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A B S T R A C T   

The impact of geopolitical risk on energy markets has drawn attention to the need for better statistical modeling, 
especially of the crude oil markets and the shipping industry. In this work, the West Texas Intermediate crude oil 
price and the Baltic Dry Index behavior under the assumption of geopolitical risks are examined by using 
monthly data from January 1985 until May 2021. Using fractional integration methods, the results indicate that 
geopolitical risk and the Baltic Dry Index series will return to their original trends in the event of an exogenous 
shock, in contrast to the West Texas Intermediate behavior. These results are supported by analyzing the long- 
term relationship of the time series using the Fractional Cointegration Vector AutoRegressive approach. Finally, 
we use Bai and Perron (2003) and wavelet transform approaches to detect breaks in the prices paid for the 
maritime transport and for the crude oil prices caused by geopolitical risks.   

1. Introduction 

Oil is one of the most relevant sources of energy for every country 
according to the IEA [1]. The economy of many countries is based on oil 
production and its trading, so the price of oil may be one of the key 
factors determining a country’s budget in terms of its revenues [2]. Also, 
the oil price is a key factor for the shipping industry, because oil is the 
main energy source for the transport of commodities by sea all over the 
world, and shipping markets play a role in final prices for energy, 
agricultural goods and metals [3]. One of the most widely used in-
dicators to measure changes in the cost of transporting raw materials 
such as metals, grain and fossil fuels by sea, is the Baltic Dry Index (BDI), 
created by the London-based Baltic Exchange.1 Changes in the BDI are 
often seen as one of the main indicators of future economic growth or 

contraction, because raw and pre-production materials which are ship-
ped are typically at low levels of speculation [4]. Also, the BDI is linked 
to oil price fluctuations, and both are dependent on global economic and 
business conditions [3,4]. In fact, oil use for longer-distance freight and 
shipping varies according to the outlook for the global economy and 
international trade [1], which is also affected by geopolitical factors. In 
order to measure geopolitical risk, Caldara and Iacoviello [5] proposed 
an indicator, the geopolitical risk (GPR) index, that spikes around 
geopolitical events, such as the Gulf War, the aftermath of 9/11, and 
during the 2003 Iraq invasion, as shown in Fig. 1. Caldara and Iacoviello 
pointed out that the increase in GPR captures the risk of events that 
disrupt the normal, democratic, and peaceful course of relations across 
states, populations, and territories [5]. Hence, they argued that this 
index can be used to isolate risks related to wars and terrorist attacks, 
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that are more likely to be exogenous to economic developments in many 
countries. This fits well with the empirical results of Su et al. [6] which 
indicate that there existed six oil price bubbles during the period 
1986–2016 when the oil price deviated from its intrinsic value based on 
market fundamentals, and these dates correspond to specific events in 
politics and the financial markets. Also, Su et al. showed that oil price 
and financial liquidity are related in the time domain when GPR is high 
[7]. Their results also support the assumed monetary equilibrium model 
in Saudi Arabia, which, in turn, is an indication of the fact that oil prices 
are dependent on GPR and that financial liquidity relies on the price of 
oil. Other authors, such as Bariviera et al. analyzed the informational 
efficiency of the oil market during the last three decades and concluded 
that oil prices change with geopolitical events [8]. 

On the other hand, Platto et al. argued that it is worth taking into 
account that pandemics, such as COVID-19 may reduce the demand for 
oil, causing prices to decrease [10], which is inconsistent with the pre-
dictions of the intertemporal capital asset pricing model [11]. For 
example, despite an expected annual increase of 6.2% in 2021, global oil 
demand is set to remain around 3% below 2019 levels [12]. Some au-
thors have analyzed this effect from different points of view. Flynn et al. 
point out that onshore oil operations increase human incursions into 
wildlife areas, facilitating mechanisms for potential zoonotic pathogen 
transmission which may cause pandemics to occur [13]. Wang et al. 
showed the great impact COVID-19 has been having on the 
cross-correlation of multifractal property between oil and agricultural 
futures markets [14]. Sharif et al. suggest that the COVID-19 outbreak 
affects oil prices and it has a greater effect on US geopolitical risk, on US 
economic uncertainty and the stock market [15]. However, they 
acknowledge that their findings should be taken with caution given the 
small size of the sample and the statistical inference from the used tests. 
In a previous work, Gil-Alana and Monge analyzed the effect of the 
COVID-19 crisis on crude oil prices by using long memory techniques 
[16]. They evidenced that oil price series are mean reverting which 
implies that the shock would be transitory albeit with very long-lasting 
effects. 

The goal of this paper is to understand the behavior of the BDI and 
WTI (West Texas Intermediate) crude oil prices under the assumption of 
geopolitical risks. To this purpose, the statistical properties of these time 
series are analyzed, measuring the degree of persistence by using frac-
tional integration techniques (see Refs. [17–20], among others). This is 
relevant, noting that this modelization based on fractional integration is 
more general and flexible than the standard ones based on integer de-
grees of differentiation, allowing for example for nonstationary though 
mean reverting processes. Moreover, and to be consistent with the above 
approach, the long-term relationship of the time series is investigated by 
using the Fractional Cointegration VAR (FCVAR) approach [21,22]. 
Finally, the presence of structural breaks in the data is examined by 

using Bai and Perron’s [23], Gil-Alana’s [24] and wavelet transform’s 
(Aguiar-Conraria and Soares [24]) approaches. This is also of interest 
since fractional methods have been sometimes questioned due to the 
presence of breaks in the data that have not been taken into account. 

To be more precise, the paper deals with the following questions: 
first, are Geopolitical Risk (GPR), Baltic Dry Index (BDI) and West Texas 
Intermediate (WTI) oil prices mean reverting or not? This is important 
since in the former case there is no need of strong policy actions since 
shocks return by themselves to the long term projection of the series. 
Second, in a multivariate context, do GPR and BDI, and GPR and WTI 
display a long run equilibrium relationship, and if so, is it of a fractional 
nature? This is also of relevance to determine the dynamics of their long 
run relationships. Finally, are these previous questions related to po-
tential breaks in the data? If that is the case, the break dates are inves-
tigated to find any explanation for them along the analysis of each 
subsample separately. 

To the best of our knowledge, this is the first paper that analyzes the 
statistical properties of geopolitical risks and the Baltic Dry Index and 
WTI crude oil prices using the methodologies mentioned above. It is 
important to examine whether the impact of geopolitical risks on the BDI 
and WTI crude oil prices is temporary or permanent. This knowledge is 
extremely relevant to analyze what the effects of geopolitical risks may 
be for oil prices and for the prices paid for the maritime transport of raw 
materials. The study is both crucial and timely as, despite the impor-
tance of oil prices and maritime transport in the literature in economics, 
political science and international relations, there is surprisingly not too 
much scholarly discussion. 

Our results can be summarized as follows: Using fractional integra-
tion methods, the results indicate that geopolitical risk (GPR) and the 
Baltic Dry Index (BDI) series will return to their original trends in the 
event of an exogenous shock, in contrast to the West Texas Intermediate 
(WTI) behavior. Analyzing the long-term relationship of the time series 
using the Fractional Cointegration Vector AutoRegressive approach, we 
conclude that the relationships between GPR-BDI and GPR-WTI, 
respectively, have the same behavior. In these two cases the results 
imply I(0) behavior and the shock duration is short-lived. Finally, we use 
several approaches to detect breaks in the geopolitical risk data and we 
use Continuous Wavelet Transform to analyze how this affects the 
behavior of the Baltic Dry Index and crude oil prices. We conclude that 
the geopolitical risk has had a very small and short-lived impact on oil 
prices during the identified structural changes. 

The rest of the paper is organized as follows. Section 2 reviews the 
literature on the relationship between BDI, oil price and geopolitical 
conflicts from different points of view and by using different method-
ologies. In the following two sections the data source and the method-
ology applied in the paper are shown. Section 5 presents the main 
empirical results, while the final section shows the main conclusions of 

Fig. 1. The geopolitical risk index (from 1985 to 2022). Source: Reference [9].  
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this work. 

2. Literature review 

Economic development depends heavily on global trade, which has 
been identified as an instrument and driver of economic growth [25], 
leading to several advantages, such as, specialization, increase in 
resource productivity, large total output, creation of employment, gen-
eration of income and the relaxation of foreign exchange restraints, 
among others. However, international trade requires effective trans-
portation to connect countries in different regions. In particular, 
seaborne transportation, which accounts for about 80% of international 
merchandise [26], is the pillar of globalization [27]. Moreover, the 
shipping industry promotes industrial development by supporting 
manufacturing growth as well as encouraging regional economic and 
trade integration [26]. 

In order to provide a benchmark for the price of moving the major 
raw materials by sea, the Baltic Dry Index (BDI) is used [28]. This is 
reported monthly by the Baltic Exchange in London, as shown in Fig. 2, 
and is a composite of three sub-indices that measure different sizes of dry 
bulk carriers: Capesize, which typically transport iron ore or coal 
cargoes of about 150,000 tonnes; Panamax, which usually carry coal or 
grain cargoes of about 60,000 to 70,000 tonnes; and Supramax, with a 
carrying capacity of between 48,000 and 60,000 tonnes.2 The BDI takes 
into account 23 different shipping routes carrying coal, iron ore, grain 
and many other commodities. 

It is worth taking into account that the BDI depends heavily on 
changes in oil prices because oil is the shipping industry’s highest fuel 
cost [3]. The relationship between the BDI and oil prices has been 
analyzed from different points of view and by using different method-
ologies. Beenstock recounts the mutual relationship between freight 
rate, global seaborne trade, and fuel cost [30]. He described a theoretical 
model in which freight markets and ship markets are interdependent 
and in which second-hand ships are treated as capital assets. The results 
suggest that the BDI is more volatile around higher oil prices and 
geopolitical uncertainty. Alizadeh and Nomikos investigated the dy-
namic relationship between oil futures and spot markets and tanker 
freight rates across two major tanker routes [31]. The most prominent 
crude oil grade in the United States and the primary pricing marker for 
North American crude is West Texas International (WTI). Thus, they 
examine the validity of the cost of carry relationship in the WTI futures 
market, which suggests that the difference between physical and future 
crude oil prices should reflect the transportation costs. They found that 
oil prices and the BDI have a long term correlation. Shi et al. investigated 
the relationship between fluctuations in oil prices and the freight market 
by using a structural vector autoregressive (SVAR) model [32]. In 
addition, the response of the tanker market to different shocks was 
examined using impulse response analysis. The results showed that the 
impact of crude oil supply shocks on the oil tanker market in the same 
period is significant, while the impact of non-supply shock is weak. Ruan 
et al. displayed the short-run multifractal significant association be-
tween oil prices and the BDI [4]. Said and Giouvris found that oil is one 
of the most vital indicators for the BDI and illustrated bidirectional 
causality between the two [33]. Choi and Yoon investigated and 
compared the linkage between oil prices and all main sectors of mari-
time freight rates: the Baltic Dry Index (BDI), the Baltic Dirty Tanker 
Index (BDTI), and the Baltic Clean Tanker Index (BCTI) [34]. They also 
analyzed the dependence between crude oil and freight rates of 
time-series components. They used the decomposition method and the 
copula approach, showing that the decomposed components display 
different conditional dependence patterns, and asymmetry was revealed 
in the upper and lower tail dependence. In the long-run, they found 
more dependence in extreme periods such as the financial crises. In 

short-run fluctuations, they found that dependence increases in an 
economic boom. 

These results highlight that the oil price and hence the BDI is affected 
by geopolitical destabilization. Baracuhy states that geopolitical risks, 
such as interstate tensions and conflicts, terrorism, piracy, and cyber- 
attacks have immediate impacts on the global supply chain business 
and trade [35]. Likewise, geopolitical conflicts threaten tariffs, change 
the volume and direction of trade flows, or cause fuel prices to rise 
rapidly and in the end destabilize transportation. The Geopolitical Risk 
(GPR) index shown in Fig. 1, highlights geopolitical events that affect oil 
prices and hence the BDI. For example, the terrorist attacks in 2001 
pushed GPR to a high level and oil prices were reduced in the short run. 
Also, the slowdown in economic growth reduced the demand for ship-
ping services, leading to lower values in the BDI (see Fig. 2). Similarly, 
during the 2003 Iraq war, the highest level of GPR was observed, and the 
outbreak of war caused supply interruptions and reduced production, 
leading to an increase in oil prices [36]. Therefore, the BDI fell, as shown 
in Fig. 2. In 2011, the Arab Spring thoroughly destabilized the Middle 
East, leading to an increase in GPR. Oil prices were very unstable due to 
concerns about supply interruptions in Libya, Iran, Russia, and Iraq 
[27], and this instability is also observed in the BDI behavior. Since 
2013, GPR increased again due to the Russia-Ukraine conflict, the Paris 
terrorist attacks, and tension in North Korea. The price of oil decreased 
rapidly in 2015 due to the decline in the global economy as did the BDI 
in 2016. In addition, the trade war between China and the U.S. in recent 
years led to global trade uncertainty which extended to the oil market, 
which remained volatile due to low demand and GPR. Several studies 
about the connection between GPR and oil prices are found in the 
literature, among which can be found the following: Salameh revealed 
that whenever a conflict occurs in an oil-producing country, oil prices 
rise [37]. He observed that in the short term, two major geopolitical 
developments could impact immediately and very adversely on the oil 
price: one is a deterioration of the situation in Iraq affecting its oil 
infrastructure and production and the second is an escalation of the 
Russia-Ukraine conflict causing a disruption in Russian oil and gas 
supplies to the European Union (EU). He argued that a disruption of 
Iraq’s oil production could push oil prices to more than $140/barrel 
whilst any disruption of Russian oil supplies to the EU could easily add 
$20-$30 to the price of oil. Chen et al. using the International Country 
Risk Guide (ICRG) index as a proxy for countries’ political risk situation, 
empirically investigated the impacts of OPEC’s political risk on Brent 
crude oil prices, based on several Structural Vector Autoregression 
(SVAR) models [38]. They explained that regional geopolitical desta-
bilization has a positive but weak impact on oil prices. Bariviera et al. 
analyzed the informational efficiency of the oil market during the last 
three decades, and they examined changes in informational efficiency 
with major geopolitical events, such as terrorist attacks, financial crisis 
and other important events [8]. They found that some geopolitical 
events impact on the underlying dynamic structure of the crude oil 
market. Caldara and Iacoviello point out that high GPR leads to a decline 
in real activity, lower stock returns, and movements in capital flows 
away from emerging economies and towards advanced economies [5]. 
They also analyzed the evolution of the GPR index since 1900, showing 
that it rose dramatically during World War I and World War II, it was 
elevated in the early 1980s, and has drifted upward since the beginning 
of the 21st century. Uddin et al. used a time–frequency decomposition 
approach based on wavelet analysis to explore the inherent dynamics 
and the causal interrelationships between various types of geopolitical, 
economic and financial uncertainty indices and oil markets [39]. They 
described a strong relationship between GPR and oil prices. Abdel-Latif 
and El-Gamal used the simple VAR-based Granger-causality test and 
confirmed that the triad of oil prices, geopolitical risk, and financial 
liquidity are closely linked in a self-perpetuating cycle [40]. They 
confirmed the perpetuation of the cycle of low oil prices (e.g. in the late 
1980s) leading to geopolitical strife (e.g. first Iraq War), which, in turn, 
leads to higher oil prices. Therefore, they concluded that a low oil price 2 https://www.balticexchange.com/en/index.html. 
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is mainly responsible for causing higher GPR. Su et al. evidenced that OP 
and GPR are moving in the same direction [27]. Khan et al. investigated 
oil response to geopolitical instability and concluded that GPR led oil 
prices in the medium term [41]. Su et al. assessed the causality of GPR, 
oil prices and financial liquidity by means of wavelet analysis, in order 
to investigate whether such relationships support the monetary equi-
librium model in Saudi Arabia [7]. Their findings indicate that oil price 
and financial liquidity are related in the time domain when GPR is high. 
Li et al. investigated the frequency- and time-varying co-movement and 
causal relationship between crude oil prices and geopolitical risks based 
on wavelet analysis over the period of 1985–2016 [42]. They found a 
high degree of co-movement between geopolitical risks and oil prices at 
high frequencies (in the short run) for the entire sample period. How-
ever, such a correlation was not observed at low frequencies (in the long 
run) for most of the sample period. Li et al. examined the dynamic 
correlation and causal link between geopolitical factors and crude oil 
prices based on data from June 1987 to February 2020 [43]. By using a 
time-varying copula approach, they showed that the correlation be-
tween geopolitical factors and crude oil prices was strong during periods 
of political tensions. Moreover, the dynamic correlation between 
geopolitical factors and crude oil prices showed strong volatility over 
time during periods of political tensions. 

Most recently, the global spread of the COVID-19 virus in 2020 led to 
a severe recession. The restrictions imposed to stem the pandemic and 
the global recession triggered by the outbreak of the COVID-19 
pandemic have been accompanied by an unprecedented collapse in oil 
demand and prices [44]. This pushed uncertainty to the highest level 
and global trade declined rapidly, the decline being reflected in the BDI, 
as shown in Fig. 2. In addition, a rapid increase of the GPR is observed in 
2022 due to the Russian invasion of Ukraine, however, this data is 
beyond the scope of this study. 

3. Data and methodology 

3.1. Dataset 

The data examined in this research paper are:  

- Geopolitical Risk (GPR) index, obtained from Caldara and Iacoviello 
[5], which is the result of war, terrorist attacks, and interstate con-
flicts that interrupt the routine of national strategies and interna-
tional dealings. The GPR index dataset was obtained from 
Iacoviello’s website [9].  

- Baltic Dry Index (BDI). These are the prices paid for the maritime 
transport of raw materials on the 26 routes around the world that are 

covered by the Baltic Exchange. The BDI dataset was obtained from 
Thomson Reuters Eikon [29].  

- Finally, to analyze the crude oil prices, the West Texas Intermediate 
(WTI) is used. The WTI dataset was obtained from the Federal 
Reserve Bank of St. Louis [45]. 

Data are monthly from January 1985 until May 2021. 

3.2. Unit roots 

Unit roots can be tested in many different ways. ADF tests based on 
Fuller [46] and Dickey and Fuller [47] are used in this work. There are 
many other tests available to calculate unit roots that have greater 
power such as Phillips [48] and Phillips and Perron [49] in which a 
non-parametric estimate of the spectral density of ut at the zero fre-
quency is used. Also, considering deterministic trends, the methodology 
based on Kwiatkowski et al. [50], Elliot et al. [51] and Ng and Perron 
[52] are also employed, producing all essentially the same results. 

3.3. ARFIMA (p, d, q) model 

To carry out this research, fractionally integrated methods are used 
with the purpose of getting the time series to be stationary I(0). We 
achieve this objective by differentiating the time series with a fractional 
number. 

Following a mathematical notation, a time series xt , t = 1, 2,… fol-
lows an integrated order process d (and denoted as xt ≈ I(d)) if: 

(1 − L)dxt = ut, t= 1, 2,…, (1)  

where d refers to any real value, L indicates the lag-operator (Lxt = xt− 1)

and ut is I(0), which is a covariance stationary process where the spectral 
density function is positive and finite at the zero frequency, possibly 
displaying in the weak form a type of time dependence. So, for example, 
if ut is ARMA (p, q), xt is then said to be a fractionally integrated ARMA, 
ARFIMA process of orders (p, d, q). 

Although fractional integration can also occur at other frequencies 
away from zero, as in the case of seasonal and cyclical fractional models, 
the series used for our analysis do not present these features and hence 
standard I(d) models as in (1) are used in this paper. The idea of frac-
tional integration was introduced by Granger and Joyeux [53], Granger 
[54,55] and Hosking [56], though Adenstedt [57] had already showed 
awareness of its representation. The polynomial (1 − L)d in equation (1) 
can be expressed in terms of its Binomial expansion, such that, for all 
real d, xt depends not only on a finite number of past observations but on 
the whole of its past history. In this context, d plays a crucial role since it 
indicates the degree of dependence of the series: the higher the value of 

Fig. 2. Bdi from 1985 to 2022. Source: Reference [29].  
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d is, the higher the level of association between the observations will be. 
Given the parameterization in (1) one can distinguish between 

several cases depending on the value of the parameter d, and several 
specifications based on (1) can be observed. Thus, if d < 0, xt is said to be 
anti-persistent, with the series exhibiting zero spectral density at the 
origin [58] and switching signs more frequently than a random process. 
The process is short memory or I(0) when d = 0 in (1). This occurs 
because xt = ut. Long memory process (d > 0) is the name given when 
there is a high degree of association over a long time. With this last 
assumption, the process is still covariance stationary if d < 0.5 because 
the infinite sum of the autocovariances is still finite. Our interpretation 
of this can also be related to the issue of mean reversion. If the series 
reverts to the mean, shocks will be transitory and this happens when d is 
smaller than 1. In contrast to the above, shocks are expected to be 
permanent when d ≥ 1. 

Although there are several procedures for estimating the degree of 
long-memory and fractional integration [59–65], among others, the 
approach of Sowell [62] and his likelihood ARFIMA approach is used, 
employing the Akaike information criterion (AIC) [66] and the Bayesian 
information criterion (BIC) [67] to select the most appropriate ARMA 
approach for the short run dynamics. 

3.4. FCVAR model 

A method called Fractionally Cointegrated Vector AutoRegressive 
(FCVAR) was introduced by Johansen to check for a multivariate frac-
tional cointegration model [68]. It was further expanded by Johansen 
and Nielsen [21,22]. It is one step ahead of the Cointegrated Vector 
AutoRegressive model [69], which is named CVAR, and it allows for 
series integrated of order d and that cointegrate with order d - b, with b 
> 0. To introduce the FCVAR model, the non-fractional CVAR model is 
first presented. 

Let Yt, t = 1,…,T be a p-dimensional I(1) time series. The CVAR 
model is: 

ΔYt = αβ
′

Yt− 1 +
∑k

i=1
ΓiΔYt− i + εt = αβ

′

LYt +
∑k

i=1
ΓiΔLiYt + εt (2) 

Δb and Lb = 1 − Δb , representing the difference and the lag operator. 
We then obtain: 

ΔbYt =αβ
′

LbYt +
∑k

i=1
ΓiΔLi

bYt + εt (3)  

which is applied to Yt = Δd− bXt such that 

ΔdXt =αβ
′

LbΔd− bXt +
∑k

i=1
ΓiΔbLi

bYt + εt (4)  

where, εt is a term with mean zero, and variance-covariance matrix Ω, is 
p-dimensional independent and identically distributed. As in the CVAR 
model, the parameters can be interpreted as follows: α and β are p× r 
matrices, where 0 ≤ r ≤ p. The relationship in the long-run equilibria in 
terms of cointegration in the system is due to the matrix β. The 
parameter Γi controls for the short-run behavior of the variables. Finally, 
the deviations from the equilibria and their speed in the adjustment is 
because of the parameter α. Thus, the FCVAR model allows simultaneous 
modelling of the long-run equilibria, the adjustment responses to de-
viations from those and the short-run dynamics of the system. As an 
intermediate step towards the final model, a version of model (2) with d 
= b and a constant mean term for the cointegration relations is 
considered. That is to say: 

ΔdXt =α(β′

LdXt + ρ′

) +
∑k

i=1
ΓiΔdLd

iXt + εt (5) 

Johansen and Nielsen [22] and Nielsen and Morin [70] discuss 

estimation and inference of this model. 
It is noteworthy that fractional differencing is defined in terms of an 

infinite series but any actual sample will include only a finite number of 
observations. In order to calculate the fractional differences one can 
assume that Xt was zero before the start of the sample. (This is related 
with the type I and type II definitions of fractional integration, see 
Davidson and Hashimzade [71], and Gil-Alana and Hualde [72] among 
others). The bias introduced by this assumption is analyzed by Jones and 
Nielsen [73] using higher-order expansions. They showed that it can be 
completely avoided by including a level parameter μ that shifts each of 
the series by a constant. 

The estimated empirical model is the following: 

Δd(Xt − μ)=Ldαβ
′

(Xt − μ)+
∑k

i=1
ΓiΔdLd

iXt + εt (6) 

The asymptotic analysis in Johansen and Nielsen [22] shows that the 
maximum likelihood estimators of (d, α,Γ,…,Γ2) are asymptotically 
normal, while the maximum likelihood estimator of (β, ρ) is asymptot-
ically mixed normal when d0 < 1/2 and asymptotically normal when 
d0 > 1/2. FCVAR models have recently been estimated in numerous 
empirical papers, such as [73–79]. Nielsen and Popiel provide Matlab 
computer programs for the calculation of estimators and test statistics 
[80]. 

4. Empirical results 

4.1. Unit roots 

Three standard unit root/stationarity tests (the Augmented Dickey- 
Fuller (ADF) test, the Phillips Perron (PP) test and the Kwiatkowski- 
Phillips-Schmidt-Shin (KPSS) test) are considered to analyze the statis-
tical properties of geopolitical risk (GPR), the Baltic Dry Index (BDI) and 
West Texas Intermediate (WTI) crude oil prices. The results, displayed in 
Table 1 suggest that GPR and the BDI are stationary I(0). On the other 
hand, crude oil prices are non-stationary I(1), therefore performing the 
analysis on the first differences we observe that the latter series is then 
stationary I(0). 

4.2. Fractional integration 

Following the results obtained using unit root methods in the three 
time series and due to the low power of the unit root methods under 
fractional alternatives,3 fractional methods are also employed, using 
ARFIMA (p, d, q) models to study the persistence of the geopolitical risk 
(GPR), Baltic Dry Index (BDI) and West Texas Intermediate (WTI) crude 
oil prices. The Akaike information criterion (AIC) [66] and the Bayesian 
information criterion (BIC) [67] were used to select the appropriate AR 
and MA orders in the models.4 

Table 2 Displays the fractional parameter d and the AR and MA terms 
obtained using Sowell’s maximum likelihood estimator [62] of various 
ARFIMA (p, d, q) specifications with all combinations of p, q ≤ 2, for 
each time series. 

Table 2 indicates that the estimates of d in GPR and BDI are equally I 
(d), where the values of d are in the range (0, 1), implying fractional 
integration. The value of d are below 1 for these two time series, 
therefore supporting mean reversion which implies transitory shocks 
and thus, in the event of exogenous shocks the series will return to its 
original trend in the future. In the case of crude oil prices, a different 

3 See references of Diebold and Rudebusch [88], Hassler and Wolters [89] 
and Lee and Schmidt [90].  

4 A point of caution should be adopted here since the AIC and BIC may not 
necessarily be the best criteria for applications involving fractional models ([56, 
91]). 
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behavior and a higher level of persistence is observed. In fact, the esti-
mate of d is much higher than 1 clearly rejecting the I(1) hypothesis and 
implying permanency of shocks. 

4.3. FCVAR model (d∕= b)

Next, the FCVAR model proposed by Johansen and Nielsen [22], 
where the fractional integration and the classical CVAR model join is 
used to contrast the possible existence of persistence in the long run 
co-movements of the series. Table 3 summarizes the results of the 
FCVAR model. 

Following the indications suggested by Jones, Nielsen and Popiel 
[73] the lag value k determined to be equal to 3. Also, we consider 
deterministic components and cointegration rank (r) to get our results. 
We observe from Panel I and Panel II (cointegrating the geopolitical risks 
with the Baltic Dry Index and crude oil prices) in Table 3 that the orders 
of integration of the individual series are about 0.598 and 0.669, 
respectively while the reduction in the degree of integration in the 
cointegrating regression is exactly the same magnitude, implying that 
the order of integration (d − b) = 0, which in turn implies I(0) cointe-
gration errors. Thus, the hypothesis in which the error correction term 
shows short-run stationary behavior and where the shock duration is 
short-lived cannot be rejected. These results are in line with those ob-
tained using fractional integration. 

4.4. Structural breaks and Continuous Wavelet Transform 

Perron and Vogelsan’s [81], Bai and Perron’s [23] and Gil-Alana’s 
[24] approaches are used for detecting breaks in the data. The break 
dates, for the monthly case are reported in Table 4. 

Following the BIC criterion to choose the number of structural 
breaks, we see that the most relevant ones in the GPR series are 4. The 
Gulf War in January 1991, the 9/11 terrorist attacks in the U.S. in 2001, 
the protest in Turkey over concerns about war and terrorism in May 

2007 and the invasion of Crimea by Russia in March 2014. 
Fig. 3 displays the wavelet coherency and the phase difference for the 

monthly data of geopolitical risk and the Baltic Dry Index and West 
Texas Intermediate (WTI) crude oil prices, showing evidence of varying 
dependence between the time series across different frequencies and 
over time. 

Also, this methodology allows us to know when a structural change 
occurs in the behavior of the Baltic Dry Index and crude oil prices with 
respect to geopolitical risks. 

Fig. 3 represents two different estimations. The left panel (a) has the 
wavelet coherency that represents the interrelations between BDI and 
WTI with respect to GPR, when they are stronger or not and at which 
frequencies these points occur. Frequencies are shown on the vertical 
axis, from scale 1 (a single day) up to scale 130 (approximately 10 
years), whereas time is shown in the horizontal axis, from the beginning 
to the end of the sample period. The statistical significance of local 
correlations in the time-frequency domain was evaluated using Monte 
Carlo simulations. 

Torrence and Compo [82], show how the statistical significance of 
wavelet power can be assessed against the null hypothesis that the data 
generating process is given by an AR(0) or AR(1) stationary process with 
a certain background power spectrum (Pk). For a more general process 
one has to rely on Monte-Carlo simulations. However in our case we 
asses the statistical significance of the wavelet power against the null 
hypotheses that each variable follows an ARMA (p, q) process, with no 
pre-conditions on p and q. The simulations are done using the amplitude 
adjusted Fourier-transformed surrogates proposed by Schreiber and 
Schmitz [83]. 

The regions surrounded by the black contour are the high frequency 
and the high coherence regions with significance values at 5%, that are 
the outcome obtained. The right panel has the phase differences: on the 
top (b) is the phase difference in the 1–12 frequency band for monthly 
data; at the bottom (c) is the phase difference in the 12.5–130 frequency 
band for monthly data. The frequency bands help us to understand the 
movement of both time series, one in relation to the other. 

In addition, the structural breaks found in geopolitical risk time se-
ries (1991:01; 2001:09; 2007:05 and 2014:03), using Bai and Perron 
[23] and Gil-Alana [24] are used to analyze the relationship between 
BDI and WTI and GPR using wavelet analysis. 

Analyzing the wavelet coherency between the GPR and the BDI, as 
well as GPR and WTI it is noticed that the time series are weakly related 
at the short-time (higher frequencies) and this weakness persist 
throughout the sample period. This behavior is consistent with the re-
sults of Li et al. [42]. Focusing on the wavelet coherence results of GPR 
and the BDI it is observed that geopolitical risks have a persistent impact 

Table 1 
Unit root tests.   

ADF PP KPSS 

(i) (ii) (iii) (ii) (iii) (ii) (iii) 

GPR − 3.9967* − 7.3646* − 7.9679* − 7.5755* − 8.2076* 1.3851* 0.1986* 
BDI − 2.5025* − 3.9726* − 3.9912* − 3.4254* − 3.4454* 0.7311* 0.5858* 
WTI − 1.0791 − 2.4265 − 3.4939 − 2.1146 − 2.9973 4.4845 0.5982 

(i) Refers to the model with no deterministic components; (ii) with an intercept, and (iii) with a linear time trend. * Denotes a statistic significant at the 5% level. For 
ADF and PP, the 5% critical value with T = 310 is − 1.9418 for no deterministic components; − 2.8707 with an intercept; − 3.4245 with a linear time trend. For KPSS, 
the 5% critical value with T = 310 is 0.4630 with an intercept component; 0.1460 with a linear time trend. 

Table 2 
Results of long memory tests.  

Long memory test 

Data 
analyzed 

Sample size 
(months) 

Model 
Selected 

d Std. 
Error 

Interval I 
(d) 

GPR 437 ARFIMA (2, 
d, 2) 

0.45 0.1394 [0.22, 
0.68] 

I 
(d) 

BDI 437 ARFIMA (0, 
d, 1) 

0.49 0.0000 [0.24, 
0.49] 

I 
(d) 

WTI 437 ARFIMA (0, 
d, 0) 

1.30 0.0505 [1.22, 
1.38] 

I 
(1)  

Table 3 
Results of the FCVAR model.   

d B 

Panel I: GPR and BDI d = 0.598 (0.159) b = 0.598 (0.279) 
Panel II: GPR and WTI d = 0.669 (0.000) b = 0.669 (0.000)  

Table 4 
Structural breaks.  

Time Series Number of breaks chosen by BIC Structural break dates 

GPR 4 January 1991 
September 2001 
May 2007 
March 2014  
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on the Baltic Dry Index in the long term (between 64 and 100 months) 
starting mid-2014. Focusing on the wavelet coherence results of GPR 
and WTI crude oil prices we observe that geopolitical risk has had a very 
small and short-lived impact on oil prices during the identified structural 
changes. 

Analyzing the phase difference and focusing on the regions 
mentioned before, it is observed that all these regions stay between 
0 and π/2 which means that geopolitical risks are positively correlated 
and leading in the behavior of the BDI and WTI crude oil prices. 

Once identified the structural changes that have occurred due to the 
geopolitical risks, and concluding that GPR affected the BDI and WTI on 
the aforementioned dates, we statistically analyze the behavior of these 
series after each shock. To do so, ARFIMA models are again applied as in 
Section 4.2. The results are reported in Table 5. 

Table 5 shows that the estimates of d after structural changes in the 
BDI and WTI crude oil prices are higher than 1 in most of the cases, 
implying fractional integration in both series. Focusing on the behavior 
of the BDI time series after the breaks, it is concluded that d < 1 in all 
cases, implying that the shocks were transitory, with the series recov-
ering its original trend in the short term. However, there is a different 
pattern in the behaviour in the first two breaks compared with the last 
two. Thus, regarding the behavior of the time series after the first and 
second breaks, the hypothesis of I(1) cannot be rejected, while this hy-
pothesis is decisively rejected in favor of mean reversion and transitory 
shocks in the series corresponding to the last two breaks. In conclusion, 
it seems that there has been a reduction in the degree of persistence of 
the series as time goes by as a consequence of the last two breaks. 

On the other hand and related to the behavior of the WTI crude oil 
prices after the breaks, it is concluded that the term d is equal or very 
close to 1 where the hypothesis of I(1) behavior cannot rejected in the 
four cases, implying a lack of mean reversion and shocks having per-
manent effects, and causing a change in trend. 

5. Concluding comments 

Oil is the main energy source for the transport of commodities by sea 
all over the world, and shipping markets play a role in the final prices of 
energy, agricultural goods and metals [3]. Ruan et al. state that the cost 
to transport raw materials and oil prices are linked [4]. Monge et al. 
argue that crude oil price behavior depends on any event that has the 
potential to disrupt the flow of oil [17]. So, the purpose of this research 
paper is to analyze how the impact of geopolitical risk affects the 

Fig. 3. Wavelet coherency and phase difference results. (a) Wavelet coherency. (b)–(c) Phase difference. The contour designates the 5% significance level. Coherency 
ranges from blue (low coherency) to yellow (high coherency). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 5 
Results of long memory tests after structural breaks.  

Long memory test 

Data 
analyzed 

Sample 
size 

Model 
Selected 

d Std. Error Interval I 
(d) 

BDI 

After break 
1991:03 

126 ARFIMA 
(0, d, 0) 

0.96 0.2544209 [0.54, 
1.38] 

I 
(1) 

After break 
2001:08 

67 ARFIMA 
(0, d, 1) 

0.81 0.139964 [0.58, 
1.04] 

I 
(1) 

After break 
2007:02 

85 ARFIMA 
(1, d, 2) 

0.13 0.3730952 [-0.48, 
0.74] 

I 
(0) 

After break 
2014:02 

88 ARFIMA 
(2, d, 1) 

0.18 0.298865 [-0.31, 
0.67] 

I 
(0) 

WTI crude oil prices 

After break 
1991:03 

126 ARFIMA 
(1, d, 2) 

1.05 0.1616787 [0.78, 
1.32] 

I 
(1) 

After break 
2001:08 

67 ARFIMA 
(0, d, 0) 

0.90 0.0960109 [0.74, 
1.06] 

I 
(I) 

After break 
2007:02 

85 ARFIMA 
(0, d, 0) 

1.49 0.008322646 [1.48, 
1.50] 

I 
(1) 

After break 
2014:02 

88 ARFIMA 
(2, d, 2) 

0.96 0.3086908 [0.45, 
1.47] 

I 
(1)  
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behavior of oil prices and consequently the freight rates from January 
1985 until May 2021. 

To carry out this research, some unit root methods (ADF, PP and 
KPSS) are first performed. From the results obtained, it can be concluded 
that the shipping and trade index created by the London-based Baltic 
Exchange and geopolitical risk index have a stationary behavior I(0). On 
the other hand, oil prices have a different statistical behavior following 
these non-stationary I(1) processes. 

Fractional integration techniques are also used in this study to 
measure the degree of persistence. The results show that GPR and the 
BDI series are both mean reverting, showing that in the event of an 
exogenous shock, the series will return to their original trend. However, 
in the case of WTI crude oil prices the values of d are close to 1 and the 
unit root null hypothesis cannot be rejected implying permanency of 
shocks and requiring strong measures if we want the series to return 
back to their long term projections. These results are in good agreement 
to those from the FCVAR model, which is used to contrast the possible 
existence of persistence in the long-run co-movements of the series. 

In addition, various approaches such as those of Bai and Perron [23], 
Gil-Alana [24] as well as a wavelet transform approach (see 
Aguiar-Conraria and Soares [84]) for detecting breaks in the data are 
employed in the paper. These methodologies were used to see when a 
structural change occurred in the behavior of the BDI and WTI crude oil 
prices with respect to GPR. Analyzing the wavelet coherency between 
GPR and the BDI and GPR and WTI it is observed on the one hand, that 
the time series are weakly related in the short-time (higher frequencies) 
and this weakness persists throughout the sample period. On the other 
hand, it was observed that geopolitical risks have a persistent impact on 
the Baltic Dry Index in the long term, however, the geopolitical risk has 
had a very small and short-lived impact on oil prices during the iden-
tified structural changes. Allowing for structural breaks, four breaks are 
detected and the behavior of BDI seems to change to lower orders of 
persistence with the last two breaks in 2007 and 2014. Lastly, the 
findings are of great interest to analyze what the effects of geopolitical 
risks may be for oil prices and for the prices paid for the maritime 
transport of raw materials. This is important because plays a role in final 
prices of energy, agricultural goods and metals. With this research paper 
we try to help market participants to understand better what the impact 
of geopolitical risks on the prices paid for the maritime transport of raw 
materials and crude oil prices movements may be and its subsequent 
potential effects on hedging strategies. 

From a methodological viewpoint, noting that fractional integration 
is very much related to the presence of non-linearities, this opens 
another avenue for future work, using, for example, the approach 
developed in Cuestas and Gil-Alana [85] that allows for Chebyshev’s 
polynomials in time in the context of I(d) models. In addition, there are 
other additional forms of incorporating non-linear deterministic struc-
tures still in the context of fractional integration such as Fourier func-
tions in time [86] and neural networks [87]. This line of research will be 
pursued in a future paper. 
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