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a  b  s  t  r  a  c  t

Synthesis  of  deoxynucleoside  triphosphates  (dNTPs)  is essential  for both  DNA replication  and  repair  and
a  key step  in  this  process  is catalyzed  by  ribonucleotide  reductases  (RNRs),  which  reduce  ribonucleotides
(rNDPs)  to  their  deoxy  forms.  Tight  regulation  of RNR  is  crucial  for maintaining  the  correct  levels  of  all  four
dNTPs,  which  is  important  for minimizing  the  mutation  rate  and  avoiding  genome  instability.  Although
NA synthesis
NA repair
enome stability

allosteric  control  of RNR  was  the  first  discovered  mechanism  involved  in regulation  of the enzyme,  other
controls  have  emerged  in  recent  years.  These  include  regulation  of  expression  of  RNR  genes, proteolysis  of
RNR  subunits,  control  of the  cellular  localization  of  the  small  RNR  subunit,  and  regulation  of RNR activity
by  small  protein  inhibitors.  This review  will  focus  on  these  additional  mechanisms  of  control  responsible
for  providing  a balanced  supply  of  dNTPs.

© 2014  Published  by  Elsevier  Ltd.
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. Introduction

Ribonucleotide reductases (RNR) are key enzymes in all
rganisms essential for the de novo synthesis pathway of deoxyri-

proofreading, but may  also serve to facilitate repair by promoting
the ability of polymerases to copy damaged template. Imbalances in
dNTP levels reduce the fidelity of the initial polymerization step and
even subtle defects can be highly mutagenic [7]. Inhibition of RNR
Please cite this article in press as: Guarino E, et al. Cellular regulation
(2014), http://dx.doi.org/10.1016/j.semcdb.2014.03.030

onucleoside triphosphates (dNTPs), required for DNA replication
nd repair. They are of particular interest as their activity largely
etermines the concentrations and ratios of dNTPs and these fac-
ors are critical in ensuring high-fidelity DNA synthesis [1–6].
igh concentrations of dNTPs reduce the efficiency of polymerase
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slows DNA replication and activates the intra-S phase checkpoint,
which helps to preserve limiting dNTPs [8,9]. If the S phase check-
point is inactive, DNA synthesis is not restrained by limiting dNTPs
and ongoing replication leads to DNA damage and cell death [10].
Failure to upregulate dNTP levels during cell proliferation has been
shown to promote oncogene-induced transformation, emphasizing
the importance of RNR regulation for genome stability [11]. The key
role that RNR has in cell proliferation is exploited in chemotherapy
 of ribonucleotide reductase in eukaryotes. Semin Cell Dev Biol

of several types of cancer, using inhibitors such as hydroxyurea,
clofarabine and gemcitabine [12,13].

The cellular pool of dNTPs is sufficient for replication of just a
fraction of the genome, so upregulation of RNR activity is necessary
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Fig. 1. Overview of cell cycle and DNA damage induced changes in RNR regulation
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n  yeasts and mammalian cells. No attempt is made to depict accurately the cellular
ocalization of small protein RNR inhibitors. Note that in S. pombe,  S phase normally
ccurs before cytokinesis is complete, so G1 and S phase cells are shown binucleated.

s cells enter S phase. Allosteric mechanisms regulate the activ-
ty and specificity of RNR but a wider range of cellular mechanism
mpinge on the enzyme. These include altering the expression or
roteolysis of RNR subunits, changing the cellular localization of

ndividual subunits, or altering the levels of small protein inhibitors
o control the enzyme activity (Fig. 1). In Saccharomyces cerevisiae,

 combination of regulatory mechanisms serve to elevate the dNTP
evels several fold in S phase or after DNA damage [2], although in
chizosaccharomyces pombe a much more modest increase is seen
14] (Table 1). Mammalian cells show an even more dramatic ele-
ation of dNTP levels in S phase, although curiously little change
fter DNA damage ([15] reviewed in [16]). Allosteric regulation of
NR has been the subject of recent reviews [17,18] and will only
e summarized here, and the purpose of this review is to consider
ecent developments in cellular regulatory mechanisms.

. Outline of RNR structure and biochemistry

RNRs are classified into three main classes depending on the
echanism of free radical generation, which is essential for cataly-

is (reviewed in [19]). Class I RNRs are aerobic enzymes composed
f two subunits, and are further subdivided depending on the met-
llocofactor used. Eukaryotes predominantly use Class 1a RNRs,
hich have a Fe(III) metallocofactor in the smaller subunit (R2,
Please cite this article in press as: Guarino E, et al. Cellular regulation
(2014), http://dx.doi.org/10.1016/j.semcdb.2014.03.030

) and a catalytic site in the larger subunit (R1, �). The R2 sub-
nit generates and stabilizes a tyrosyl radical, which creates a
eactive cysteine thyil radical in the active site necessary for

able 1
hanges in of dNTP levels in S phase or after DNA damage compared to G1 or G0

evels.

S phase DNA damage Reference

S. cerevisiae x3-6 x6-8 [2]
S. pombe x2 x2 [14]
Mammalian x18 <x2 [15,20]
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initiating catalysis (reviewed in [18,20]). During a reaction cycle,
a disulphide bond is generated in the R1 subunit which must be
reduced by thioredoxin or glutaredoxin to reactivate the enzyme.
This does not occur directly, but via an intermolecular reaction with
the C-terminus of another R1 subunit, where a CX2C motif func-
tions as an intermediate in reducing the active site disulphide bond
(reviewed in [21]). Thioredoxin and glutaredoxin can then reduce
the C-terminal disulphide bond. In contrast to Class I enzymes,
Class II RNRs (NrdJ) function independently of oxygen and have sin-
gle subunit which requires 5′-deoxyadenoysylcobalamin for radical
generation. Class III enzymes (NrdD) are only active under anaero-
bic conditions, and use a stable glycine radical for catalysis which
is generated with the aid of a second protein NrdG.

RNRs show a particularly elaborate mechanism of allosteric reg-
ulation which serves to regulate levels and relative amounts of
dNTPs (reviewed in [17]). This involves binding of dATP or ATP to
an activity site in the R1 subunit, which respectively inhibits or
stimulates the enzyme. A second ‘specificity’ allosteric site affects
the types of nucleotides reduced; thus binding of ATP or dATP
stimulates the reduction of pyrimidine nucleotides, while TTP and
dGTP stimulate GDP and ADP reduction respectively. The exact sto-
ichiometry of the enzyme has been somewhat unclear, but recent
findings suggest a R16R22 ring complex for the inactive and possibly
also the active form ([22] reviewed in [23]).

3. Regulation of RNR levels during the cell cycle and after
DNA damage

One conserved theme with eukaryotic RNR genes is transcrip-
tional activation during S phase and after DNA damage (reviewed in
[18]). In yeasts, two transcriptional pathways are involved, one of
which is responsible for cell cycle dependent changes in transcrip-
tion and another which is activated by DNA damage. S. cerevisiae
has two R1 genes (RNR1, RNR3) and two R2 genes (RNR2, RNR4).
RNR1/R1 is differentially regulated by the MBF  transcription factor,
which regulates many other G1/S genes, while RNR2/R2, RNR3/R1
and RNR4/R2 show little variation in expression during the cell
cycle [24–29]. In response to DNA damage, the Dun1 kinase is
activated by the Mec1-Rad53 pathway and phosphorylates Crt1,
thus relieving repression of RNR2-4 genes. Activation of RNR1/R1
upon DNA damage involves the HMG-transcription factor Ixr1,
which binds to the RNR1 promoter and also promotes transcrip-
tion under basal conditions [30]. The TOR pathway has also been
implicated in RNR activation after DNA damage, as inhibition of
TORC1 with rapamycin interferes with activation of RNR1/R1 and
RNR3/R1 expression after DNA damage, leading to increased sensi-
tivity to DNA damaging agents [31]. The DNA-binding factor Rap1,
which has multiple roles at telomeres, promoters and silencers and,
is also required for the activation of RNR2-4 genes after DNA dam-
age, thus changes in the level of Rap1 could potentially modulate
RNR responses [32]. A recent study examined RNR mRNA and pro-
tein induction after DNA damage in single cells, and showed that
elevation of both mRNA and protein was cell cycle dependent, being
striking in S/G2 cells but little affected in G1 cells [33].

In S. pombe,  the story is similar in that the cdc22+/R1 gene is cell
cycle regulated by the MBF  regulator of G1/S transcription [34].
The suc22+/R2 gene generates a smaller, constitutively expressed
transcript, and a larger one which is MBF-regulated and induced
by DNA damage and heat-shock [35]. The Ino80 nucleosome-
remodelling complex appears to be necessary for correct cdc22+/R1
expression under basal conditions [36]. After DNA damage, the
 of ribonucleotide reductase in eukaryotes. Semin Cell Dev Biol

checkpoint kinase Cds1(Chk2) phosphorylates the Yox1 inhibitor
of MBF, allowing reactivation of MBF  and transcription of tar-
gets such as cdc22+/R1 [37]. For Suc22/R2, regulation of expression
may  also occur post-transcriptionally since a cytoplasmic poly(A)
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Fig. 2. Comparison of small protein inhibitors of yeast RNRs, showing the loca
igure is adapted from [57,70].

olymerase targets and stabilizes suc22 mRNA thus enhancing R2
xpression [38].

In mammalian cells, expression of R1 and R2 is also cell cycle reg-
lated [39,40], and R2 is also transcriptionally activated after DNA
amage in a pathway involving ATR/ATM, Chk1 and E2F1 [41]. In
n unperturbed cell cycle, R1 levels are constant, while R2 varies
ramatically due to proteolysis from G2 through to and G1, and
2 is not present in quiescent cells. In G2, proteolysis of R2 is ini-
iated by its phosphorylation by CDK, which promotes interaction
nd ubiquitylation by SCFcyclin F ubiquitin ligase [42]. Blocking this
egradation leads to an imbalance in dNTP levels and consequent
enetic instability. After DNA damage, an ATR-dependent process
eads to proteolysis of cyclin F, and this is necessary for the nuclear
ccumulation of R2 and efficient DNA repair. In G1, proteolysis of R2
s maintained by the APC/Cdh1 ubiquitin ligase and thus R2 levels
emain low until APC/Cdh1 is inactivated near the start of S phase
43].

In addition to effects on R2, DNA damage increases, via p53
ranscriptional activation, the expression of a distinct small RNR
ubunit p53R2, capable of forming a functional RNR complex with
1 [44–47]. p53R2 is very similar to R2 but lacks an amino-terminal
egion required for APC-Cdh1 mediated proteolysis. p53R2 is a sta-
le protein, normally expressed at low levels in both proliferating
nd non proliferating cells and it plays an important role in provid-
ng dNTPs for mtDNA synthesis (see below). p53R2 is translocated
o the nucleus [45] and quiescent cells with nonfunctional p53R2
re defective in DNA repair [48], implying that the dNTPs supplied
ia R1/p53R2 are important to allow DNA synthesis associated with
epair.

. Regulation of RNR by small protein inhibitors

Yeasts employ a distinct mode of RNR regulation involving small
ntrinsically disordered proteins that either bind to RNR and inhibit
he enzyme or alter the cellular localization of RNR subunits. S. cere-
isiae possesses three related genes, SML1, DIF1 and HUG1,  all of
hich have been implicated in different aspects of RNR regulation

Fig. 2). S. pombe has two genes spd1+ and spd2+ which show limited
equence similarity to the S. cerevisiae group.

S. cerevisiae Sml1 inhibits RNR by binding to the R1 subunit in a
:1 stoichiometry [49–51]. It has been proposed that Sml1 prevents
he CX2C motif in the C-terminus from accessing the active site, thus
reventing cysteine reduction needed for enzyme reactivation [21].
uring S phase or after DNA damage, activation of the Mec1-Rad53-
un1 checkpoint kinase pathway leads to Sml1 phosphorylation
y Dun1 and its subsequent proteolysis following ubiquitylation
Please cite this article in press as: Guarino E, et al. Cellular regulation
(2014), http://dx.doi.org/10.1016/j.semcdb.2014.03.030

y Rad6-Ubr2-Mub1 [52,53]. Failure to degrade Sml1 is the reason
hy Rad53 inactivation is lethal in S. cerevisiae [51]. Sml1 forms a
imer, but the dissociation constant for this is relatively high and
he biological significance of dimer formation is unclear [54,55].
f Hug, Sml, R1 binding, Spd and PIP (PCNA-interacting protein) degron motifs.

Dif1 regulates RNR by promoting the nuclear localization of
R2. R1 is constitutively cytoplasmic, and localization of R2 to the
nucleus for most of the cell cycle downregulates RNR activity [56].
Dif1 binds to and promotes the nuclear import of R2 [57,58] and
following import the subunit is anchored there by interaction with
Wtm1  and Kap122 [59,60]. In response to DNA damage or DNA
replication, Dif1 is down regulated and, similar to Sml1, is phos-
phorylated after DNA damage by the Mec1-Rad53-Dun1 cascade,
leading to its proteolysis. In addition, genotoxic stress weakens the
interaction between Wtm1  and R2, and together this leads to the
relocalization of R2 to the cytoplasm and RNR activation.

Relatively little is known about S. cerevisiae Hug1. Since deletion
of the HUG1 gene suppresses the lethality of Mec1 inactivation,
the protein presumably inhibits RNR, and a recent study suggested
that its co-compartmentalization with cytoplasmic Rnr2/Rnr4 may
reflect RNR inhibition via R2 interaction [61].

In fission yeast, Spd1 seems to combine properties of S. cerevisiae
Sml1 and Dif1, affecting both the activity and localization of RNR,
and as such may  be more representative of an ancestral protein. As
in S. cerevisiae,  the active form of RNR appears to be cytoplasmic in
fission yeast. The R1 subunit is pancellular, while the R2 subunit is
nuclear for much of the cell cycle, but is relocalized to the cytoplasm
in S phase and after DNA damage to activate dNTP production. Spd1
plays a role in this localization, since deletion of the spd1 gene
results in constitutive cytoplasmic localization of R2 [62]. How-
ever, in addition to in vivo effects on the R2 subunit, in vitro analysis
showed an interaction between Spd1 and R1, but not R2, and inhi-
bition of RNR activity depends on interaction with the R1 subunit
[14]. A detailed mutagenesis study of Spd1 identified separation-of-
function mutations which affected either nuclear localization of R2
or RNR activity [63]. Interestingly, a mutant defective for R2 nuclear
import is fully able to inhibit RNR activity, and conversely, a mutant
competent for R2 nuclear localization cannot restrain RNR activity,
implying that Spd1 mainly inhibits RNR by directly binding to the
enzyme, rather than through effects on R2 localization. The same
study used in vivo fluorescence techniques to analyze the interac-
tion between RNR subunits and Spd1 and concluded that Spd1 can
interact with both subunits, and that Spd1 can promote an R1-R2
interaction in a manner that does not correlate with RNR activity.

Spd1 is degraded in S phase and after DNA damage via ubiqui-
tylation by the Cul4Cdt2 ubiquitin ligase [64]. The Cdt2 subunit of
the ubiquitin ligase is itself cell cycle regulated, and is expressed
via MBF-mediated transcription [65], but Cdt2 is not sufficient
for Spd1 degradation and the additional requirement is Spd1’s
interaction with DNA-associated PCNA. In this context, Spd1 is
ubiquitylated by Cul4Cdt2 [66,67]. For reasons that are not clear,
 of ribonucleotide reductase in eukaryotes. Semin Cell Dev Biol

free PCNA is unable to promote Spd1 ubiquitylation by Cul4Cdt2, and
since PCNA is assembled onto DNA specifically during S phase and
DNA repair, this provides a switch to synchronize RNR activation
with DNA synthesis. This regulatory mechanism is consistent with
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he predominantly nuclear localization of Spd1, but it is less clear
ow Spd1 regulates the holoenzyme, which is supposedly cytoplas-
ic. Possibly, Spd1 shuttles between nucleus and cytoplasm and
aintains a higher concentration in the nucleus. Incidentally, since

pd1 interacts with both PCNA and RNR, it could localize RNR at
ites of DNA synthesis, although direct evidence for this is lacking.

Defects in Spd1 proteolysis result in depressed dNTP pools,
n increased mutation rate [4], defective DNA repair by homolo-
ous recombination [6], and activation of DNA damage checkpoints
62,68]. Pre-meiotic DNA replication appears to be especially sensi-
ive to defects in Spd1 proteolysis [4]. Previously, these effects were
nterpreted as directly due to dNTP deficiency, but a recent study
howed that an RNR mutant resistant to allosteric feedback inhi-
ition does not suppress Spd1 stabilization defects, even though
he dNTP concentration is higher than in wild-type cells [69]. Thus
xcess Spd1 might lead to replication stress in other ways, for
nstance by interacting with PCNA and interfering with the binding
f other replication or repair factors.

A second Spd1-related protein, Spd2, has been recently
escribed in S. pombe [70]. Different phenotypes result from Spd2

nactivation compared to Spd1, in that there is no effect on
2/Suc22 nuclear localization and dNTP levels are not affected.
owever, Spd2 modulates RNR subunit interactions, is targeted for
biquitylation by CRL4Cdt2 and can delay S phase when in excess,
uggesting that it shares some properties with Spd1.

Proteins related to the Sml1 family are found in other fungi,
ut have not been identified in other eukaryotic groups. However,
hese proteins are very poorly conserved at the level of primary
equence making their detection by bioinformatics difficult, so it
emains to be seen whether this mode of regulation is found in
igher eukaryotes.

. RNR and organelle DNA synthesis

RNR is crucial for maintenance of organelle DNA. Although sal-
age pathways within the mitochondria provide one source of
recursors for mtDNA replication [71], it is clear that RNR is also

mportant. This is dramatically highlighted by the discovery that
ome human mtDNA depletion syndromes are caused by muta-
ions in p53R2, a phenotype reproduced in mice deficient in p53R2
unction ([72], reviewed in [73]). Thus the low level of RNR activity
rovided by constitutively expressed p53R2/R1 in quiescent cells,
hich lack normal R2, provides an essential supply of reduced
ucleotides for mtDNA synthesis. It is most likely that reduced
ucleotides generated by cytosolic RNR are imported into the
atrix of mitochondrial as dNTPs, but import of dTMP and possibly

ther types of reduced nucleotides may  occur (reviewed in [74]).
he R1 subunit has been reported to be associated with mammalian
itochondria [75], raising the possibility that nucleotides may  also

e reduced by endogenous RNR.
Mutations affecting plant RNR cause defects in chloroplast

aintenance and lead to leaf variegation [76,77]. Partial inhibition
f RNR leads to chlorotic leaves without growth retardation, sug-
esting that chloroplast replication is especially sensitive to defects
n dNTP supply [78].

. Cellular localization of RNR and provision of dNTPs to
eplication and repair sites

As discussed in Section 4, the active form of S. cerevisiae and
. pombe RNR is cytoplasmic. A study in mammalian cells also
Please cite this article in press as: Guarino E, et al. Cellular regulation
(2014), http://dx.doi.org/10.1016/j.semcdb.2014.03.030

oncluded that both subunits are constitutively cytoplasmic, both
uring the cell cycle and after DNA damage [79]. A simple model to
xplain provision of reduced nucleotides for DNA synthesis would
nvolve free diffusion across nuclear pores. However the situation
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after DNA damage is more controversial, since problems in visu-
alizing the R2 subunit in the nucleus may  be linked to its rapid
turnover there. Furthermore, RNR recruitment has been reported
in G1 cells at DNA damage site in a process that requires interaction
between R1 and the Tip60 histone acetyltransferase [80]. Impair-
ing this accumulation by blocking the R1-Tip60 interaction reduces
DNA repair and sensitizes cells to DNA damaging agents. Local-
ization of RNR in mammalian cells might be especially important
since dNTP levels drop outside of S phase and are not significantly
increased by DNA damage. The concept of localizing RNR at sites
where dNTPs are consumed to improve replication efficiency goes
back many years, and the Escherichia coli replisome appears to have
a hyperstructure which includes RNR [81–84].

A recent study showed that doubling dNTP levels in S. cerevisiae
increases the rate of DNA synthesis in S phase, implying that under
normal conditions the rate of DNA synthesis by replicative poly-
merases is limited by dNTP concentration [85]. Increased dNTP
levels also led to a higher DNA synthesis rate on damaged tem-
plates and prevented activation of the DNA replication checkpoint,
possibly by promoting lesion bypass. These observations imply that
minor deviations in dNTP supply might have significant effects on
genome stability. In this connection, it has been suggested that
replication of simple repeats with low sequence complexity could
transiently reduce the local concentration of specific dNTP pre-
cursors and slow replication [86]. Transient fork inhibition could
promote the formation of secondary structures that could promote
repeat instability.

7. Novel modes of RNR regulation

A recent report shows that iron deficiency also regulates R2 cel-
lular localization in S. cerevisiae (reviewed in [29]). Iron is essential
for RNR function as it provides the metallocofactor in the R2 sub-
unit (see Section 2). Iron deprivation results in the movement of
R2 from nucleus to cytosol to activate RNR, but this movement is
independent of Mec1 or Rad53, suggesting the existence of a reg-
ulatory mechanism that does not work through the DNA damage
checkpoint pathway [29,87]. Iron deficiency results in the expres-
sion of Cth1 and Cth2, which bind to the 3′ UTRs of many mRNAs,
causing their destabilization [88]. One of these mRNAs is WTM1
mRNA, thus downregulation of Wtm1  allows release of R2 from
the nucleus (see Section 4). Cth1 and Cth2 also interact with Rnr2
and Rnr4-encoding transcripts in response to iron deficiency, and
promoting their degradation may  allow cells to cope with low iron
levels [87].

RNR has also been shown to be responsible for a type of cytoplas-
mic  incompatibility in Neurospora crassa,  such that co-expression
of two allelic forms of RNR results in lethality due to RNR inhibition.
This property relies on a region near the C-terminus of the R1 sub-
units, which is different comparing incompatible alleles and is not
conserved in other eukaryotes [89]. Co-expression of incompati-
ble RNR alleles results in the formation of high molecular weight
RNR complexes, apparently mediated by disulphide bond forma-
tion [90]. It is suggested that with incompatible forms of RNR, an
intermolecular disulphide bond is formed between R1 subunits,
involving an active site cysteine and one in the C-terminal region.
Surprisingly, expression of a small C-terminal region of N. crassa R1
in S. cerevisiae triggers an incompatibility reaction, showing that it
can function in trans [91], hinting at new ways in which RNR could
be regulated.

Type 1a RNR is also found in E. coli, and studies of the inactive
 of ribonucleotide reductase in eukaryotes. Semin Cell Dev Biol

form of the holoenzyme, which is composed of R14R24 rings, have
shown these rings can interlock to form protein catenes [92]. It
remains to be seen whether this “knotted” RNR is relevant to regu-
lation, but it has been suggested that sequestration of the inactive
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orm of the enzyme as a catenated complex might modulate the
onversion to an active enzyme form. Since eukaryotic RNR forms
16 rings it will be interesting to determine if these bacterial obser-
ations have a more general relevance.

. Cellular consequences of deregulated RNR and elevated
NTP levels

It is clear that dNTP concentration is a critical factor in ensuring
ccurate DNA replication, but it is intriguing that cells downreg-
late RNR outside of S phase in order to depress dNTP levels.
ne suggestion is that this is a strategy to restrict the replica-

ion of viruses [93], and evidence for this comes from a study of
ammalian SAMHD1, which encodes a deoxynucleoside triphos-

hohydrolase and downregulates dNTP pools by hydrolysis outside
f S phase [94]. The ability of SAMHD1 to lower dNTP levels blocks
IV-1 replication, and inactivation of SAMHD1 alleviates restric-

ion of viral replication [95–97]. Defects in SAMHD1 are found
n Aicardi-Goutières syndrome [98], which is characterized by
nnate immunity defects and neurological degeneration, but the
ink between these phenotypes and dNTP levels is unclear.

High dNTP levels outside of S phase could have other deleterious
onsequences. Mitochondrial nucleotide pools may  be distorted
y the transient increase in dNTP concentration during S phase,
nd it is possible that the fidelity of mtDNA replication would be
dversely affected by constitutively high dNTP levels. It has also
een suggested that low dNTP levels contribute to the block to DNA
eplication outside of S phase [43], so as to limit replication occur-
ing from an unscheduled initiation. High dNTP levels also disturb
ell cycle progression. In S. cerevisiae,  high dNTP levels resulting
rom an RNR mutation that deregulates the enzyme for feedback
nhibition, inhibit cell cycle progression by delaying initiation of
NA replication [99]. Similarly, in mammalian cells, elevation of
NTPs levels by down-regulating SAMHD1 inhibits S phase entry
y an unknown mechanism [94].

Finally, in the light of these recent findings, it is interesting to
econsider the significance of RNR localization at sites of damage
n mammalian cells. This has been interpreted as a mechanism to
rovide an adequate concentration of nucleotides at repair sites
o facilitate the activity of repair polymerases, but an alternative
nterpretation is that this is a compromise mechanism that allows
epair while avoiding the deleterious consequences of a pancellular
levation in dNTP levels.

. Conclusions and perspectives

It is clear that RNR is subject to a wide range of regulatory
echanisms which, together with other factors such as SAMHD1,

erve to maintain dNTP concentrations at optimal levels during S
hase, while reducing levels in other phases of the cell cycle or

n nonproliferating cells. Some control mechanisms are conserved
etween yeasts and mammalian cells, but others are specific and
here appears to be considerable evolutionary plasticity in mecha-
isms affecting RNR activity. Mammalian cells go to extremes in
educing dNTP concentrations in nonproliferating cells to levels
hat are compatible with maintenance of mtDNA while preventing
dverse consequences of constitutively high levels. This may  in part
e an adaptation reflecting the high proportion of nonproliferating
ells in the adult body and the long lifespan of some nondividing
ell types. Mammalian cells show localization of RNR at sites of
NA damage [80] and is intriguing why a nuclear sublocalization
Please cite this article in press as: Guarino E, et al. Cellular regulation
(2014), http://dx.doi.org/10.1016/j.semcdb.2014.03.030

echanism has evolved for repair and not for bulk DNA replica-
ion in S phase. RNR localization could potentially occur in other
ircumstances, such as to support DNA synthesis associated with
omologous recombination in meiosis, since inhibition of RNR has
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adverse effects on homologous recombination in yeast [6]. Yeast
cells also have multiple overlapping mechanisms to regulate RNR,
including the use of small inhibitory proteins. Defective downreg-
ulation of these protein regulators can have serious effects on cell
viability or efficiency of DNA replication or repair, but inactiva-
tion of these proteins has relatively mild phenotypes. As yet it is
unclear whether this mode of regulation has so far escaped detec-
tion in mammalian cells, or is a peculiarity of fungi that has been
supplanted by different regulatory mechanism in other organisms.

The interaction between RNR activity, dNTP levels and cell cycle
progression requires further clarification. High dNTP levels delay
cell cycle progression in both yeasts and mammalian cells but
it is unclear how these high concentrations of dNTPs are sensed
and how this is transduced to delay S phase entry. Low levels of
dNTPs activate checkpoint mechanisms but again, what is the sen-
sor for this? A plausible mechanism could involve a mechanism that
detects an abnormally slow rate of DNA synthesis, perhaps involv-
ing the leading strand polymerase � in conjunction with checkpoint
proteins associated with the fork.

RNR and more generally dNTP regulation is of considerable clin-
ical interest, in part for the use of RNR inhibitors in chemotherapy.
Studying novel models of RNR inhibition, such as by small protein
inhibitors, may  provide new avenues for inhibitor development,
and exploiting RNR structural differences between organisms
might expand the utility of RNR drugs in combatting parasitic, bac-
terial or viral infections. The realization that elevated or depressed
dNTPs levels are responsible for certain genetic diseases also has
more general implications. It will be particularly interesting to work
out how the clinical phenotypes caused by SAMHD1 defects are
linked to elevation of dNTP levels, and whether defects in RNR per
se causing elevated dNTP levels are associated with any genetic dis-
eases. Mutations reducing RNR activity have so far only been linked
to mtDNA depletion syndromes, but could also affect nuclear DNA
synthesis, promoting fork stalling or replication infidelity, which
could lead to genomic instability [100]. Relevant here is the recent
finding that riboNMP incorporation by replicative polymerases is
common and mutagenic [101,102]; this would be predicted to be
enhanced under conditions where RNR activity is not adequate. It
will be interesting to determine whether aberrant RNR regulation,
due to germline or somatically acquired mutations, has any rele-
vance to the development of cancers in highly proliferative tissues.
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