude of startle reflex was not

altered by JWH133 injection (Figure 3G).

SR144528 administration did not modify PPI behavior

(Figures 3E,F) nor startle amplitude (Figure 3G) in S1 mice.

Taken together, these results suggest that CB2R could take part of

the molecular mechanisms that underlie the phenotypic

alterations of the S1 strain.

Discussion

Our data show remarkable changes in the expression levels

of several components of the ECS in different brain regions in

S1 mice. Particularly interesting, CB2R expression was

strongly increased in the amygdala, prefrontal cortex and

hippocampus in this strain compared to BL6 mice. These

alterations suggest that CB2R could be involved in the

phenotypic characteristics observed in S1 mice. Indeed,

acute pharmacological modulation of CB2R induced

behavioral alterations in important neurobiological

processes in these mice. Future experiments evaluating the

effects of chronic CB2R agonists and antagonists in S1 mice

would be interesting since acute or chronic administration of

CB2R ligands could result in different responses (García-

Gutiérrez et al., 2012). The use only of male mice is a

limitation of this study as several reports show evidences

for sex differences in animal models of neurobehavioral

disorders (Palanza and Parmigiani, 2017).

Genetic differences between strains are likely to affect

several phenotypic features offering a powerful tool with

which to expand our knowledge about the factors that

influence psychiatric conditions. S1 inbred mice showed

higher innate anxiety compared to BL6 mice as revealed

the decrease of the percentage of time in open arms in the

EPM test. In agreement, these mice spent significantly less

time in the center of the open field (Rodriguez et al., 2020)

and in the light compartment in the light-dark box (Millstein

and Holmes, 2007) confirming an anxiogenic-like behavior.

Cued fear extinction was impaired in S1 mice relative to the

good-extinguishing BL6 strain, as previously established

(Hefner et al., 2008; Whittle et al., 2010). Finally, we

observed an increase of PPI of startle reflex in

S1 compared to BL6 mice without modification of the

startle amplitude. A high level of PPI was previously seen

in S1 mice in relation to BL6 strain (Millstein et al., 2006),

although no direct comparison between strains was

performed in this study. Considering that the ECS

participates in the regulation of anxiety (Petrie et al.,

2021), extinction of aversive memories (Mizuno and

Matsuda, 2021) and sensorimotor gating (Dissanayake

et al., 2013), this neuromodulatory system could contribute

to the phenotypic alterations observed in S1 mice.

Interestingly, we found important differences in the

mRNA levels of various components of the ECS between

S1 and BL6 mice in several brain areas.

Our results showed a significant reduction of CB1R and

NAPE-PLD expression in the amygdala of S1 strain which could

in part explain the anxiogenic phenotype and resistance of fear

extinction characteristic of these mice. In agreement, CB1R

knockout mice are anxiogenic (Martin et al., 2002) and show

strongly impaired extinction in auditory fear-conditioning tests

(Marsicano et al., 2002). The recently developed NAPE-PLD

inhibitor LEI-401 reduced AEA levels in the mouse brain and

impaired extinction of an aversive memory in BL6 mice (Mock

et al., 2020). Moreover, the systemic administration of the

selective FAAH inhibitor AM3506 rescued fear extinction

deficits in S1 mice (Gunduz-Cinar et al., 2013). This effect

was fully recapitulated by intra-amygdala infusion of

AM3506 by a mechanism involving CB1R (Gunduz-Cinar

et al., 2013), consistent with the changes observed in our

study. On the other hand, the expression of DAGLα also

decreased in the amygdala in S1 strain. This change could be

also related to the extinction deficits typical of this strain since

mice deficient in DAGLα, which have reduced 2-AG brain levels,

also exhibit impaired fear extinction (Jenniches et al., 2016).

DAGLα, NAPE-PLD and FAAH expression were also reduced in

the prefrontal cortex and hippocampus in S1 mice, brain areas

which are also important mediators of fear regulation and anxiety

(Maren et al., 2013). Future studies evaluating endocannabinoid

levels will help to clarify the possible functional relevance of the

changes in the expression of these enzymes in S1 strain.

Interestingly, CB2R expression was strongly enhanced in the

amygdala, prefrontal cortex, and hippocampus in S1 related to

BL6 mice. The increased expression of CB2R could be the result

of a compensation of the general reduced expression of the

synthesizing and metabolizing enzymes and associated

possible changes in endocannabinoid levels in S1 mice. This is

the case of other neurotransmission systems such as the opioid

system. Thus, marked region-specific up-regulation of the mu,

delta, and kappa opioid receptors was observed in mice lacking

the proenkephalin and prodynorphin genes (Clarke et al., 2003).

In any case, future experimental work will be necessary to

establish a possible relationship between the changes in

enzymes gene expression and the increased CB2R expression

observed in S1 mice. Although CB2R was initially considered as a

peripheral cannabinoid receptor, several recent studies suggest a

role of this receptor in several neuropsychiatric disorders

(Banaszkiewicz et al., 2020; Kibret et al., 2022). Contradictory

results have been obtained regarding the potential function of

CB2R in the regulation of anxiety-like behavior in both genetic

and pharmacological studies. Deletion of the CB2R produced an

anxiogenic-like response in the EPM test (Ortega-Alvaro et al.,
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2011), while CB2R conditional knockout mice in dopamine

neurons showed an anxiolytic-like phenotype in the same test

(Liu et al., 2017). CB2R overexpression in mice decreased

vulnerability to anxiety (García-Gutiérrez and Manzanares,

2011), but induced an impairment of the anxiolytic action of

alprazolam. Acute treatment with the CB2R antagonist

AM630 increased anxiety in Swiss ICR mice (García-Gutiérrez

et al., 2012), while the administration of the CB2R agonist

JWH133 did not produce any effect in the same study. Our

data suggest that the increased expression of CB2R found in the

amygdala, prefrontal cortex and hippocampus (brain areas

involved in regulating anxiety-like behaviors) in S1 mice could

be related to the anxiogenic phenotype of these mice. Thus, the

acute administration of the CB2R antagonist SR144528 partially

rescued the anxiogenic-like behavior in S1 mice. In this sense,

chronic treatment with AM630 reduced anxiety-like behavior in

the spontaneously anxious DBA/2J strain of mice (Yilmazer-

Hanke et al., 2003), suggesting that this cannabinoid receptor

may result a relevant target for the treatment of anxiety-like

disorders. Acute effects of AM630 in anxiety were not evaluated

in DBA/2J mice in this study (García-Gutiérrez et al., 2012).

S1 mice constitute a well-established model of impaired fear

extinction (Hefner et al., 2008; Whittle et al., 2010). Recently, a

novel role of amygdalar CB2R in the regulation of the extinction of

aversive memories has been reported in mice (Ten-Blanco et al.,

2022). The intra-amygdala infusion of the CB2R antagonist

AM630 blocked the fear extinction deficits induced by the

overactivation of the orexin/hypocretin system, while the

systemic administration of the CB2R agonist

JWH133 promoted fear extinction resistance (Ten-Blanco et al.,

2022). Therefore, the increase in CB2R mRNA levels observed in

three prototypical areas regulating fear (i.e., amygdala, prefrontal

cortex and hippocampus) in S1 mice could contribute to the

impaired fear extinction characteristic of this strain. Indeed,

JWH133 potentiated the extinction deficits in S1 mice, although

the CB2R antagonist SR144528 did not affect this behavioral

response. Congruent with this, fear extinction in S1 strain was

not improved by systemic treatment with the NMDA receptor

partial agonist d-cycloserine, known to facilitate extinction in

rodents and effective as an adjunct to exposure therapy in

human anxiety disorders (Davis et al., 2006). The inefficacy of

d-cycloserine or SR144528 in S1 mice could reflect usually

complex molecular mechanisms driving the extinction behavior

in this mouse strain (Hefner et al., 2008).

PPI of the startle reflex is a sensorimotor gating process that

reduces the startling response when a weaker sensory stimulus

precedes a sudden startling stimulus. An impairment in the PPI

response is observed in patients with schizophrenia (Mena et al.,

2016). Several studies present evidence of the contribution of

CB2R to the modulation of sensorimotor gating. Thus,

AM630 potentiated the reduction of PPI induced by both the

NMDA receptor antagonist MK801 and methamphetamine

(Ishiguro et al., 2010), although the CB2R antagonist did not

affect PPI on its own. In contrast to the pharmacological data,

CB2R knockout mice showed disrupted PPI at different prepulse

intensities (Ortega-Alvaro et al., 2011). On the other hand,

MK801-induced decrease in PPI was attenuated by the CB2R

agonists JWH015 (Khella et al., 2014) and HU-910 (Cortez et al.,

2022). These results are congruent with an involvement of CB2R

in the enhanced PPI observed in S1 mice. The expression of

CB2R was dramatically increased in the prefrontal cortex of

S1 strain, a brain area directly related to the modulation of

sensorimotor gating (Tóth et al., 2017). Moreover, the

administration of the CB2R agonist JWH133 enhanced the

PPI inhibition in S1 mice in comparison with S1 treated with

vehicle at different prepulse intensities.

In summary, our data reveal important changes in the

expression levels of different components of the ECS in S1 mice.

Particularly significant, the increased expression of CB2R observed

in this mouse strain could contribute to its behavioral alterations.

Elucidating the CB2R cell type location would shed light on the role

of this cannabinoid receptor in the different functions described

above. However, CB2R antibody nonspecificity strongly hinders its

identification (Atwood and Mackie, 2010). CB2R antagonism with

SR144528 partially rescued the anxiogenic-like behavior in S1 mice.

The CB2R agonist JWH133 did not enhance anxiety in S1 mice

possible due to a ceiling effect, as the percentage of time in open

arms was very low in these animals. On the other hand, the CB2R

agonist JWH133 worsened fear extinction and enhanced PPI of

startle reflex. SR144528 did not improve fear extinction or decrease

PPI in S1mice probably because of complex molecular mechanisms

driving the extinction behavior or the PPI in this mouse strain, as

previously suggested (Hefner et al., 2008). Our study also underlines

a role for the CB2R in the regulation of important functions of the

central nervous system.
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Humans are exposed to diverse traumatic events throughout life. Loss of our loved ones, 

a traffic accident, or witnessing a terrorist attack, are examples of such events that 

remain encoded in our memory for a long time or even forever. Unlike semantic (e.g., 

mathematics) or procedural (e.g., motor skills) memories, emotional memory might be 

unconsciously retained for the whole life without efforts. Even the neuroanatomical 

regions and molecular pathways involved are distinct among the different types of 

memories (Camina and Güell, 2017). This has been evolutionary preserved, since 

emotions warn us about rewarding factors, as well as potential dangers for our survival 

(Kensinger and Murray, 2012). In this latter case, emotional memory is referred to as 

fear or aversive memory, which constitutes the core element addressed in this thesis. 

In order to correctly overcome and extinguish fear memories, it is essential to identify 

risk factors that might impair fear extinction, and to better understand the underlying 

mechanisms regulating this process. On the one hand, genetic and epigenetic factors 

determine the vulnerability to develop fear-related disorders, such as PTSD, phobias and 

panic. In this sense, abuse drugs and/or stress are reported to be key elements for the 

onset of several psychiatric disorders by themselves, or in combination with other genetic 

or environmental factors (Assary et al., 2018; Bremner et al., 2020). For that reason, the 

first goal of the present thesis was to evaluate long-term effects of THC and stress 

exposure during the adolescence, a vulnerable life stage in which cannabis consumption 

is dramatically high among today’s society (Article 1). On the other hand, it is important 

to increase our knowledge about the neural networks and molecular mechanisms 

regulating fear extinction, as potential targets may be identified to treat fear-related 

disorders. Therefore, the next objective of this thesis was to elucidate fear-related neural 

mechanisms, thus focusing on the orexin and the endocannabinoid systems given their 

involvement in such fear response (Article 2), and by testing the endocannabinoid tone 

in a mouse model of impaired fear extinction (Article 3).  

To reach the aforementioned objectives, different endophenotypes were generated 

through multiple procedures, including chronic subcutaneous injections, stereotaxic 

surgeries, or breeding and maintenance of specific mouse strains, among others. Once 

achieved the desired phenotypes, diverse behavioural tests were employed. In 

particular, different fear extinction paradigms and other behavioural tasks were used. 

Most of the tissue samples were obtained after such experiments, when animals were 

sacrificed. Then, biochemical studies and the subsequent quantification with microscopy 

(if required) were performed. A remarkable strength of these studies was the 
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collaboration with other research groups that conducted biochemical experiments or 

provided us specific animal models, thus increasing scientific quality and validity. 

1. Long-term effects of THC and stress exposure during the adolescence 

on fear extinction 

In the last 20 years, a clear increasing trend in cannabis consumption has been observed 

in the European countries. The general perception of cannabis as an easily available 

drug, added to the controversial debate about cannabis legalization for recreational or 

medicinal use, has weakened public awareness of cannabis as a harmful substance. 

Most alarmingly, cannabis intake among adolescents and young adults aged 15-24 

(19.1%) was much more than twice compared to general population aged 15-64 (7.7%), 

with striking sex-differences among new cannabis users (84% men, 16% women) 

(European Monitoring Centre for Drugs and Drug Addiction, 2022). Hence, research 

should pay special attention to this group of young population by evaluating long-term 

effects of cannabis consumption. In addition, stress is a vulnerable factor that might end 

up evoking symptoms related to diverse psychiatric disorders, such as anxiety, 

depressive or sleep-wake disorders, among others (Ventriglio et al., 2015; Yang et al., 

2015; Guest and Guest, 2018; Juruena et al., 2020). A relatively common alternative to 

deal with stress is drug consumption with the aim of alleviating these symptoms, as also 

observed in animal studies (Sinha, 2008; Norman et al., 2015). Therefore, a major 

challenge in neuroscience research is to elucidate long-term effects of concomitant 

abuse drugs and stress exposure during the adolescence. In the present thesis, we 

addressed the effects of simultaneous adolescent THC and stress exposure on anxiety 

and extinction of aversive memory, in the adulthood (Article 1). 

Adolescent cannabis consumption in humans was mimicked in mice by subcutaneous 

administration of increasing doses of THC, the main psychoactive compound of 

cannabis, during the adolescence (i.e., PND 35-49). It is difficult to establish the exact 

timing of adolescence in humans, and therefore it is also a complex issue in rodent 

models. However, it is clear that such period involves neurodevelopmental processes 

which give rise to a mature CNS (Schneider, 2013). An important trait of our protocol is 

the increasing dosage of THC administered during adolescence (3–6–12mg/kg, 5 days 

each dose), that was deliberately used to counter drug tolerance. Multiple studies have 

used a similar protocol with escalating doses of THC during the adolescent period 

(Llorente-Berzal et al., 2013; Cadoni et al., 2015; Garzón et al., 2021). Pure THC was 

administered to adolescent mice, in contrast to the numerous bioactive compounds 

present in cannabis preparations (Radwan et al., 2021). Despite this limitation, several 

studies have reported higher THC concentrations in cannabis extracts, which might 
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increase the total amount of THC intake and, in turn, potentiate detrimental effects 

(Freeman et al., 2019, 2021). On the other hand, stress procedure involved three 

different mild stressors (i.e., forced swimming, tail suspension and restraint) that were 

applied at the end of each 5-days vehicle or THC exposure. As revealed immediately 

after restraint, a clear stress-related physiological response was induced by increasing 

corticosterone plasma levels, without influence of THC treatment. Also, it is important to 

highlight the difference between each stressor type, in order to avoid habituation to the 

stressful stimuli and the subsequent HPA-axis attenuation. Two additional stressors were 

applied as reminders between adolescence and adulthood. These and other stressors 

have already been applied to evaluate the role of stress in the fear response (Maren and 

Holmes, 2016). Finally, THC protocol was applied to both male and female mice, given 

the widely-described sex differences in long-term neurobiological consequences as a 

result of adolescent THC consumption (Rubino et al., 2008). However, THC-stress 

procedure and the subsequent biochemical studies were only applied to male mice, thus 

revealing a clear limitation of such study. 

Regarding behavioural experiments, no long-term effects were observed by adolescent 

THC administration in male and female mice in locomotion, anxiety-like behaviour and 

fear regulation. In the case of anxiety, THC treatment during adolescence has been 

reported to induce an anxiogenic-like behaviour in a study with adult male CD1 mice 

(Murphy et al., 2017), whereas lack of effect has also been observed in other studies 

with adult male and female rats (Rubino et al., 2008; Cadoni et al., 2015). Fear extinction 

of adolescent THC exposure in the adulthood had not been studied before, thus adding 

a novel result in this field. However, other studies addressing fear conditioning and 

expression (i.e., testing fear response 24 hours after cued- and contextual-fear 

conditioning) or passive avoidance task, had already revealed no differences between 

THC-treated and control mice  (Rubino et al., 2009a; Ballinger et al., 2015). In 

accordance with these results, we found no lasting effects of THC in male and female 

mice in the extinction of aversive memories. Further study revealed exactly the same 

result in adult male and female BL6 mice exposed to orally-administered THC during the 

adolescence (Stollenwerk and Hillard, 2021). On the other side, stress has been 

commonly used as an environmental factor to induce long-term deficits in fear extinction, 

thus allowing the study of the underlying mechanisms involved in this response (Toledo-

Rodriguez et al., 2012; Skelly et al., 2015). However, type, duration and intensity of the 

stressor, as well as sex, are key elements to evoke such effects (Schayek and Maroun, 

2015; Deng et al., 2017; Chen et al., 2018). Our results show an anxiogenic-like 

behaviour in adult male mice exposed to stress during the adolescence, while no effect 
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was observed in the extinction of aversive memories. Surprisingly, fear extinction was 

disrupted in the group of adult male mice that were simultaneously exposed to THC and 

stress in the adolescence, thus suggesting a synergistic effect of both environmental 

factors to produce detrimental effects. Analogously, adult male mice were concomitantly 

exposed to THC and stress, and fear extinction was evaluated 3 weeks after the end of 

the treatment, as performed in adolescent experiments. In this case, no differences were 

observed between the different experimental groups. Hence, adolescence is identified 

as a vulnerable life stage with high risk of developing fear-related disorders, after 

cannabis consumption and stress exposure.  

Glucocorticoid tone was analysed throughout the experiment by measuring 

corticosterone (cortisol in humans) plasma levels. Concomitant THC and stress 

exposure in adolescent male mice induced a temporal imbalance of corticosterone levels 

in the adulthood, thus presenting significant increased levels of such stress-related 

hormone immediately after the first extinction session, compared to the other groups. 

Despite the involvement of corticosterone in fear response, inconsistent results have 

been obtained regarding the role of the HPA axis in the extinction of aversive memory. 

Some authors have reported enhanced fear extinction as a result of the HPA-axis 

activation with dexamethasone (Sawamura et al., 2016; Michopoulos et al., 2017), 

whereas others show beneficial properties of ACTH and corticosterone attenuation in 

similar behavioural paradigms (Sur and Lee, 2022b, 2022a). Clearer results were 

obtained by analysing lasting effects of HPA axis overactivation with acute corticosterone 

administration in adult rats. In this case, dendritic hypertrophy in the BLA and heightened 

anxiety-like behaviour (as measured in the elevated plus maze test) was observed 12 

days after corticosterone injection (Mitra and Sapolsky, 2008; Kim et al., 2014). For that 

reason, HPA axis dysfunction and the subsequent molecular alterations might contribute 

to the extinction deficits and changes in structural plasticity, revealed by THC- and stress-

exposed mice.  

After fear extinction protocol, animals were sacrificed, and brains were extracted in order 

to analyse the activity in the main neuroanatomical regions involved in cued-fear 

conditioning and extinction: BLA, IL and PL. As detailed in section 3.2.1. Neuroanatomy 

of fear learning and memory, BLA presents a central role in the regulation of fear 

extinction, thus switching its activity to high or low fear activity depending on the cortical 

afferent projections. IL is responsible for fear extinction, while PL is primarily involved in 

the acquisition of fear memories (Sierra-Mercado et al., 2011). A hypofunction of the 

cortico-amygdala circuit has been widely associated to disruptions in fear extinction in 

numerous studies with rodent models (Hefner et al., 2008; Holmes and Singewald, 2013; 
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Shan et al., 2018). Conversely, increased activity of this circuit entails successful 

extinction, as measured by immediately-early gene expression (e.g., cFos) (Flores et al., 

2014; Ganella et al., 2018; Pędzich et al., 2022). In accordance with the behavioural 

results previously described, adolescent THC and stress exposure induced a reduction 

in BLA and IL cFos expression in the adulthood, whereas PL was not modified. These 

biochemical results suggest long-term dysregulation of fear circuit, especially in those 

regions involved in the extinction of aversive memories. Brain tissues were also used to 

analyse structural plasticity in the BLA through dendritic spines morphology. Our results 

show alterations of pyramidal neurons in the BLA as a consequence of THC 

administration by itself, or in combination with stress. Reduced number of mushroom 

(mature) dendritic spines was observed in THC-treated mice, regardless of stress 

exposure. In agreement, previous studies have demonstrated reduced spine density in 

distal basal dendrites of the mPFC in THC-treated female rats during the adolescence 

(Rubino et al., 2015). Long-term effects of THC administration on dendritic arborization 

and spine density have been also observed in the mPFC, NAc and orbital frontal cortex 

of adult male rats (Kolb et al., 2018). Hence, THC seems to have lasting disruptive effects 

on neurons architecture and, in turn, functionality. On the other hand, thin (immature) 

dendritic spines were increased in pyramidal neurons of the BLA in adult male mice 

simultaneously exposed to THC and stress during the adolescence, compared to the 

other experimental groups. Such dendritic alterations might probably underly fear 

extinction deficits in this group, by prolonged impairment of the appropriate amygdalar 

function, one of the main areas modulating fear extinction. These findings are in 

accordance with previous studies associating stress-induced fear extinction deficits in 

male rats with dendritic retraction in the BLA (Maroun et al., 2013). Concomitant THC- 

and stress-exposed mice might probably present similar alterations in IL, the other major 

structure involved in fear extinction, which has been reported to present more immature 

spines in animals with poor extinction retrieval as a consequence of acute stress 

(Moench et al., 2015). Altogether, the interaction between THC and stress in the 

adolescence induces long-lasting fear extinction deficits, which are accompanied by 

alterations in the neuroanatomical regions involved in the regulation of such physiological 

response. In humans, cannabis consumption rate is high among adolescents and is 

commonly accompanied by stressful events. The combination of both factors increases 

the risk of long-term dysregulations in fear extinction, thus identifying a potential social 

group highly vulnerable to develop fear-related disorders in later life stages.  
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Figure 15. Schematic representation of the main findings reported in Article 1. Adolescent 

male and female mice treated with THC present no effects in the extinction of fear memories 

during the adulthood. Conversely, concomitant THC and stress exposure during the adolescent 

period impairs fear extinction in the adulthood. These alterations are associated with biochemical 

disturbances, including an altered glucocorticoid tone, dysregulations of the fear circuit, and 

structural plasticity alterations in the BLA. 

 

2. Role of the orexin and the endocannabinoid systems in the underlying 

mechanisms regulating fear extinction 

Current therapeutic approaches for fear-related disorders are based on symptom-

mitigation drugs and psychological therapies. However, no pharmacological treatment 

has been developed to date for fear dysregulations and the subsequent clinical and 

neurobiological consequences. For that reason, it is important to expand our knowledge 

by elucidating the different players involved in such response and their underlying 

mechanisms. In this context, the endocannabinoid system has been widely described to 

play a key role in the regulation of fear (Marsicano et al., 2002), which further study with 

animal models of impaired fear response might open up new possibilities for therapeutic 

purposes. In the present thesis, the S1 mouse model of aberrant fear extinction was 

used to characterize and modulate the endocannabinoid system (Article 3). More 

recently, the orexin system has emerged as a potential target for fear-related disorders, 

since central administration of OXA impaired fear extinction in rodents, whereas 

pharmacological blockade of OX1R facilitated this process (Flores et al., 2014, 2017; 

Salehabadi et al., 2020). In human studies, a close association between orexins and fear 

has also been described, given the impaired acquisition of aversive memory during fear 

conditioning in narcoleptic individuals, which present a loss of orexin neurons (Peyron et 

al., 2000; Ponz et al., 2010). Conversely, increased CSF levels of OXA have been 
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reported in patients with panic anxiety (Johnson et al., 2010). Orexin-modulating drugs 

have already been approved for the treatment of sleep dysregulations without secondary 

warning effects, thus postulating the orexin system as a promising candidate for many 

other psychiatric disorders. Moreover, biochemical and functional cross-talks between 

the orexin and the endocannabinoid systems have been described (see section 2.5 

Interaction between the orexin and the endocannabinoid systems). Hence, it seems 

appropriate to focus on the endocannabinoid system as a neurobiological substrate 

underlying fear extinction deficits induced by orexin system dysregulation, as addressed 

in this thesis (Article 2). 

Male adult mice were administered with OXA through an icv/intra-amygdala cannula, 

previously fixed by stereotaxic surgery. This is an intrusive intervention that requires at 

least 3 days of post-operative recovery before the beginning of the behavioural test, with 

the aim to achieve a normal behaviour and avoiding harmful effects. For that reason, 

both saline- and OXA-treated mice underwent exactly the same surgical procedure. 

Contextual-fear extinction protocol comprised a fear conditioning session on the first day, 

followed by 2 or 5 extinction sessions (depending on the experimental purpose) every 

24 hours. In order to study the fear extinction process, preventing fear acquisition and 

expression bias, the different pharmacological treatments were administered after the 

first extinction trial. OXA or saline were infused 20 minutes after each extinction trial, thus 

allowing other treatments to be administered immediately after the trial and before 

OXA/saline. This pharmacological strategy enabled to identify OXA-underlying 

mechanisms depending on the treatment previously administered. Given the procedure 

complexity (2 hours surgery per animal, 6 days of behavioural protocol, biochemical 

experiments), the whole experimental research was performed by using male mice and 

excluding female sex, thus constituting a clear limitation in the present study (Article 2).  

The role of the endocannabinoid system in orexin-induced impairment of fear extinction 

was evaluated by modulating 2-AG, since deficits in the extinction of aversive memories 

were found by increasing 2-AG levels through the inhibition of MAGL, unlike increasing 

AEA levels. Furthermore, 2-AG is synthesized after the activation of GPCR orexin 

receptors, as a result of the correspondent downstream molecular pathway (Turunen et 

al., 2012). Consequently, reduced 2-AG levels (by using the 2-AG synthesis inhibitor 

O7460) prevented the impaired fear extinction induced by OXA, thus suggesting that 2-

AG is mediating this effect. Diverse studies have also demonstrated impaired fear 

extinction as a consequence of 2-AG increase (Llorente-Berzal et al., 2015; Hartley et 

al., 2016; Mizuno et al., 2022). In agreement with these results, OXA administration at 

the same dose increased 2-AG, but not AEA levels, in the amygdala 10 minutes after 
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the infusion. At a later time point, 2-AG levels increased in the prefrontal cortex and 

dramatically diminished in the hippocampus. Such observations may reflect an indirect 

effect of OXA in these regions and subsequent alterations in the communication between 

these fear-regulating structures. Indeed, functional connectivity of the hippocampus-

prefrontal cortex pathway is notably modulated by the endocannabinoid system (Katona 

and Freund, 2012). To further clarify the role of 2-AG mediating OXA-induced deficits in 

fear extinction, endocannabinoid levels were analysed in the same brain areas before 

and immediately after the second extinction trial. Interestingly, 2-AG levels in the 

amygdala were significantly increased after the extinction trial in fear resistant mice 

treated with OXA compared to saline-treated animals, whereas no differences were 

observed between the same groups before this session. The same pattern was observed 

in the hippocampus, mainly involved in contextual cues (present protocol), but not in the 

prefrontal cortex, in charge of auditory cues. However, a strong correlation between 2-

AG levels and impaired fear extinction was only found in the amygdala, thus indicating a 

central role of this area in the extinction of aversive memory. As previously mentioned, 

increased 2-AG levels disrupt fear extinction (Llorente-Berzal et al., 2015; Hartley et al., 

2016; Mizuno et al., 2022), although the same phenotype is observed in DAGLα KO mice 

(Jenniches et al., 2016), and germ-free animals, both presenting reduced 2-AG levels 

(Chu et al., 2019; Manca et al., 2020). Therefore, optimal levels of 2-AG seem to be 

required to correctly extinguish fear memory. All these results considered, amygdalar 2-

AG is found to be a key mediator of OXA-induced fear extinction resistance when the 

conditioned stimulus is evoked. 

To continue deciphering the molecular pathway triggered by OXA during fear extinction, 

expression levels of the main endocannabinoid system components were analysed after 

the second extinction trial in the three aforementioned regions. Interestingly, CB2R was 

significantly upregulated in OXA-treated mice, only in the amygdala. In contrast, CB1R 

remained unchanged in animals treated with OXA among the different areas analysed. 

Given the controversial validity of CB2R antibodies (Atwood and MacKie, 2010; 

Cabañero et al., 2021), eGFP-CB2R mice became a helpful tool to quantify CB2R protein 

levels. These mice developed in BL6 genetic background result in the expression of GFP 

reporter gene under the control of the endogenous mouse CB2R promoter (López et al., 

2018). According to the previous gene expression results, eGFP-CB2R mice treated with 

OXA and performing the same experimental protocol, reliably confirmed CB2R increased 

protein levels in the amygdala. Although basal CB2R expression in the CNS is low, it has 

been shown to be highly expressed in specific pathologies and as a consequence of 

several insults, given its inducible nature (Benito et al., 2003; Turcotte et al., 2016; 
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Robertson et al., 2017; Navarrete et al., 2021). In line with prior results, systemic or intra-

amygdala administration of the CB2R antagonist AM630 blocked fear extinction 

resistance induced by OXA, while CB2R activation with JWH133 impaired extinction 

behaviour, similarly to that evoked by OXA. Despite CB2R KO mice present disrupted 

aversive memory consolidation in the step-down inhibitory avoidance test (García-

Gutiérrez et al., 2013), the role of CB2R in fear extinction was not reported yet. These 

findings represent the first evidence supporting a key role of CB2R in the impairment of 

fear extinction, thus suggesting CB2R blockade as a new potential target for fear 

dysregulations. Conversely, CB1R blockade with rimonabant did not prevent OXA effect 

on fear extinction. This opposite role for CB1R and CB2R in the extinction of aversive 

memories might explain bidirectional results regarding anxiety or fear extinction studies 

with cannabis preparations or unselective compounds that bind both cannabinoid 

receptors (Raymundi et al., 2020; Bonn-Miller et al., 2021). Albeit amygdala has been 

shown to be in charge of CB2R effects in response to OXA, performing the same 

experiment in other fear-related regions would clarify the role of the fear circuitry in such 

process. Taken these results into account, amygdalar CB2R is confirmed to be induced 

along fear extinction by OXA, thus mediating its disruptive effect in the extinction of fear 

memory. 

CB2R expression in the CNS has been broadly attributed to microglial cells, particularly 

in the case of neuroinflammatory processes in which microglia remains activated 

(Komorowska-Müller and Schmöle, 2020; Young and Denovan-Wright, 2022). 

Accordingly, most of the amygdalar CB2Rs of both saline- and OXA-treated eGFP-CB2R 

mice were localized in activated microglial cells, as revealed by immunofluorescence 

analysis. To further confirm this statement, microglial cells depletion with the colony 

stimulating  factor-1 receptor inhibitor PLX5622 added to mice daily diet was observed 

to induce a clear decrease in CB2R, specially in OXA-treated mice presenting high levels 

of CB2R. Moreover, this depletion was able to reverse OXA-induced resistance to fear 

extinction, thus indicating microglial CB2R to probably mediate this effect. Anti-

inflammatory agents might also prevent impairment of fear extinction induced by OXA, 

since altered microglial function and inflammation has been related to disrupted fear 

response (Sumner et al., 2020). Indeed, individuals with PTSD presented abnormal 

levels of diverse proinflammatory cytokines, including IL1β, IFNγ, IL6 and TNFα (Passos 

et al., 2015). Altogether, these findings involve the discovery of a novel fear extinction 

mechanism involving 2-AG and CB2R located in the amygdala as a consequence of the 

orexin system overactivation. 
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Figure 16. Schematic representation of the main findings reported in Article 2. ICV 

administration of OXA in male mice induces impaired fear extinction, which is associated with 

increased 2-AG levels and the upregulation of CB2R that seem to be present in microglial cells. 

Accordingly, blockade of CB2R in the amygdala before icv administration of OXA reverses these 

behavioural alterations. 2-AG, 2-arachidonoylglycerol; BLA, basolateral amygdala; CB2R, 

cannabinoid type-2 receptor; OXA, orexin-A. 

 

Basal gene expression of CB2R was also found to be increased in the main fear-related 

areas (i.e., amygdala, prefrontal cortex, and hippocampus) of the inbred mouse strain 

S1, among many other changes in the endocannabinoid system components, compared 

to control BL6 mice (Article 3). In contrast, CB1R expression was decreased in S1 mice 

only in the amygdala, remaining unchanged in the prefrontal cortex and hippocampus. 

Interestingly, enzymes involved in the synthesis and degradation of both 

endocannabinoids were differentially expressed in S1 mice in comparison with BL6 mice, 

thus suggesting altered 2-AG and AEA levels that should be further measured. As 

explained in section 3.3.2. Animal models of aberrant fear response, these mice 

represent a useful animal model given their behavioural traits characterized by increased 

stress reactivity (Singewald and Holmes, 2019; Rodriguez et al., 2020). In accordance 

with this feature, we observed a clear resistance to extinguish fear memories, increased 

anxiety-like behaviour, and alterations in the sensorimotor gating, as reported in previous 

studies with similar experimental approaches (Millstein and Holmes, 2007; Hefner et al., 

2008; Rodriguez et al., 2020). Hence, S1 constitute an interesting tool to assess the role 

of CB2R in such phenotypic responses. To reach this goal, CB2R agonist JWH133 or 

antagonist SR144528 was systematically administered before each behavioural test. 

Once again, the use only of male animals constitutes a clear limitation of this study, since 

sex differences have been repeatedly observed in diverse animal models of 

neurobehavioural disorders (Palanza and Parmigiani, 2017). 
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In order to evaluate the role of CB2R in anxiety-like behaviour, pharmacological 

treatments were administered 30 minutes before the elevated plus maze test. While 

CB2R agonism had no effect, CB2R antagonism partially reversed the S1 anxiogenic 

behaviour, since significant differences were observed in comparison with vehicle-

treated S1 mice, although BL6 mice still presented a greater anxiolytic-like behaviour. 

Inconsistent results are reported about the role of CB2R in the modulation of anxiety. In 

this sense, CB2R blockade with AM630 increased anxiety-like response in Swiss ICR 

male mice, whereas no effect was described with the CB2R agonist JWH133. However, 

chronic administration of AM630 induced an anxiolytic effect in spontaneously anxious 

DBA/2 mice (García-Gutiérrez et al., 2012). Studies with genetic mouse models also 

presented an anxiogenic-like behaviour in CB2R KO mice (Ortega-Alvaro et al., 2011), 

while conditional deletion of CB2R in dopamine neurons revealed the opposite effect (Liu 

et al., 2017). By adding one more confusing point, CB2R overexpression in male mice 

was shown to reduce vulnerability to anxiety (García-Gutiérrez and Manzanares, 2011). 

Our model presents increased expression of CB2R in key regions regulating anxiety-like 

behaviours. For that reason, blocking such receptors might explain the anxiolytic 

response observed in S1 mice. Future research is needed to decipher the role of CB2R 

in anxiety and, in turn, develop potential treatments for this psychiatric disorder.  

PPI test is commonly used to measure sensorimotor gating, classically disrupted in 

patients with schizophrenia (Powell et al., 2009; San-Martin et al., 2020), although it is 

also altered in other psychiatric disorders, such as bipolar, and obsessive compulsive 

disorders (Hoenig et al., 2005; Kohl et al., 2013; Mao et al., 2019).To assess the role of 

CB2R in the naturally-increased PPI of S1 mice, acute pharmacological treatments were 

injected 30 minutes before the PPI test. In contrast to anxiety response, CB2R agonist 

potentiated S1 inhibitory response, whereas CB2R antagonist presented no effect in 

comparison with vehicle-treated S1 mice. These results are congruent with previous 

studies, since CB2R agonist JWH015, as well as HU910, reversed disruptions in PPI 

produced by MK801, a non-competitive NMDA receptor antagonist commonly used to 

decrease PPI response (Khella et al., 2014; Cortez et al., 2022). Our results present 

remarkable increased expression of CB2R in the prefrontal cortex, a brain structure 

directly involved in the regulation of the sensorimotor gating (Tóth et al., 2017). According 

to the reported CB2R potentiation effect in PPI, activating these receptors might increase 

basal-augmented PPI in S1 mice. Conversely, CB2R antagonist AM630 potentiated 

MK801- or methamphetamine-induced reduction in PPI, although it was not able to 

modify such inhibitory response on its own (Ishiguro et al., 2010). Clearer results were 

obtained by Ortega-Alvaro and colleagues by showing significantly decreased levels of 
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PPI in CB2R KO mice (Ortega-Alvaro et al., 2011). CB2R antagonist SR144528 did not 

modify PPI in S1 mice presumably due to robust PPI increase, compared to BL6 mice. 

Such PPI basal increase and the subsequent resistance to reverse this phenotype might 

be the consequence of complex molecular mechanisms in S1 inbred mouse strain that 

still remain understood. 

Finally, S1 and BL6 mice underwent cued-fear conditioning and 5-days extinction 

protocol. As previously explained, S1 inbred mouse strain is a well-established animal 

model of disrupted fear extinction with unaltered fear learning or conditioning (see 

section 3.3.2. Animal models of aberrant fear response). Hence, these mice constitute a 

helpful tool to deeply investigate the mechanisms regulating extinction of fear memories 

(Hefner et al., 2008; Singewald and Holmes, 2019). With the aim of studying the role of 

CB2R in fear extinction, treatment was administered only throughout the extinction 

procedure. Moreover, fear expression (first extinction trial) was not altered between the 

different experimental groups, thus allowing non-biased comparisons of extinction 

responses. Following the same pattern of PPI results, CB2R agonism potentiated basal 

fear extinction deficits in S1 mice, whereas no effects were observed with SR144528, 

compared to the vehicle-treated S1 group. As previously detailed (Article 2), CB2R is 

involved in OXA-induced impairment of fear extinction. CB2R activation with the same 

agonist was observed to disrupt extinction of fear memories, whereas its blockade 

prevented OXA effects. Therefore, increased CB2R expression in the three main areas 

regulating fear response might explain resistance to fear extinction observed in S1 mice. 

In accordance with these results, CB2R agonism potentiates such disruptive effects, 

although CB2R antagonism did not facilitate the extinction in S1 mice. The unknown 

complex molecular mechanisms underlying S1 genetic background produced a similar 

effect by using D-cycloserine (NMDA partial agonist known to facilitate extinction in 

animal models and exposure therapy in human anxiety disorders) in fear extinction 

protocols, since this compound failed to improve fear extinction deficits in S1 mice 

(Hefner et al., 2008; Sartori et al., 2016). In summary, these results support the role of 

CB2R disrupting fear extinction in a mouse model of aberrant fear response and the 

subsequent behavioural traits. However, CB2R modulation was not tested in BL6 control 

mice. This issue represents a clear limitation of the current investigation, although these 

experiments have already been addressed separately, as previously cited. The link 

between our two studies investigating the underlying mechanisms of fear extinction 

(Articles 2 and 3) is the evidence reported for the first time about CB2R as a key 

modulator of extinction fear memories. This novel function needs to be further 

characterized under different conditions in order to confirm the role of CB2R in fear 
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extinction, thus becoming a potential target for non-well treated fear-related disorders in 

the future.  

 

Figure 17. Schematic representation of the main findings reported in Article 3. S1 mouse 

model of aberrant fear extinction presents increased expression of CB2R in the main brain regions 

regulating fear memories, compared to BL6 mice. Hence, anxiety-like behaviour, fear extinction, 

and sensorimotor gating were assessed in this mouse strain by modulating CB2R, thus blocking 

or activating such receptor with SR144528 and JWH133, respectively. CB2R, cannabinoid type-

2 receptor; S1, 129/SvImJ mouse strain. 



 

 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 

 
 

 

CONCLUSIONS 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

 

 

 

 

 

 

 

  



 

130 
 

 

 

 



CONCLUSIONS 

 
131 

 
131 

The findings reported in the current thesis allow to draw the following conclusions: 

1. Concomitant THC and stress exposure during the adolescent period induces fear 

extinction deficits in the adulthood. However, no effect is observed in both males 

and females by these two factors separately. 

2. Such extinction impairments are associated with neurobiological disturbances in 

the main areas regulating fear extinction, consisting of decreased neuronal 

activity and structural plasticity disruptions. These alterations suggest the 

existence of a long-lasting dysregulation of the fear circuit.  

3. Adolescence constitutes a vulnerable life stage for the development of long-term 

fear dysregulations, since the same protocol applied in the adulthood has no 

effects. 

4. The endocannabinoid system is tightly involved in the underlying mechanisms 

modulating fear extinction deficits induced by the orexin system overactivation. 

In particular, 2-AG and CB2R mediate such effect. 

5. CB2Rs specifically located in the amygdala are involved in the extinction deficits 

triggered by OXA.  

6. Amygdalar CB2Rs involved in OXA-induced impaired extinction are most likely 

to be found in activated microglial cells, although other cell types cannot be ruled 

out. 

7. The inbred mouse strain S1, commonly used as an animal model of aberrant fear 

extinction, presents increased expression of CB2R compared to C57BL/6J 

control mice in the amygdala, prefrontal cortex and hippocampus, the main areas 

regulating fear response.  

8. Pharmacological modulation of CB2R induces behavioural changes in S1 mice. 

CB2R blockade reduces the anxiogenic behaviour, whereas CB2R activation 

potentiates basal-increased sensorimotor gating and fear extinction deficits. 

9. CB2R emerges as a novel potential target for the treatment of fear 

dysregulations, thus requiring to be studied under different fear-related 

conditions. 
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