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Orphan diseases (ODs) are progressive genetic disorders, which affect a small number of people. The principal fundamental aspects
related to these diseases include insufficient knowledge of mechanisms involved in the physiopathology necessary to access correct
diagnosis and to develop appropriate healthcare. Unlike ODs, complex diseases (CDs) have been widely studied due to their high
incidence and prevalence allowing to understand the underlying mechanisms controlling their physiopathology. Few studies have
focused on the relationship between ODs and CDs to identify potential shared pathways and related molecular mechanisms which
would allow improving disease diagnosis, prognosis, and treatment. We have performed a computational approach to studying
CDs and ODs relationships through (1) connecting diseases to genes based on genes-diseases associations from public
databases, (2) connecting ODs and CDs through binary associations based on common associated genes, and (3) linking ODs
and CDs to common enriched pathways. Among the most shared significant pathways between ODs and CDs, we found
pathways in cancer, p53 signaling, mismatch repair, mTOR signaling, B cell receptor signaling, and apoptosis pathways. Our
findings represent a reliable resource that will contribute to identify the relationships between drugs and disease-pathway
networks, enabling to optimise patient diagnosis and disease treatment.

1. Introduction

Orphan diseases (ODs) or rare diseases are chronic and
progressive genetic disorders affecting a small number of
people. The US Rare Disease Act of 2002 defined it as a disease

that affects fewer than 200,000 inhabitants, equivalent to
approximately 6.5 patients per 10,000 inhabitants [1], while
in Europe, it is defined as a pathology that affects less than 1
in 2,000 people. To date, between ~6,000 and 8,000 distinct rare
diseases have been reported [2]. Patients with ODs are widely
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heterogeneous with respect to type and complexity of diseases
as well as their clinical manifestations and age of onset. Orphan
diseases can severely impact patient quality of life and represent
a serious burden on society [3]. The principal fundamental
aspects related to ODs include insufficient knowledge of
physiopathological mechanisms necessary to avoid misdiagno-
sis and to develop appropriate multidisciplinary healthcare
procedures. The second obstacle in ODs strategy management
is the lack of knowledge and awareness in medical communi-
ties, in addition to the availability of very few patients for
clinical trials [4] making these diseases neglected [5]). Unlike
ODs, complex diseases (CDs) are with higher incidence and
prevalence. Along with the development of high-throughput
sequencing technology and population genomics, the scanning
for genes or mutations related to complex traits (or diseases)
has been greatly promoted. Furthermore, multicohort
Genome-Wide Association Studies (GWAS) have currently
identified hundreds of genetic variants that are significantly
associated with CDs [6]. The availability of biological data
from the use of GWAS, massive parallel sequencing, and
omics data pushed scientists to use computational approaches
in the context of complex biological systems and integrative
biology to study disease-disease interactions. Indeed, Goh
and Choi [7] have used OMIM data to construct the human
diseasome by connecting diseases that share common
disease-causing genes. This integrative biology approach is
aimed at understanding the relationship between diseases
based on the underlying biological mechanisms and is
expected to improve our current knowledge of disease cross-
talk, which may lead to further improvements in disease treat-
ment. Moreover, DiseaseConnect integrates comprehensive
omics, literature data, and drug-related data to reveal disease
and disease connectivity via common molecular mechanisms.
This tool is very useful since it allows to group diseases with
entirely different pathologies, leading to a similar treatment
design [8]. It is well known that genes are participating in
complex pathways through synergic interactions with other
genes, proteins, and environmental factors that collectively
influence the clinical manifestations of diseases [9]. A previous
study used a computational approach to linking diseases
together based on shared pathways [10]. Deciphering molecu-
lar pathways of orphan diseases is a key element for under-
standing molecular events involved in complex disorders
[11, 12] and could be investigated as models for the treatment
of more complex diseases. In the present analysis, we attempt
to investigate the relationship between ODs and CDs using an
integrative computational approach based on disease-gene
association and gene-pathway association resources to identify
potential shared molecular pathways in ODs and CDs and to
provide valuable results that can be explored to improve
disease diagnosis, prognosis, and treatment.

2. Materials and Methods

2.1. Gene-Disease Association Integration. Data related to
disorders, candidate disease genes, and associations between
them were extracted from the Online Mendelian Inheritance
in Man [13], DisGeNet [14], and Orphanet [15] databases.
The OMIM database, a compendium of human disease genes

and phenotypes, is considered to be the best-curated resource
of known phenotype-genotype relationships. It was initially
focused on monogenic disorders but later on expanded to
include complex traits and genetic mutations that confer
susceptibility to complex disorders [13]. In addition, the
DisGeNet database represents another comprehensive dis-
covery platform designed to address multiple questions regard-
ing the genetics of human diseases. Data in DisGeNet integrates
expert-curated information with text-mined data, covering
information on Mendelian and complex diseases and all
gene-disease associations that include data from animal
disease models [14]. Finally, Orphanet represents a unique
resource, gathering and improving knowledge on rare diseases
so as to improve the diagnosis, care, and treatment of patients
with rare diseases [15]. Orphanet is aimed at providing high-
quality information on rare diseases and also maintains the
Orphanet rare disease nomenclature (ORPHAcode), essential
in improving the visibility of rare diseases in health and
research information systems (https://www.orpha.net).

2.2. Data Harmonization and Processing. Orphanet xml files
were collected from the Orphanet portal and parsed to extract
disease ID, disease name, and associated genes. From
OMIM,we retrieved only phenotype mapping key “(3)” as the
molecular basis forthese disorders is known, and mutations
have been found in the associated genes. The DisGeNet file
was processed, and Unified Modeling Language (UML)
identifiers were converted when possible into OMIM ID using
OMIM to ontologies file containing the mapping schema in
between. Unambiguous UML identifiers corresponding to
more than one OMIM ID were discarded. All gene names
existing in the three data sources were converted into HGNC
official symbols to avoid redundant data. Data collected from
the three data sources were harmonized integrated into a single
tab-separated file text format. Redundant entries between the
distinct data sources (having the same OMIM ID) were
removed.

2.3. Gene-CD and Gene-OD Network Generation. From
integrated data, gene-disease binary links were retrieved.
Two bipartite graphs representing OD-gene interactions
and CD-gene interactions were constructed using diseases
and genes as nodes that have been uploaded into Cytoscape
3.7.2 [16]. A link between a disorder and a disease gene was
placed when mutations in that gene lead to that specific
disorder.

2.4. CD-OD Network Generation. Starting from the gene-
disease association bipartite graph, we have generated a new
human disease network highlighting biologically relevant
CD-OD associations. In this network, the nodes represent
the orphan and complex disorders, and two disorders are
connected to each other if they share at least one gene in which
mutations are associated with both disorders.

2.5. Disease-Pathway Mapping. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment was
performed using the Bioconductor package GOstats, Easy
Microarray data Analysis package (EMA), False Discovery
Rates package (fdrtool), and http://org.Hs.eg.db R packages.
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We conducted two-sided enrichment/depletion hypergeo-
metric distribution tests in KEGG pathways, with a p value
significance level of < = 0:05, followed by the Bonferroni
adjustment to map pathways to diseases. A Perl script was
used to automatically run an R script multiple times on all
diseases (https://gist.github.com/radaniba/4170466). Briefly,
for each disease in both categories (ODs and CDs), we
retrieved the list of associated genes and made a link between
the disease and KEGG pathways only if the disease included
genes statistically enriched in that pathway. Figure 1 highlights
the integrative approach undertaken here in order to investigate
the gene-disease (Orphan and Complex diseases) associations,
OD-CD associations, and pathway-human disease mapping.

2.6. Networks Analyses. Networks topologies were analysed
using the Network Analyzer [16] Cytoscape plugin by com-
puting several metrics including node degree distribution,
node eccentricity, node closeness centrality, radiality, stress
centrality, and betweenness centrality to identify influential
nodes.

3. Results

3.1. Overlap between Resources and Data Cleansing. Unsur-
prisingly, OMIM and Orphanet resources share a consider-
able number of overlapping disorders (Figure 2(a)) with
3,528 shared entries between the two databases. This repre-
sents about 84% and 88% of the total diseases in OMIM
and Orphanet, respectively. On the other hand, the DisGeNet
content shared only 0.39% and 0.37% of the total content
from OMIM and Orphanet, respectively. All redundant
entries between the distinct data sources were removed.

Combined data were processed, and genes associated
with diseases were retrieved. In total, we collected 17,030
genes associated with 20,542 diseases and 3,971 genes associ-
ated with 3,969 orphan diseases. Finally, we have a total
overlap of 3,903 genes between the two groups of genes,
related to CDs and ODs (Figure 2(b)).

3.2. Gene-Disease Networks. CD-gene associations and OD-
gene associations were uploaded into Cytoscape to build
gene-disease networks. The OD gene association network is
a graph representing 7,748 connected components showing
that mainly major diseases are monogenic. The network
contains 7,748 nodes representing 3,779 diseases and 3,969
genes with 7,418 edges linking them. Simple parameters of
both networks were determined using the Network Analyzer
Cytoscape plugin [16] (Table 1). It was previously reported
that hub elements within a network are characterized by their
high degree of connectivity to other nodes and their central
placement in the network [17]. Based on the node degree
scores, the OD-gene association network contains many
genes that interact with only a few other diseases as well as
highly connected genes that interact with many different
diseases acting like hubs. Among these hub genes, we identi-
fied COL2A1 associated with 19 orphan diseases, LMNA and
HBB interacting with 18 ODs, PTEN and FGFR1 linked to 17
ODs, KIT related to 16 distinct ODs, and FGFR3 associated
with 15 different ODs (see Supplementary Table 1).

Similarly, when focusing on diseases, we found that some
disease nodes interact with a high number of genes including
“retinitis pigmentosa” connected to 81 distinct genes and
“autosomal recessive nonsyndromic sensorineural deafness
type DFNB” related to 73 unique genes.
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Figure 1: The computational integrative approach undertaken to investigate the disease-gene associations, disease-disease associations, and
disease-pathway association.
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However, to avoid any bias using the node degree central-
ity score that may favor high studied genes and diseases com-
pared to less studied ones, we identified influential nodes
based on the betweenness centrality scores with high values
indicating higher relevance of the nodes within the network.
Among the most important genes, we report TP53 linked to
14 ODs, FGFR1 linked to 18 ODs, SDHA with 5 links, HBB
with 18 links, and MECP2 linked to 7 distinct ODs. We also
report “retinitis pigmentosa”, “autosomal recessive nonsyn-
dromic sensorineural deafness type DFNB”, “pilomyxoid
astrocytoma” associated with 7 genes, and “familial isolated
dilated cardiomyopathy” associated with 44 genes as most
central diseases. Figure 3 highlights these nodes and their
interactions with related genes or orphan diseases (Supple-
mentary Table 1).

On the other hand, the CD-gene interaction network
represents a compact graph with 60 connected components
(Table 1) and characterized by 40,461 nodes representing
17,030 genes and 23,431 diseases with 516,583 edges represent-

ing links between them. Based on the betweenness centrality
measure, we found that some genes play a central role in the
network acting like hubs. This list of genes includes TP53
connected to 1,638 CDs, TNF associated with 1,480 CDs, IL6
involved in 1,189 CDs, BCL2 associated with 891 CDs, IL1B
linked to 921 CDs, MTHFR connected to 611 CDs, AKT1
linked to 657 CDs, and VEGFA related to 1,029 CDs.

Similarly, focusing on diseases, we found that some disease
nodes interact with a high number of genes including “breast
carcinoma” connected to 4,962 distinct genes, “neoplasm
metastasis” linked to 3,913 genes, “colorectal carcinoma” with
2,931 associated genes, “rheumatoid arthritis” with 1,832
linked genes, “diabetes mellitus” with 1,506 gene interactions,
and “liver carcinoma” with 3,592 gene associations. Figure 4
highlights some interactions of these hub nodes with related
genes or complex diseases.

3.3. Human Disease Network. In order to study the relation-
ships between orphan and complex diseases, we have
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Figure 2: Venn diagrams showing (a) the overlap between diseases in the three data sources used in the present study and (b) the overlap
between CD-related genes and OD-related genes.
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constructed a human disease network where two diseases are
linked together if they share at least one gene based on the
disease/gene relationships collected from the different
resources [18]. Figure 5 corresponds to the human disease sub-
network including ODs and CDs that present at least 10 genes
in common. The network includes 790 nodes corresponding to
76 ODs and 724 CDs linked by 9,378 edges. Linking ODs and
CDs in the same network, we found that some ODs including
Zellweger syndrome, neonatal adrenoleukodystrophy, the
infantile Refsum disease, the retinitis pigmentosa, and the
Leigh syndrome with leukodystrophy are linked to several
other CDs acting like network hubs. Similarly, we found that
intellectual disability, neoplasm metastasis, breast carcinoma,
and colorectal cancer act like CD hubs. We also found that rare
and more large complex cancers are interconnected within the
network through their common genes.

3.4. Disease-Pathway Interactions. We have initiated this step
by identifying human orphan and complex diseases sharing
common genes. By linking KEGG pathways to this set of
diseases through underlying gene associations and pathway
enrichment analysis, we elucidated connections between both
types of diseases and metabolic pathways. From the enrich-
ment analysis, we found that only 1,506 out of 3,740 orphan
diseases were significantly enriched in KEGG pathways (see
Supplementary Table 2). These ODs were linked to 228
different pathways covering a total of 1,256 unique genes.
The most significant OD-enriched pathways include focal
adhesion pathway (hsa04510), MAPK signaling pathway
(hsa04010), regulation of actin cytoskeleton (hsa04810),
cytokine-cytokine receptor interaction pathway (hsa04060),
and others. We also found that 15,193 out of 24,512 complex
diseases were significantly enriched in KEGG pathways (see
Supplementary Table 3). These CDs were associated to 229
distinct pathways that involve a total of 4,474 unique genes.
The most enriched CD-associated pathways include pathways
in cancer (hsa05200), cytokine-cytokine receptor interaction

(hsa04060), MAPK signaling pathway (hsa04010), focal
adhesion (hsa04510), apoptosis (hsa04210), Toll-like receptor
pathway (hsa04620), neurotrophin signaling pathway
(hsa04722), and Jak-STAT signaling pathway (hsa04630).
Figure 6 highlights the most enriched common pathways
shared by several ODs and CDs. Pathways relative to
“cancer,” “apoptosis,” “hedgehog signaling,” “mTOR
signaling,” and “mismatch repair” were identified among
those shared between ODs and CDs.

The network shows that several rare cancers including
hereditary breast and ovarian cancer syndrome and complex
cancers including adenocarcinoma and colorectal cancer
metastatic are linked through the p53 signaling pathway. This
association is expected, as over 50% of human cancers carry
the loss of function mutations in the p53 gene [19], suggesting
that p53 is a classical Knudson-type tumor suppressor. More-
over, ODs such neurofibromatosis-Noonan syndrome were
connected to CDs such as a short neck, coronary artery disease,
and intellectual disability through the KEGG MAPK signaling
pathway. Neurofibromatosis-Noonan syndrome (NFNS) is a
rare condition with clinical features of both neurofibromatosis
type 1 (NF1) and Noonan syndrome (NS). It was previously
reported that the disease is caused by a dysregulation of the
RAS-MAPK pathway through mutations in genes including
NF1 and PTPN11 [20]. We also found that the Muir-Torre
syndrome which is an autosomal-dominant skin condition
of genetic origin, characterized by tumours of the sebaceous
gland or keratoacanthoma associated with visceral malignant
diseases, is connected to “adenocarcinoma of the colon”,
“carcinoma of the lung”, “stomach carcinoma”, “adenocarci-
noma of the large intestine”, and other cancers through the
KEGG pathway mismatch repair. This association is also
expected as it is well established that the most common type
of Muir-Torre syndrome is characterized by defects in
mismatch repair genes and early-onset tumours [21]. The
detailed lists of common pathways associated with ODs and
CDs can be found in (Supplementary Table 4).

4. Discussion

Several previous studies have used the OMIM database as a
unique source of disease-gene association data [13] to study
the relations between human diseases. However, these
studies may miss information related to certain genes and
diseases because OMIM represents a catalogue of inherited
Mendelian disorders in man; as a result, most diseases are
missed or annotated with very few genes [13, 22]. To
compensate for this lack of information related to genes
and diseases, we chose to integrate data from the DisGeNet
database [14]. This later represents another data source of
gene-disease associations integrating information onMende-
lian and complex diseases [14]. To study the overlap between
complex diseases and orphan diseases, data from the Orpha-
net database related to orphan diseases were collected and
integrated in the present analysis. Orphanet represents a
unique resource for gathering and improving knowledge on
rare diseases. The database is also developed to refine knowl-
edge about the care and treatment of patients with rare
diseases. While this resource is dedicated to orphan diseases,

Table 1: Simple parameters of both networks determined using the
network analyzer Cytoscape plugin.

CDs-gene association
network

ODs-gene association
network

Number of nodes 40,461 7,748

Number of edges 516,883 7,418

Clustering
coefficient

0 0

Connected
components

60 1,492

Network diameter 10 34

Shortest paths 1,627,436,746 13,223,970

Characteristic path
length

3.717 10.169

Avg. number of
neighbors

25.534 1.915

Network density 0.001 0

Network
heterogeneity

3.852 1.400

5BioMed Research International



it shares nearly 85% of overlapping disorders with OMIM,
and only about 15% are found in the Orphanet database.
Using such binary disease gene associations, we found that
TP53, FGFR1, and HBB were the top most relevant genes
related to ODs (Figure 3). Li-Fraumeni syndrome (LFS)
[23] is an inherited autosomal dominant disorder that is

usually associated with abnormalities in the tumor suppres-
sor protein P53 gene (TP53) located on chromosome 17p13.
LFS variants include LFS1, LFS2, and LFSL. LFS1 is associ-
ated with mutations in TP53. Moreover, mutations in the
HBB gene are responsible for several serious hemoglobinop-
athies, including sickle cell anemia and Î2-thalassemia.

Node fill color mapping

Edge width mapping

Figure 3: OD-gene association subnetwork. Nodes with orange color denote high influential nodes based on the betweenness centrality
measure while those in yellow color denote less central. The network was generated using Cytoscape 3.7.2.
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These hemoglobinopathies are a set of hereditary diseases
caused by the abnormal structure or insufficient production
of hemoglobin [24].

We also found that the TP53, TNF, IL6, VEGFA, and
IL1B genes are the top five genes associated with CDs
(Figure 4). The TP53 gene encodes for a protein located in
the nucleus in which it is able to bind directly to the DNA.
When the DNA in a cell becomes damaged by agents such
as toxic chemicals, radiation, or ultraviolet (UV) rays from
sunlight, this protein plays a critical role in determining
whether the DNA will be repaired or the damaged cell will
undergo apoptosis if the DNA cannot be repaired. Thus,
p53 is essential for regulating DNA repair and cell division.
Mutations in the TP53 gene will result in several disorders
including breast, colorectal, bladder, lung, and ovarian
cancers but also some rare cancers such as the Li-Fraumeni
syndrome [25]. These aforementioned relevant genes may
be used as biomarkers for drug targets and/or disease diag-
nostics. A previous study has suggested TP53 as biomarkers
of carcinogen exposure and cancer risk and prognosis [26].
We have compared this list of relevant genes with a list of
druggable genes from the human protein Atlas https://www
.proteinatlas.org/search/protein_class%3AFDA+approved
+drug+targets?format=tsv and found that nearly all relevant
reported genes belong to this list including FGFR1, SDHA,
HBB, TP53, TNF, IL6, BCL2, IL1B, and VEGFA.

We also showed that ODs and CDs can be clustered
together through many shared genes such as the TP53 gene.

Previously, the Centre for Therapeutic Target Validation was
able to develop an experimental factor ontology (EFO) by
integrating rare and complex disease-related phenotype and
genotype ontologies and identified 20 common diseases and
85 rare diseases that share similar phenotypes [27]. Through
Figure 5, we showed that some ODs and CDs could share
more than 10 common genes. These shared genes provide
the potential possibility for repurposing drugs that have been
initially designed for CD to OD therapy and reciprocally
[28]. Computational drug repositioning bears a rapid alter-
native for generating a list of repositioning candidate drugs.
The main challenge consists of the experimental verification
of the efficacy and safety of these computationally identified
candidate drugs and to move them forward into clinical
trials, something that remains hard especially with rare
disease patients [28]. We finally connected CDs and ODs to
biological pathways when the genes associated with these
diseases are enriched in common pathways. Interestingly,
our results show that apoptosis, mismatch repair, hedgehog
signaling, mTOR signaling, B cell receptor signaling, and
p53 signaling pathways are significantly enriched in several
CDs including many cancers, heart diseases, and diabetes as
well as in ODs (Figure 6). To assess the reliability of the pres-
ent approach, we compared it to prior computational works
that focused on breast cancer-related disorders (Wu and
coworkers (2008)). Both studies using distinct approaches
reported the same list of genes including BRCA1, BRCA2,
TP53, PIK3CA, CHEK2, PTEN, ATM, RAD51, PPM1D,

Node fill color mapping

Node size mapping

Figure 4: CD-gene association subnetwork. Nodes with orange color denote high influential nodes based on betweenness centrality measure
while those in yellow color denote less central. The network was generated using Cytoscape 3.7.2.
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and CASP8 as most relevant genes associated with breast
cancer. Similarly, as novel breast cancer susceptibility genes,
we found AKT1, ESR2, and RAD50 as the top genes. More-
over, we also compared our results to the pathway enrich-
ment among the top 100 breast cancer-related genes and
similarly found that the p53 signaling pathway and cell cycle
are the most enriched pathways and that our study is in
agreement with prior studies that use other approaches.

Besides, previous human disease networks were repre-
sented as nodes corresponding to disorders (without differen-
tiating between ODs and CDs) connected to each other if they
share at least one gene in which mutations are associated with
these disorders [18]. Furthermore, the gene set enrichment
analysis is known as a method of choice to study and investi-
gate pathways related to a set of genes [29]. In the present
study, we are combining both approaches to investigate
pathway-human disease relationships. Indeed, in order to
share common pathways, diseases must share some common
genes (with mutations) and must be enriched in similar

pathways (with adjP − value ≤ 0:05). Through the present
approach, we were up to identify novel disease connections
through disease-disease and disease-pathway associations that
are difficult to detect through a single-gene analysis-based
method. Understanding how human diseases and specifically
how CDs and ODs are related to each other will bestow poten-
tially new insights into the design of novel pathway-guided
therapeutic interventions for human diseases [30]. This study
is in line with the novel approaches for biomarker discovery
that is switching from the focus on single genes to multiple
genes that interact in a cell [31, 32]. It was previously reported
[33] that a network-based computational analysis can enhance
the efficiency of the drug development process. Moreover,
[34] proposed a computational approach that finds drug
targets by clustering networks through heterogeneous
biomedical data that include genes, biological processes,
pathways, and phenotypes.

The ultimate rationale behind this kind of study is that if
a pathway is shared by multiple CDs and ODs, a drug being

Figure 5: Human diseasome network highlighting the interconnections between ODs and CDs. CD disease nodes are represented in pink
colors while OD disease nodes are represented in orange colors. The connection is made between ODs and CDs if both disorders share at
least 10 genes.
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used to treat one disorder could potentially be reused to treat
another disorder targeting the same pathway [10]. For exam-
ple, some of the most effective treatments for coronary artery
disease, a complex disease, were first established during the
study of familial hypercholesterolemia, an orphan disease
[1]. Preliminary computational investigation using the TTD
database [35] showed that some existing drugs can be used
for both complex and orphan diseases. Indeed, it is well known
that the ataluren can be used to treat complex diseases includ-
ing muscular dystrophy and cystic fibrosis as well as ODs
including mucopolysaccharidosis and Dravet syndrome.
Baclofen can also be used for multiple sclerosis but also for
fragile X syndrome. Bis-choline tetrathiomolybdate was also
found to be effective against prostate cancer thanks to its
antiangiogenic activity [36]. The component is currently
under investigation to confirm its efficacy against Wilson’s
rare disease characterized by an abnormal accumulation of
copper in the body. Tocotrienols are known to target and
inhibit the cyclooxygenase-2 (COX-2), a proinflammatory

enzyme which is activated in gastric, hepatocellular, esopha-
geal, pancreatic, colorectal, breast, bladder, cervical, endome-
trial, skin, and lung cancers and is involved in promoting
cell survival, angiogenesis, and metastasis [37–39]. An open-
label study of the alpha-tocotrienol quinone therapy in 10
children with genetically confirmed Leigh syndrome caused
by pathogenic variants in a number of different genes showed
stabilization and even reversal of disease progression [40].
Similar integrative approaches may help to provide more
complete pictures on the disease relationships and drugs that
can be used to target common pathways and treat different
diseases.

5. Conclusions

In the present study, we have investigated the overlap between
CDs and ODs based on the data available from three distinct
databases OMIM, DisGeNet, and Orphanet. To achieve our
aim, we have taken an integrative computational approach

Figure 6: Disease-pathway network highlighting the interconnections between ODs or CDs and pathways. CD disease nodes are represented
in cyan color while OD disease nodes are represented in pink color. Pathways are represented in orange color. The connection is made
between a disease and a pathway if genes associated with a certain disease are significantly enriched (adjP value ≤ 0:05) in that pathway.
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to generate a human gene-disease network and to further
study the relationship between human diseases considering
the genes that are associated with these diseases and elucidate
the relationship between diseases and pathways. Our results
showed that an important number of common genes andmet-
abolic pathways are shared between the two types of diseases.
The present work provides a resource of exceptional interest
that will contribute to identify the relationships between drugs
and disease-pathway networks, enabling to optimise patient
diagnosis and disease treatment.

Data Availability

All data are available as supplementary materials and will be
available online with the manuscript.
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