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Abstract: This paper deals with the analysis of the temperatures in a group of 36 African countries.
By looking at the maximum, minimum and the range (the difference between the maximum and
the minimum) and using a long memory model based on fractional integration and cointegration,
we first show that all series display a long memory pattern, with a significant positive time trend
in 29 countries for the maximum temperatures and in 33 for the minimum ones. Looking at the
range, the estimated value for the order of integration is smaller than the one based on maximum
or minimum temperatures in 17 countries. Performing fractional cointegration tests between the
maximum and minimum temperatures, our results indicate that the two series cointegrate in the
classical sense (i.e., with a short memory equilibrium relationship) in a group of 11 countries, and there
is another group of eight countries displaying cointegration in the fractional sense. The remaining
17 countries with no evidence of cointegration are therefore at a very high risk of climate change due
to the absence of long-term co-movement in their maximum and minimum temperatures. Findings
in this paper are of tremendous interpretations and relevance for the analysis and climate projections
in Africa.

Keywords: Africa; maximum temperatures; minimum temperatures; fractional integration; frac-
tional cointegration

1. Introduction

Temperature is a key indicator of climate change, and monitoring changes in tem-
perature over time can help identify potential impacts on ecosystems, agriculture, and
human health [1]. In a report by the Intergovernmental Panel on Climate Change [2], it
is mentioned that global warming induced by human activity will produce temperatures
around 1.0 ◦C higher than in times of the pre-industrial period, and that if current trends
continue, global warming is expected to rise by 1.5 ◦C between 2030 and 2052. The report
also noted that some regions of the globe are experiencing more warming than others due
to vegetation cover and other factors [3–9]. There are also clear evidences to show the
dependency of global warming on the diurnal temperature range (DTR), that is, the differ-
ence between the maximum and minimum temperatures [10]. The National Oceanic and
Atmospheric Administration (NOAA) and National Aeronautics and Space Administration

Atmosphere 2023, 14, 1299. https://doi.org/10.3390/atmos14081299 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14081299
https://doi.org/10.3390/atmos14081299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0001-6952-3991
https://orcid.org/0000-0002-9796-5276
https://orcid.org/0000-0002-9283-5464
https://orcid.org/0000-0002-5760-3123
https://doi.org/10.3390/atmos14081299
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14081299?type=check_update&version=2


Atmosphere 2023, 14, 1299 2 of 21

(NASA) have measured and determined the year 2010 to be the warmest year on record
when compared to the average baseline of the 20th century and of the period 1951–1980,
respectively. Hansen et al. [11] and Cahill et al. [12] have proven that the temperature
increase in trend would likely continue due to the continuous increases in the greenhouse
gas (GHG) concentration, while in the sub-Saharan African region, the warming is likely
to be higher compared to the global average, and the speed of temperature rise will be
more than the rise in the global mean temperature (see, e.g., [13,14]). Africa is particularly
vulnerable to the effects of climate change due to its dependence on rain-fed agriculture
and limited infrastructure to cope with extreme weather events [15,16]. Furthermore, the
large-scale climate patterns such as El Niño–Southern Oscillation (ENSO), Indian Ocean
Dipole (IOD), and Atlantic Multidecadal Oscillation (AMO) often influence Africa’s climate,
causing heatwaves, droughts, and floodings in different regions of the continent [16].

In the very arid regions of Africa, the temperature is expected to rise faster compared
to other parts of the world in the 21st century [17]. Thus, the African continent is very
prone to climate variability changes due to its geographical location on the globe. Figure 1
shows the map of Africa, showing all African countries, and how the equator divides the
continent into two parts, that is, the continent lies within the intertropical zone between
the Tropic of Cancer and the Tropic of Capricorn, where the tropics are regions of the
globe surrounding the equator. As it is observed in the map, the continent lies between
37◦ N and 35◦ S and in this position, the continent lies almost perfectly on the equator,
and this latitudinal position of Africa between the equator and around the tropics causes
rainfall, temperature, and humidity in Africa to be higher compared to other continents
(https://en.wikipedia.org/wiki/Tropics, accessed on 15 April 2023).
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There are also different climate types experienced annually. These are the equatorial
climate, tropical wet and dry climate, tropical monsoon climate, semi-arid climate, desert

https://en.wikipedia.org/wiki/Tropics
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climate, and subtropical highland climate (https://en.wikipedia.org/wiki/Climate_of_
Africa, accessed on 18 July 2023). It is very rare to experience a temperate climate in any
part of Africa except at very high elevations and along the fringes. African deserts are
the hottest and driest worldwide due to subtropical ridges with hot, dry air masses. As
predicted by IPCC AR6 (2021), temperatures in African countries are expected to have
increased by 1.5–3 ◦C in 2050. Putting temperature on one side, the total annual greenhouse
gasses are also rising fast at the rate of about 1.6% per annum with carbon dioxide emissions
alone increasing by about 2% per year. This, together with the fast-rising temperature,
could change the African climate in such a way that urgent intervention would be required,
coupled with energy issues and poor amenities that most countries are experiencing. We
acknowledge and thank the IPCC for their efforts in monitoring the African climate [15].

In terms of land area compared to other continents, Africa covers a total land area of
about 30.2 million square kilometers, which is about one-fifth of the land area of the entire
globe (https://www.mapsofworld.com/lat_long/africa.html#:~:text=Africa\T1\textquoterights%
20latitude%20and%20longitude%20lies,of%20the%20world\T1\textquoterights%20land%20area,
accessed on 18 July 2023).

Focusing on Africa, various studies have investigated the temperature dynamics and
their maximum and minimum ranges on the continent. The mean annual DTR for Ethiopia,
Sudan, South Africa, and Zimbabwe have been considered by Nicholls et al. [3], where
the authors observed a decrease of 0.5 ◦C to 1.0 ◦C in the mean annual DTR for Sudan
and Ethiopia. For countries in the southern part of the continent such as Zimbabwe and
South Africa, the DTR reduced during the period 1950–1960. Kruger and Sekele [18] and
Kruger and Nxumalo [19] find evidence of increasing warming trends in South Africa.
Extending the analysis to other countries, New [20] investigated trends in daily climate
extremes over Southern and Western Africa, and found a repeating pattern of temperature
extremes associated with rising temperatures. Neumann et al. [21] found that temperature
in the Volta basin, West Africa, exhibited highly significant positive trends. In a similar
vein, Muthoni [22] studied temperatures in West Africa and also found a strong warming
trend.

Meanwhile, there have been controversies in relation to the speed of temperature
increase on the appropriate estimation method to model temperature across time. The
most standard approach still recommends incorporating a linear trend in the modeling
framework. Using the linear model with fractional integration methods, Gil-Alana et al. [23]
examined issues such as linear trends, seasonality, and persistence in western, eastern, and
southern regions of Africa and found that time trends are required in most of the countries
to explain the climate features in the areas. They also found evidence of structural breaks
in some of the countries. Other papers that have applied fractional integration in a linear
framework to analyze temperature and rainfall data include [24–28].

A closely related research work to the present paper is the one conducted in three
African countries, namely South Africa, Kenya, and Côte d’Ivoire by [29]. They checked
for warming trends, and using fractional integration, they showed that only Kenya has
experienced a significant temperature increase in the last 30 years at the time of the research.

In the current paper, we investigate persistence and linear trends in the maximum and
minimum annual average temperatures in 36 African countries chosen by data availability
from the Climate Change Knowledge Portal (CCKP). Due to the statistical distribution of
maximum and minimum temperatures, we also examine the difference between the two
series, which leads to the diurnal range, as this informs climate differences in the study area.
High maximum temperatures and low minimum temperatures are experienced in desert
or arid climate with scanty vegetation cover, while moderate maximum temperatures
and low minimum temperatures are often recorded in temperature climate regions. The
latter is unlikely to be experienced in the sub-Saharan region of Africa. Thus, changes in
the distribution of maximum and minimum temperatures over time can indicate climatic
changes as the frequency or intensity of extreme temperatures, and events such as heat
waves or cold snaps can be indicative of climate change.

https://en.wikipedia.org/wiki/Climate_of_Africa
https://en.wikipedia.org/wiki/Climate_of_Africa
https://www.mapsofworld.com/lat_long/africa.html#:~:text=Africa\T1\textquoteright s%20latitude%20and%20longitude%20lies,of%20the%20world\T1\textquoteright s%20land%20area
https://www.mapsofworld.com/lat_long/africa.html#:~:text=Africa\T1\textquoteright s%20latitude%20and%20longitude%20lies,of%20the%20world\T1\textquoteright s%20land%20area
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Having obtained the fractional integration estimates based on a linear trend specifica-
tion, we conducted the homogeneity of paired Local Whittle (LW) estimates of fractional
orders based on the Hausman-type test of [30], since the statistical equality of the fractional
orders is a pre-requisite for cointegration—at least in the bivariate representation, as it is the
case in this paper. We extended the analysis to fractional cointegration using narrow-band
frequency domain least square (NBFDLS) estimates of [31] in the fractional cointegration
framework of [32]. The NBFDLS estimates for the cointegrating vector were obtained and
used to compute the model residuals in models linking each country’s maximum and mini-
mum temperatures. Then, fractional integration estimates were obtained on the residuals
based on the LW estimator. Note that cointegration is relevant in the present context since
it will inform us if there is a long-run equilibrium relationship between maximum and
minimum temperatures. On the other hand, a lack of this property will suggest that the
two series move apart, supporting potential extreme changes in temperatures.

In conclusion, the hypotheses to be tested in this paper are the following: we first
consider the possibility of long memory or long-range dependence in the variables under
examination, since this is a property widely observed in climatological data. Then, based
on this observation, we claim that the estimation of the linear trends in the data is clearly
affected by the long memory property, and to not take into account this issue will clearly
produce biased estimates of the time trend coefficient to explain climate change. As a final
issue, the possibility of cointegration is also examined by looking at the difference between
maximum and minimum temperatures, claiming that under normal circumstances, both
variables should be linked in a long-run equilibrium relationship.

2. Data

Maximum and minimum average annual temperature (◦C) datasets for 36 African
countries were analyzed to provide insights into climate change on the continent. The
countries are Angola, Benin, Botswana, Burkina Faso, Cameroon, Central African Republic,
Chad, Congo, Cote d’Ívoire, Egypt, Gabon, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho,
Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Morocco, Namibia, Niger, Nigeria,
Rwanda, Sierra Leone, Senegal, South Africa, Sudan, Tanzania, Tunisia, Uganda, Zam-
bia, and Zimbabwe. The datasets were retrieved from the World Bank Climate Change
Knowledge Portal at https://climateknowledgeportal.worldbank.org/, accessed on 18 July
2023 (see World Bank, 2021). This portal has been collecting historical monthly and annual
climate data of countries throughout the world since 1901 till date, and the nature of the
analysis to be carried out here required only annual data since monthly datasets could bias
our results due to the interference of seasonality. In each of the five geographical zones
of Africa, Figure 2 displays graphs showing the time series of maximum and minimum
temperatures, whereas, in the case of the West African zone, we have temperature plots for
Guinea and Nigeria; others are Chad (Central Africa), Egypt (North Africa), Kenya (East
Africa) and South Africa (Southern Africa).

In all the plots, it is obvious to notice shifts in temperature trend, signaling global
warming over time. In the case of Chad, the temperature increased consistently from
1950 to reach astronomic thermometric readings in 2010, similarly to Kenya, Nigeria, and
South Africa. The temperature shift in temperature trends is noticed around 1970 in the
case of Egyptian temperature plots, and between 1970 and 1980 in the case of Nigeria.
Table 1 displays a data summary, showing the starting maximum and starting minimum
temperatures in 1901 and corresponding ending maximum and minimum temperatures in
2021 for the 36 countries. It is found that ending temperatures in 2021 are quite higher than
the starting temperatures in 1901, resulting in a positive shift in temperature due to global
warming. The annual range—the difference between the annual maximum and annual
minimum temperatures—which is used to proxy the diurnal temperature range (DTR), is
also presented in the table for 1901 and 2021 data.

https://climateknowledgeportal.worldbank.org/
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Figure 2. Time plots of maximum and minimum temperatures in Africa (Chad, Egypt, Guinea, Kenya,
Nigeria, and South Africa).

Table 1. Data summary.

Country
Max. Temp (◦C) Min. Temp (◦C) Range (◦C)

1901 2021 1901 2021 1901 2021

Angola 28.18 28.60 14.51 14.93 13.67 13.67

Benin 33.23 34.47 21.58 22.98 11.65 11.49

Botswana 29.08 29.81 13.16 13.72 15.92 16.09

Burkina Faso 34.46 36.27 21.78 23.81 12.68 12.46

Cameroon 29.51 30.59 18.84 19.87 10.67 10.72



Atmosphere 2023, 14, 1299 6 of 21

Table 1. Cont.

Country
Max. Temp (◦C) Min. Temp (◦C) Range (◦C)

1901 2021 1901 2021 1901 2021

Central Afr. Rep. 31.34 32.16 18.60 19.45 12.74 12.71

Chad 34.58 35.42 19.32 20.06 15.26 15.36

Congo 28.77 29.77 19.72 20.73 9.05 9.04

Cote d’Ivoire 31.67 32.54 21.42 22.26 10.25 10.28

Egypt 29.64 31.27 14.69 16.53 14.95 14.74

Gabon 28.69 29.84 20.36 21.51 8.33 8.33

Ghana 32.17 33.4 21.97 23.25 10.2 10.15

Guinea 31.57 32.53 19.86 20.69 11.71 11.84

Guinea-Bissau 33.74 34.99 21.4 22.59 12.34 12.40

Kenya 30.28 31.11 18.51 19.39 11.77 11.72

Lesotho 17.24 19.45 4.35 5.11 12.89 14.34

Liberia 30.38 30.50 21.17 21.30 9.21 9.20

Libya 28.77 29.87 15.21 16.28 13.56 13.59

Madagascar 27.39 27.63 17.92 18.16 9.47 9.47

Malawi 27.23 28.10 16.41 17.54 10.82 10.56

Mali 35.28 36.93 20.99 22.68 14.29 14.25

Mauritania 34.65 36.02 21.27 22.62 13.38 13.40

Morocco 23.26 24.52 11.39 12.49 11.87 12.03

Namibia 27.34 27.62 12.28 12.66 15.06 14.96

Niger 34.77 35.70 19.99 20.52 14.78 15.18

Nigeria 32.63 33.74 20.69 21.65 11.94 12.09

Rwanda 24.88 25.29 12.78 13.19 12.10 12.10

Sierra Leone 31.69 32.25 21.70 22.18 9.99 10.07

Senegal 35.51 36.91 21.09 22.39 14.42 14.52

South Africa 24.25 25.73 9.55 10.44 14.70 15.29

Sudan 35.61 35.89 19.92 20.51 15.69 15.38

Tanzania 27.90 28.50 16.53 17.55 11.37 10.95

Tunisia 25.20 27.07 12.97 15.65 12.23 11.42

Uganda 28.67 29.34 16.55 17.14 12.12 12.20

Zambia 28.50 29.06 14.60 15.22 13.90 13.84

Zimbabwe 27.80 28.64 14.25 15.14 13.55 13.50

3. Econometric Methods
3.1. Testing for a Linear Trend

The analysis of climatological time series datasets takes its root from the seminal work
of [33], where a linear model was employed to fit climate datasets. Hamilton [34] used a
model of the form

yt = α+ βt + xt, t = 1, 2, . . . , (1)

where yt is the climatic time series under investigation and t is the time trend t = 1, 2, . . .
Then, xt is the deviation term, derived from the original series yt. The model’s parameters
are α and β, which represent the intercept and slope, respectively. The slope, β, measures
the average change in yt over time, when t = t0. Thus, in the context of climatic research,
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there is long-run warming if the slope, β, is positive and statistically significant, implying
that the temperature is rising. The estimation of the deviation term is critical in carrying
out this assessment. This is determined by the distribution from which xt is created, and
hence by the overall estimation of the process.

In most early studies, the error term xt in (1) was assumed to be well behaved, i.e.,
displaying a short-memory (SM) structure, and also denominated an integration of order 0
or I(0) processes. In this context, the simplest structure was the white noise case where no
time dependence is permitted. If that dependence is allowed, the ordinary Autoregressive
Moving Average (ARMA) models were employed. However, the time dependence between
the observations may display a higher range. Thus, it may exhibit long-term dependence
(LTD) or long memory (LM), as observed in various climatological data by researchers
such as [4,34–37], and others. Gil-Alana [38] then adapted the linear model of [33] to the
fractional integration or I(d) framework where the dependency of historical temperature
observations of Alaska over long past time periods is investigated. This phenomenon is
known as the long-range dependency (LRD) or LTD. Climatic variables often exhibit this
property due to the natural variability from year to year, and to the next. Climatic variables
can also vary on much longer time scales such as from decades to centuries, and due to
human interference, there may be a shift in the mean state of a particular climatic variable,
such as temperature or rainfall. In this study, we shall rely on the properties of LRD or shift
in a mean state of climatic variables based on the framework of fractional integration and
cointegration. Note, LRD is an aspect of fractional integration; thus, LRD is often explained
based on this broader perspective.

3.2. Testing for Fractional Integration

The following is the standard non-seasonal fractional integration model, i.e., an inte-
gration of order d or I(d) model:

(1− L)dxt = ut, t = 1, 2, . . . . (2)

where d is any real number (such as integer or fractional values), L is the lag-operator
Lxt = xt−1, and ut denotes the white noise process, which is an I(0) process in the context
of fractional integration I(d) processes (an I(0) process is defined as a covariance stationary
process where the infinite sum of its autocovariances is finite; it includes the white noise
model but also the stationary ARMA class of models). The polynomial (1 − L)d in (2) in a
binomial representation can be expanded as follows:

(1− L)d =
∞

∑
j=0

(
d
j

)
(−1)jLj = 1− dL +

d(d− 1)
2

L2 − . . .

and therefore

(1− L)dxt = xt − dxt−1 +
d(d− 1)

2
xt−2 − . . .

depicts that Equation (2) can be written as

xt = dxt−1 −
d(d− 1)

2
xt−2 + . . . + ut. (3)

Intuitively, the role of d in Equation (3) is clear as it is a slope coefficient between xt
and its lagged values such as xt−1, xt−2, . . .. Thus, it determines the degree of correlation
between xt and its lagged values. Therefore, regression, or herein, correlation, in explaining
fractional integration or LRD processes leads to a time series dependency or persistency as
they are often used interchangeably. The model in (2) is a non-seasonal model type since
the dataset at hand is of annual temperature series, and testing seasonality, in addition, is
not of interest in this paper.
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Many methods have been used to estimate the fractional dependence parameter
d. Some of these methods are semi-parametric, while others are parametric methods.
Semiparametric techniques are typically implemented in the frequency domain. In this
study, we use a parametric frequency domain Whittle estimation approach (see [39]) in
conjunction with a testing procedure by [40] that depends on the Lagrange Multiplier (LM)
principle. Robinson [40] uses the null hypothesis test:

Ho : d = do, (4)

for any real value d0 in a model given by Equations (1) and (2), that is,

yt = α + βt + xt, (1− L)dxt = ut, t = 1, 2, . . . , (5)

where ut is a white noise process. The fundamental advantage of this approach is that,
because it depends on the LM principle, all of it is evaluated under the null, and because do
can be any actual number, it is valid even in nonstationary situations (i.e., do ≥ 0.5), with
a regular normal limit distribution. In addition, this standard normal distribution holds
independently of the inclusion or not of deterministic terms in the model like an intercept
and/or a linear time trend, being this method the most efficient one in the Pitman sense
against local departures from the null (See [41]).

In complement to the aforesaid parametric methodology, we also use a semiparametric
method to conduct the analysis. It is named semiparametric because no functional form is
imposed on the error term, making only the assumption that it is integrated of order zero,
i.e., I(0). In other words, it might be a simple white noise process or an ARMA process
with a weak dependency autocorrelation. We employ in the paper a “local” Whittle (LW)
estimate in the frequency domain, which is based on a frequency band that degenerates to
zero. This approach [42] is defined implicitly by:

d̂ = arg min d

(
log C∗(d)− 2d

1
m

m

∑
j=1

log λj

)
(6)

for d ∈ (−1/2, 1/2); C(d) =
1
m

m

∑
j=1

I(λj)λ
2d
j , λj =

2πj
T

,
1
m

+
m
T
→ 0,

where m represents the bandwidth parameter, and I(λj) represents the periodogram of the
time series, xt, which is given by:

I(λj) =
1

2πT

∣∣∣∣∣ n

∑
t=1

xteiλjt

∣∣∣∣∣
2

.

Robinson [42] demonstrated under a finiteness of the fourth moment and other very
mild conditions: √

m(d̂− do)→ dN(0, 1/4) asT→ ∞,

where do is the actual value of d and in addition to the requirement that m→∞ is slower
than T.

3.3. Homogeneity of Paired Fractional Integration Parameters

Following from the local Whittle estimate, it is important to perform the test of
homogeneity of paired integration orders. As earlier argued, this is a necessary condition
for testing cointegration in a bivariate system. The following null hypothesis is used to
assess the homogeneity of the orders of integration:

H0 : dy1 = dy2 (7)
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where the orders of integration of the individual series are represented by dy1 and dy2
(see [30,43]). The test statistic is defined as

T̂xy =
m1/2

(
d̂y1 − d̂y2

)
{

1
2

[
1− Ĝ2

y1.y2/
(
Ĝy1Ĝy1.y2

)]}1/2
+ h(T)

(8)

where h(T) > 0 and Ĝy1.y2 denote the (y1.y2)th element of Λ̂
(
λj
)−1 I

(
λj
)
Λ̂
(
λj
)

with

Λ̂
(
λj
)
= diag

{
eiπd̂y1/2λ−d̂y1 , eiπd̂y2/2λ−d̂y2

}
.

3.4. Narrow-Band Frequency Domain Least Square Approach

At this juncture, we considered the narrow-band frequency domain least square
(NBFDLS) estimates in obtaining the cointegrating vector linking the maximum and min-
imum temperatures. This approach is applied when the cointegrating pairs are deemed
to possess long memory, having weakly dependent regressors. Since the regressors and
the residuals are of long memory, thus, they are deemed to be correlated even at a very
long time span. In that case, both the least squares and generalized least square estimates
will be inconsistent (see [44]). Robinson [41] earlier proposed a semi-parametric NBFDLS
estimator, which uses OLS on a degenerated band of frequencies around the origin. An
improved version of the test for the stationary time series is given in [31].

In the two-variable case, where y1t is for maximum temperature and y2t is for mini-
mum temperature series, both of fractional integration order d < 0.5 and residuals of order
de < d, the NBFDLS estimator is given by

β̂ =

{
1
m

m

∑
j=1

Re
[
Iy1y1

(
λj
)]}−1

× 1
m

m

∑
j=1

Re
[
Iy1y1

(
λj
)]

(9)

which is asymptotically distributed as

√
mλde−d

m
(

β̂− β0
) D→ N

[
0,

ge(1− 2d)2

2gy1(1− 2d− 2de)

]
(10)

where gy1 and ge are the elements of a G diagonal 2× 2 matrix. From (10), the normality is
ensured as long as d + de < 0.5 [31].

4. Main Results

Having presented the dataset used in Section 2, we therefore present the main results
obtained based on the econometric methods presented in Section 3. In Table 2, the results
of temperature data stationarity are presented by employing the augmented Dickey–Fuller
(ADF, [45]) unit root test for the cases of no deterministic term, an intercept only, and an
intercept with a linear trend. The choice of the unit root test is motivated by its design
in a linear framework, which mimics the assumed linear specification of climatological
time series as in [33] (see Equation (1)). The results in Table 2 show a non-rejection of the
unit root null hypothesis when no deterministic term (none) is assumed for maximum,
minimum, and range temperature series. By testing with only intercept, very few countries
out of the 36 countries showed a rejection of unit root null hypotheses in the case of both
maximum and minimum temperatures, while in the case of the temperature range series,
the null hypotheses of unit root were rejected in almost all the 36 cases. For the case
of an intercept with a time trend specification, the results for the range temperature are
similar to those from the intercept only. For intercept with trend, as in maximum and
minimum temperatures, more rejections of unit root null were observed compared to that
of an intercept-only specification of the test. This mixed decision of the results of the
unit root tests for the temperature series may be due to the fact that the unit root test
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lacks power against trend stationarity and fractional alternatives [46–48]. Also, when the
persistence is likely to fall in long-range dependence (i.e., 0 < d < 1) or long memory
range (0 < d < 0.5), ADF-like unit root tests may find it difficult to detect correctly the
stationarity/non-stationarity of the series.

Table 2. Results of ADF unit root test.

Country
Max. Temp (◦C) Min. Temp (◦C) Range (◦C)

None Intercept Intercept
+ Trend None Intercept Intercept

+ Trend None Intercept Intercept
+ Trend

Angola 0.3171[2] −3.1469[1] −4.5576[1] 0.3355[2] −3.1752[1] −5.5564[0] 0.0020[4] −5.6877[1] −5.7386[1]

Benin 0.3490[2] −3.9137[1] −3.9400[1] 0.4778[3] −2.6479[1] −5.0183[0] −0.1613[1] −3.3023[1] −5.7028[0]

Botswana 0.3105[2] −2.5926[2] −7.6741[0] 0.2941[2] −4.6700[0] −7.1066[0] 0.1823[4] −8.9667[0] −9.3857[0]

Burkina
Faso 0.3541[1] −5.7067[0] −6.3192[0] 0.5060[3] −3.4801[0] −5.3749[0] −0.2151[2] −2.8794[1] −4.1499[1]

Cameroon 0.5978[3] −6.8662[0] −7.5844[0] 0.6235[2] −2.2884[2] −2.7278[2] −0.1049[3] −8.0343[0] −8.0094[0]

Central
Afr. Rep. 0.5203[2] −2.4402[2] −3.2942[2] 0.5388[2] −2.1126[2] −3.0607[2] −0.4083[4] −2.7591[2] −3.2665[2]

Chad 0.4917[2] −1.5969[2] −2.1705[2] 0.4425[2] −1.5745[2] −2.4938[2] 0.0663[2] −3.2194[2] −6.7898[0]

Congo 0.7671[2] −1.5726[2] −2.5181[2] 0.7625[2] −1.5746[2] −2.5178[2] −0.3702[7] −10.4267[0] −10.3999[0]

Cote
d’Ivoire 0.6385[3] −2.2845[2] −2.9577[2] 0.4687[3] −4.2075[0] −5.5144[0] 0.0725[1] −3.8767[1] −4.3940[1]

Egypt 1.3401[5] −2.4317[2] −2.8386[2] 0.8076[2] −2.2244[2] −2.9386[2] −0.1216[3] −2.2496[3] −7.6871[0]

Gabon 0.8330[2] −1.4901[2] −2.3948[2] 0.8256[2] −1.4763[2] −2.3920[2] 0.1416[3] −10.1007[0] −10.1330[0]

Ghana 0.5132[2] −3.4754[1] −3.7306[1] 0.4655[3] −3.8136[0] −5.1423[0] −0.0556[2] −3.4082[1] −4.4562[1]

Guinea 0.6804[3] −1.4924[2] −2.5401[2] 0.3832[2] −1.9008[2] −5.5536[0] 0.1458[1] −3.4493[1] −3.6109[1]

Guinea-
Bissau 0.7792[3] −0.6981[3] −1.9087[3] 0.6523[3] −1.6596[2] −2.8914[2] 0.0566[1] −5.5719[0] −5.7066[0]

Kenya 0.2804[2] −1.7647[2] −5.8075[0] 0.3017[2] −1.6298[2] −6.2287[0] −0.1759[2] −9.8508[0] −10.3136[0]

Lesotho 1.2995[4] −1.9224[2] −6.8761[0] 0.6396[3] −1.7927[3] −8.3858[0] 0.9444[4] −3.4123[1] −3.8653[1]

Liberia 0.1592[2] −2.4895[2] −2.88994[2] 0.1373[2] −2.5105[2] −2.9140[2] 0.0055[1] −3.4392[1] −3.43039[1]

Libya 0.8349[3] −1.6497[2] −2.8180[2] 1.0739[4] −1.5606[2] −2.7181[2] 0.0138[3] −3.2888[2] −3.2934[2]

Madagascar 0.0635[2] −2.1187[2] −1.9551[2] 0.0487[2] −2.1117[2] −1.9450[2] 0.3742[4] −11.5073[0] −11.5446[0]

Malawi 0.2509[2] −2.7236[2] −7.6837[0] 0.8124[5] −5.4000[0] −6.7249[0] −0.2075[3] −8.4672[0] −8.4866[0]

Mali 0.3529[1] −3.5324[1] −6.9707[0] 0.3714[1] −2.7152[1] −5.9485[0] −0.0972[2] −3.1696[1] −3.6366[1]

Mauritania 0.5921[3] −1.5369[3] −8.0244[0] 0.5942[3] −1.3504[3] −6.4320[0] −0.0422[1] −5.4342[0] −5.4130[0]

Morocco 0.7185[2] −1.3661[2] −2.9879[2] 0.4502[2] −2.8884[1] −4.5408[1] 0.1326[1] −5.8760[0] −7.1333[0]

Namibia 0.2682[2] −4.3714[0] −5.8074[0] 0.4270[3] −3.8688[0] −5.4211[0] −0.1240[1] −5.3411[1] −5.4117[1]

Niger 0.2721[2] −2.5021[2] −2.6363[2] 0.2250[3] −1.9597[3] −3.1829[2] 0.0795[2] −3.0056[2] −3.1562[2]

Nigeria 0.4313[3] −3.0302[2] −3.1060[2] 0.4166[2] −2.1146[2] −2.6235[2] −0.3924[5] −5.3338[1] −8.1575[0]

Rwanda 0.1542[2] −1.5675[2] −5.2979[0] 0.1774[2] −1.9275[2] −6.3444[0] −0.1543[2] −3.4441[1] −3.5358[1]

Sierra
Leone 0.3976[2] −1.5657[2] −2.3501[2] 0.3002[2] −1.9091[2] −2.6355[2] 0.2008[2] −3.2376[1] −3.3123[1]

Senegal 0.7078[3] −1.0306[3] −6.1205[0] 0.4334[2] −2.0313[2] −6.1411[0] 0.0830[1] −5.3179[0] −5.5103[0]
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Table 2. Cont.

Country
Max. Temp (◦C) Min. Temp (◦C) Range (◦C)

None Intercept Intercept
+ Trend None Intercept Intercept

+ Trend None Intercept Intercept
+ Trend

South
Africa 0.9217[3] −2.1540[2] −6.4079[0] 0.9368[3] −1.5133[3] −8.3558[0] 0.5516[4] −4.0968[1] −4.2192[1]

Sudan 0.2813[2] −2.0396[2] −2.3404[2] 0.5028[2] −1.2508[2] −2.3882[2] −0.5557[3] −0.9761[3] −6.9848[0]

Tanzania 0.2266[2] −1.7813[2] −6.7236[0] 0.4748[2] −1.4784[2] −6.4684[0] −0.2570[1] −4.5037[1] −4.4851[1]

Tunisia 1.1141[3] −0.6051[3] −4.5628[1] 1.0992[3] −0.9542[3] −3.9033[1] −0.3608[1] −6.2147[0] −6.3774[0]

Uganda 0.2406[2] −1.6153[2] −5.3460[0] 0.2176[2] −1.5610[2] −6.0091[0] −0.0973[2] −8.7951[0] −8.8230[0]

Zambia 0.1086[2] −3.6010[1] −4.7715[1] 0.2810[4] −5.5308[0] −6.4403[0] −0.0471[3] −4.3075[1] −4.5314[1]

Zimbabwe 0.1805[2] −2.5659[2] −8.0439[0] 0.6485[5] −5.6556[0] −7.2592[0] −0.0185[4] −9.1363[0] −9.4686[0]

Note: Significant unit root test t-statistics at 5% level are in bold. In squared brackets are the optimal lag lengths of
the augmentation components, selected based on minimum information criteria.

This weakness of the unit root test makes fractional integration (fractional unit root)
attractive, since the differencing parameter may be a fractional value. Robinson’s [40]
test can be seen as an ADF test in a fractional sense, since it allows for testing fractional
integration based on no deterministic terms, intercept only, and intercept with the trend.
This test is described earlier in Equations (4)–(6). Here, in Table 3, the results are presented
for only the case of intercept with trend. Evidence of long memory and long-range de-
pendence, i.e., 0 < d < 1, are found in maximum and minimum temperatures, with d
less than 0.5 in a number of countries and fairly above 0.5 in others. The highest bound
values for d are 0.72 (Rwanda) and 0.76 (Uganda) in the case of maximum temperature,
respectively, and these values correspond to d values 0.43 (0.27, 0.60) and 0.48 (0.32, 0.65),
respectively, for minimum temperatures. In the maximum temperature, evidence of d fairly
above the long memory stationary range (i.e., d > 0.5) is found in Kenya, Madagascar,
Rwanda, and Uganda, while in the case of minimum temperature, we have Benin, Burkina
Faso, Ghana, and Madagascar. These results imply that long memory exists generally
in maximum and minimum temperature distributions even though the upper bound of
the confidence limit shows that some estimates might be in the long-range dependence
range, which is still close to 0.5. Differing persistence estimates explain the dynamics of
temperature predictions, not in terms of trend often expected in climatological studies, but
in terms of the inherent correlations of current observations to past lagged historical values,
large enough to compare the present climate with the climate of the same regions over
many decades. In that case, using only the linear trend approach such as that employed
in [33] could lead to bias due to the ignorance of exploring the (long memory) time series
properties of the climatological observations.

Table 3. Results of fractional integration based on linear trend.

Country
Max. Temp (◦C) Min. Temp (◦C) Range (◦C)

d Intercept Trend d Intercept Trend d Intercept Trend

Angola 0.31
(0.17, 0.45)

−0.2675
(−2.68)

0.0045
(3.45)

0.37
(0.22, 0.52)

−0.2532
(−2.39)

0.0043
(3.10)

0.11
(−0.03, 0.26)

−0.0131
(−0.61)

0.0002
(0.75)

Benin 0.43
(0.29, 0.58)

−0.1435
(−0.47)

0.0034
(0.84)

0.52
(0.37, 0.67)

−0.4087
(−1.11)

0.0094
(1.97)

0.49
(0.32, 0.66)

0.2755
(0.97)

−0.0057
(−1.54)

Botswana 0.26
(0.11, 0.41)

−0.6811
(−3.61)

0.0115
(4.61)

0.30
(0.15, 0.45)

−0.5774
(−3.66)

0.0096
(4.64)

0.13
(−0.02, 0.28)

−0.1067
(−1.57)

0.0018
(1.90)

Burkina Faso 0.41
(0.25, 0.57)

−0.2738
(−0.88)

0.0059
(1.47)

0.50
(0.34, 0.67)

−0.5762
(−1.41)

0.0125
(2.40)

0.49
(0.34, 0.64)

0.3700
(1.37)

−0.0066
(−1.88)
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Table 3. Cont.

Country
Max. Temp (◦C) Min. Temp (◦C) Range (◦C)

d Intercept Trend d Intercept Trend d Intercept Trend

Cameroon 0.26
(0.11, 0.42)

−0.1617
(−1.48)

0.0030
(2.11)

0.35
(0.23, 0.48)

−0.1904
(−1.36)

0.0039
(2.16)

0.24
(0.09, 0.39)

0.0350
(0.34)

−0.0007
(−0.52)

Central Afr.
Rep.

0.40
(0.25, 0.55)

−0.2546
(−1.64)

0.0047
(2.34)

0.41
(0.27, 0.55)

−0.2927
(−1.76)

0.0056
(2.57)

0.25
(0.13, 0.37)

0.0459
(1.54)

−0.0008
(−2.14)

Chad 0.47
(0.34, 0.59)

−0.3542
(−1.43)

0.0069
(2.14)

0.47
(0.34, 0.60)

−0.3864
(−1.61)

0.0075
(2.42)

0.36
(0.22, 0.51)

0.0398
(0.61)

−0.0007
(−0.88)

Congo 0.38
(0.24, 0.52)

−0.2349
(−1.71)

0.0047
(2.64)

0.38
(0.24, 0.53)

−0.2347
(−1.69)

0.0047
(2.62)

0.03
(−0.14, 0.19)

−0.0003
(−1.11)

5.02 × 10−6

(0.47)

Cote d’Ivoire 0.38
(0.24, 0.52)

−0.2606
(−1.49)

0.0050
(2.17)

0.46
(0.31, 0.62)

−0.2986
(−1.32)

0.0063
(2.13)

0.41
(0.26, 0.56)

0.0449
(0.36)

−0.0011
(−0.67)

Egypt 0.36
(0.23, 0.49)

−0.7025
(−2.48)

0.0110
(3.07)

0.33
(0.21, 0.46)

−0.7595
(−2.97)

0.0126
(3.78)

0.28
(0.14, 0.43)

0.0964
(1.57)

−0.0018
(−2.29)

Gabon 0.35
(0.22, 0.48)

−0.2371
(−1.87)

0.0047
(2.86)

0.35
(0.22, 0.48)

−0.2368
(−1.86)

0.0047
(2.89)

0.01
(−0.16, 0.17)

0.0010
(1.24)

−1.61 × 10−5

(−0.89)

Ghana 0.43
(0.28, 0.57)

−0.2533
(−0.10)

0.0051
(1.53)

0.52
(0.36, 0.69)

−0.3394
(−1.00)

0.0082
(1.87)

0.44
(0.29, 0.59)

0.1312
(0.64)

−0.0031
(−1.17)

Guinea 0.48
(0.34, 0.61)

−0.2960
(−1.20)

0.0069
(2.14)

0.43
(0.29, 0.58)

−0.2351
(−1.15)

0.0052
(1.96)

0.50
(0.35, 0.65)

−0.0652
(−0.49)

0.0015
(0.88)

Guinea-Bissau 0.43
(0.29, 0.56)

−0.3678
(−1.56)

0.0080
(2.62)

0.40
(0.27, 0.54)

−0.3134
(−1.48)

0.0068
(2.47)

0.49
(0.32, 0.65)

−0.0597
(−0.44)

0.0012
(0.70)

Kenya 0.51
(0.34, 0.69)

−0.8421
(−2.04)

0.0138
(2.57)

0.46
(0.29, 0.63)

−0.8897
(−2.60)

0.0148
(3.32)

0.01
(−0.15, 0.16)

0.0590
(2.18)

−0.0010
(−2.51)

Lesotho 0.33
(0.18, 0.48)

−1.2242
(−4.65)

0.0204
(5.91)

0.17
(0.01, 0.34)

−0.8300
(−7.89)

0.0133
(9.46)

0.39
(0.26, 0.52)

−0.3765
(−1.35)

0.0076
(2.07)

Liberia 0.46
(0.33, 0.60)

−0.1529
(−0.79)

0.0033
(1.31)

0.47
(0.33, 0.61)

−0.1567
(−0.77)

0.0034
(1.26)

0.52
(0.37, 0.67)

0.0009
(0.02)

−1.9 × 10−6

(−3.4 × 10−3)

Libya 0.30
(0.18, 0.41)

−0.5191
(−3.56)

0.0088
(4.62)

0.31
(0.19, 0.43)

−0.5245
(−3.58)

0.0089
(4.66)

0.29
(0.16, 0.41)

0.0056
(0.18)

−0.0001
(−0.27)

Madagascar 0.50
(0.37, 0.63)

0.2853
(1.04)

−0.0014
(−0.41)

0.50
(0.37, 0.63)

0.2848
(1.04)

−0.0014
(−0.41)

0.09
(−0.05, 0.24)

−0.0007
(−2.13)

1.17 × 10−5

(1.02)

Malawi 0.27
(0.14, 0.40)

−0.3624
(−2.27)

0.0065
(3.10)

0.34
(0.19, 0.49)

−0.3209
(−1.85)

0.0061
(2.74)

0.21
(0.05, 0.36)

−0.0315
(−0.34)

0.0005
(0.37)

Mali 0.34
(0.17, 0.50)

−0.4459
(−2.03)

0.0082
(2.91)

0.44
(0.28, 0.60)

−0.5188
(−1.81)

0.1002
(2.81)

0.47
(0.33, 0.60)

0.1233
(0.84)

−0.0022
(−1.14)

Mauritania 0.24
(0.11, 0.38)

−0.5051
(−3.45)

0.0089
(4.62)

0.37
(0.23, 0.51)

−0.4718
(−2.30)

0.0088
(3.33)

0.54
(0.37, 0.72)

0.0044
(0.02)

0.0001
(0.04)

Morocco 0.31
(0.19, 0.43)

−0.7799
(−3.99)

0.0131
(5.12)

0.33
(0.19, 0.47)

−0.6570
(−3.10)

0.0110
(3.95)

0.32
(0.16, 0.48)

−0.1260
(−1.88)

0.0022
(2.54)

Namibia 0.43
(0.27, 0.59)

−0.3729
(−2.03)

0.0063
(2.62)

0.46
(0.30, 0.62)

−0.3898
(−2.06)

0.0067
(2.72)

0.16
(0.01, 0.31)

0.0302
(0.63)

−0.0005
(−0.82)

Niger 0.38
(0.25, 0.51)

−0.2735
(−0.97)

0.0051
(1.37)

0.40
(0.26, 0.54)

−0.3080
(−1.20)

0.0059
(1.78)

0.47
(0.32, 0.62)

0.0149
(0.06)

−0.0006
(−0.20)

Nigeria 0.34
(0.20, 0.47)

−0.1288
(−0.64)

0.0028
(1.05)

0.44
(0.30, 0.58)

−0.2389
(−0.93)

0.0055
(1.65)

0.23
(0.08, 0.38)

0.1611
(1.47)

−0.0028
(−1.94)

Rwanda 0.56
(0.40, 0.72)

−0.7239
(−2.07)

0.0112
(2.45)

0.43
(0.27, 0.60)

−0.5405
(−2.36)

0.0092
(3.11)

0.49
(0.35, 0.63)

−0.1847
(−0.67)

0.0022
(0.62)

Sierra Leone 0.49
(0.36, 0.63)

−0.2284
(−0.98)

0.0054
(1.76)

0.47
(0.33, 0.60)

−0.1962
(−0.92)

0.0045
(1.61)

0.54
(0.39, 0.68)

−0.0289
(−0.29)

0.0008
(0.60)

Senegal 0.38
(0.24, 0.51)

−0.4027
(−1.73)

0.0084
(2.79)

0.38
(0.24, 0.52)

−0.3206
(−1.48)

0.0068
(2.44)

0.51
(0.34, 0.67)

−0.0793
(−0.50)

0.0016
(0.79)
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Table 3. Cont.

Country
Max. Temp (◦C) Min. Temp (◦C) Range (◦C)

d Intercept Trend d Intercept Trend d Intercept Trend

South Africa 0.37
(0.22, 0.52)

−0.9884
(−3.81)

0.0164
(4.85)

0.17
(0.01, 0.33)

−0.7896
(−8.70)

0.0129
(10.60)

0.34
(0.21, 0.47)

−0.1684
(−0.95) 0.0032 (1.39)

Sudan 0.41
(0.29, 0.54)

−0.5250
(−1.55)

0.0085
(1.92)

0.45
(0.32, 0.57)

−1.0093
(−2.94)

0.0162
(3.65)

0.35
(0.22, 0.48)

0.4540
(4.03)

−0.0075
(−5.12)

Tanzania 0.39
(0.22, 0.56)

−0.6903
(−3.13)

0.0113
(3.94)

0.41
(0.24, 0.57)

−0.6844
(−2.97)

0.0119
(4.01)

0.40
(0.24, 0.56)

−0.0020
(−0.01)

−0.0006
(−0.28)

Tunisia 0.30
(0.17, 0.42)

−1.0054
(−5.14)

0.0170
(6.60)

0.37
(0.24, 0.50)

−0.9363
(−3.78)

0.0162
(5.02)

0.42
(0.27, 0.58)

−0.0873
(−0.50) 0.0010 (0.44)

Uganda 0.58
(0.41, 0.76)

−0.8968
(−1.93)

0.0141
(2.32)

0.48
(0.32, 0.65)

−0.8757
(−2.52)

0.0147
(3.25)

0.48
(0.32, 0.65)

0.0270
(0.34)

−0.0006
(−0.52)

Zambia 0.28
(0.15, 0.41)

−0.4044
(−2.09)

0.0072
(2.86)

0.37
(0.22, 0.52)

−0.2876
(−1.42)

0.0052
(1.97)

0.37
(0.22, 0.52)

−0.0920
(−0.54) 0.0019 (0.83)

Zimbabwe 0.24
(0.11, 0.38)

−0.5374
(−2.75)

0.0094
(3.66)

0.30
(0.14, 0.45)

−0.4260
(−2.30)

0.0076
(3.14)

0.30
(0.14, 0.45)

−0.1163
(−1.24) 0.0020 (1.55)

Note: Significant linear trend coefficients (intercept or trend) at a 5% level one-sided test (t > 1.64) are in bold with
t-statistics in parentheses. For fractional d values, standard errors are in parentheses.

Also, the temperature range series, which is the difference between the maximum and
minimum temperatures, display long memory as well in a number of countries, but with
an upper bound limit above 0.5 in many cases. Table 3 also indicates 29 cases of significant
trends in the case of maximum temperatures, and 33 cases for the minimum temperatures,
all of which with significant positive coefficients, while only nine countries show significant
trends in the range: three with a positive value (Lesotho, Morocco, and Botswana) and five
with a negative trend (Sudan, Burkina Faso, Nigeria, Egypt, Kenya, and Central Africa).

For clarity, Table 4 summarizes the results in Table 3 for the cases where the d value
for the range series is less than either or both d values for maximum and minimum
temperatures. These countries include Angola, Botswana, Central African Republic, Chad,
Congo, Egypt, Gabon, Kenya, Libya, Madagascar, Malawi, Namibia, Nigeria, Sudan,
Uganda, and Zimbabwe. These are the countries in which maximum and minimum
temperatures are likely to have long-run relationships but the high confidence band for the
range series poses suspicions, which requires further robust analyses before one concludes
the long-run relationship existing between the pair.

Table 4. Summary of Results in Table 3.

Country Evidence of Significant Trend
Increase

Evidence of
dRange < min (dMax.Temp, dMin.Temp)

Angola
√ √

Benin
√

Botswana
√ √

Burkina Faso
√

Cameroon
√ √

Central Afr. Rep.
√ √

Chad
√ √

Congo
√ √

Cote d’Ivoire
√

Egypt
√ √
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Table 4. Cont.

Country Evidence of Significant Trend
Increase

Evidence of
dRange < min (dMax.Temp, dMin.Temp)

Gabon
√ √

Ghana
√

Guinea
√

Guinea-Bissau
√

Kenya
√ √

Lesotho
√

Liberia

Libya
√ √

Madagascar
√ √

Malawi
√ √

Mali
√

Mauritania
√

Morocco
√

Namibia
√ √

Niger
√

Nigeria
√ √

Rwanda
√

Sierra Leone

Senegal
√

South Africa
√

Sudan
√ √

Tanzania
√

Tunisia
√

Uganda
√ √

Zambia
√

Zimbabwe
√ √

The framework of fractional integration employed here also allows us to simultane-
ously test for positive trends in the series under investigation, as we know that significant
positive trends in temperature series suggest an evidence of global warming induced by
temperature increases. In Table 3, positive and significant trend coefficients are found in
29 countries for the case of the maximum temperature, and in 33 countries in the case of
the minimum temperature. Thus, in Table 4, it is determined that evidence of temperature
increase is observed in 34 countries, that is, all except Liberia and Sierra Leone.

In order to further establish the long-run relationship between maximum and min-
imum temperature series, we carried out homogeneity of fractional integration orders,
where we ignore the confidence band since the test is defined in the frequency domain
using periodogram bands. The estimation of d parameter is based on Local Whittle (LW)
estimators and the significant difference in paired values of d are tested based on the ap-
proach described earlier in Equations (7) and (8). Estimates of T̂xy statistics, as given in [30]
are presented in Table 5, where none of these estimates are significant at 5% level. Recall
that the test is asymptotically normally distributed with 1.96 as its two-sided rejection
value, and all these estimates are below the value. Evidence of homogeneity in all the
pairs (maximum and minimum temperature pairs) further supports the possibility of a



Atmosphere 2023, 14, 1299 15 of 21

long-run relationship, based on fractional cointegration in the co-movement of maximum
and minimum temperatures in the 36 African countries under investigation.

Table 5. Results of homogeneity of paired persistence parameters for maximum and minimum
temperatures.

Country T0.5 T0.6

Angola 0.1315 0.2008

Benin 1.0788 0.3417

Botswana 0.3511 0.2472

Burkina Faso 1.9117 0.7278

Cameroon 0.1519 0.7277

Central Afr. Rep. 0.3209 0.3103

Chad 0.4145 0.4604

Congo 0.0107 0.0224

Cote d’Ivoire 0.7076 0.2825

Egypt 0.2899 0.2687

Gabon 0.0356 0.0143

Ghana 1.1170 0.0722

Guinea 0.1387 0.5569

Guinea-Bissau 0.1917 0.0568

Kenya 0.4196 0.0586

Lesotho 0.7969 0.7003

Liberia 0.0343 0.0833

Libya 0.1445 0.3202

Madagascar 0.0066 0.0013

Malawi 0.0669 0.8570

Mali 1.1013 0.6679

Mauritania 0.5987 0.4710

Morocco 0.7275 0.9893

Namibia 0.1210 0.4668

Niger 0.1434 0.4195

Nigeria 0.5054 0.7256

Rwanda 0.2099 0.6325

Sierra Leone 0.0190 0.3437

Senegal 0.0281 0.2062

South Africa 0.4934 0.6006

Sudan 0.4931 0.3506

Tanzania 0.0358 0.6058

Tunisia 0.9987 0.1570

Uganda 0.3072 0.4192

Zambia 0.0084 0.5026

Zimbabwe 0.0262 0.4947
Recall that the homogeneity of fractional d is normally distributed; therefore, the two-sided test is rejected based
on a critical value of 1.96 at a 5% level.



Atmosphere 2023, 14, 1299 16 of 21

We further extend the analysis by using fractional cointegration, and following now,
the two-step approach developed in [49]. Thus, we first conduct the regression of one of
the variables (maximum) against the other (minimum). However, instead of using OLS
regressions either in the time or in the frequency domain, we follow Nielsen [50] and
perform the narrow-band frequency domain least square (NBFDLS) estimation approach,
using as bandwidth numbers m = T0.5 and T0.6. The estimated regression coefficients are
displayed in Table 6. In the second step, we estimated the order of integration in the
residuals of the estimated relationships by using Whittle estimates in the frequency domain.
Results are reported across Table 7.

Table 6. Estimated regression coefficients for the NBFDLS (narrow-band frequency domain least
square).

Country T0.5 T0.6

Angola 1.0598 1.0343

Benin 0.5121 0.4858

Botswana 1.1830 1.1676

Burkina Faso 0.5179 0.5152

Cameroon 0.5366 0.5421

Central Afr. Rep. 0.8510 0.8574

Chad 0.9659 0.9600

Congo 0.9994 0.9991

Cote d’Ivoire 0.7146 0.7051

Egypt 0.9012 0.9053

Gabon 0.9992 0.9996

Ghana 0.5931 0.5708

Guinea 1.1052 1.0813

Guinea-Bissau 1.0649 1.0491

Kenya 0.9676 0.9627

Lesotho 1.2112 1.2209

Liberia 0.9692 0.9693

Libya 0.9775 0.9809

Madagascar 1.0008 1.0007

Malawi 1.0256 0.9424

Mali 0.7598 0.7629

Mauritania 0.8452 0.8394

Morocco 1.1145 1.0847

Namibia 0.9024 0.9077

Niger 0.8349 0.8087

Nigeria 0.6811 0.6637

Rwanda 1.0121 0.9834

Sierra Leone 1.0469 1.0342

Senegal 1.0694 1.0512

South Africa 1.1596 1.1726

Sudan 0.6717 0.6733

Tanzania 0.9103 0.8871
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Table 6. Cont.

Country T0.5 T0.6

Tunisia 0.9855 0.9785

Uganda 0.9589 0.9506

Zambia 1.0194 0.9536

Zimbabwe 1.1875 1.1152

Table 7. Estimates of d in the NBFDLS regression.

Country m = T0.5 m = T0.6
Evidence of d Smaller than in Individual Series

m = T0.5 m = T0.6

Angola 0.14 (−0.05, 0.42) + 0.15 (−0.03, 0.43) + √ √

Benin 0.44 (0.26, 0.75) 0.46 (0.26, 0.75)
√

Botswana −0.20 (−0.41, 0.11) + 0.11 (−0.16, 0.43) + √ √

Burkina Faso 0.43 (0.19, 0.88) 0.43 (0.19, 0.88)
√

Cameroon 0.06 (−0.10, 0.31) + 0.06 (−0.12, 0.32) + √ √

Central Afr. Rep. 0.31 (0.13, 0.57) 0.31 (0.15, 0.57)
√ √

Chad 0.51 (0.30, 0.82) 0.51 (0.30, 0.81)

Congo 0.00 (−0.19, 0.29) + 0.02 (−0.19, 0.28) + √ √

Cote d’Ivoire 0.48 (0.27, 0.80) 0.47 (0.26, 0.79)

Egypt 0.42 (0.29, 0.61) 0.42 (0.29, 0.58)

Gabon −0.10 (−0.28, 0.18) + −0.08 (−0.27, 0.19) + √ √

Ghana 0.42 (0.14, 0.77) 0.42 (0.12, 0.78)

Guinea 0.64 (0.38, 1.00) 0.63 (0.36, 0.98)

Guinea-Bissau 0.53 (0.20, 0.96) 0.57 (0.30, 0.91)

Kenya −0.03 (−0.17, 0.23) + −0.02 (−0.18, 0.23) + √ √

Lesotho 0.57 (0.41, 0.77) 0.56 (0.41, 0.77)

Liberia 0.72 (0.43, 1.20) 0.72 (0.43, 1.19)

Libya 0.56 (0.35, 0.82) 0.56 (0.35, 0.83)

Madagascar −0.13 (−0.32, 0.11) + −0.12 (−0.31, 0.12) + √ √

Malawi 0.22 (−0.02, 0.57) + 0.27 (0.04, 0.58)
√ √

Mali 0.46 (0.25, 0.82) 0.48 (0.26, 0.83)

Mauritania 0.26 (−0.01, 0.52) + 0.26 (−0.01, 0.62) + √

Morocco 0.17 (−0.02, 0.46) + 0.22 (0.05, 0.47)
√ √

Namibia 0.20 (−0.03, 0.59) + 0.20 (−0.04, 0.58) + √ √

Niger 0.51 (0.30, 0.76) 0.50 (0.28, 0.76)

Nigeria 0.24 (0.08, 0.46) 0.25 (0.08, 0.45)
√ √

Rwanda 0.59 (0.40, 0.89) 0.60 (0.39, 0.71)

Sierra Leone 0.68 (0.38, 1.08) 0.69 (0.40, 1.11)

Senegal 0.42 (0.14, 0.77) 0.43 (0.16, 0.77)

South Africa 0.54 (0.37, 0.76) 0.55 (0.38, 0.74)

Sudan 0.61 (0.45, 0.83) 0.61 (0.46, 0.83)
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Table 7. Cont.

Country m = T0.5 m = T0.6
Evidence of d Smaller than in Individual Series

m = T0.5 m = T0.6

Tanzania 0.36 (0.12, 0.71) 0.35 (0.13, 0.72)
√ √

Tunisia 0.30 (0.15, 0.57) 0.30 (0.15, 0.59)
√

Uganda 0.28 (0.02, 0.62) 0.29 (0.03, 0.62)
√ √

Zambia 0.44 (0.29, 0.66) 0.46 (0.32, 0.65)

Zimbabwe 0.10 (−0.04, 0.31) + 0.14 (0.00, 0.33)
√ √

Note: + indicates evidence of I(d = 0) in the cointegrating residuals, and these are 11 countries, while evidence of
I(d > 0) in the cointegrating residuals are 19 less 11 countries.

The results are similar in the two cases in relation to the bandwidth numbers. Evidence
of I(0) residuals, thus supporting short memory in the long-run equilibrium relationship, is
found in the cases of Angola, Botswana, Cameroon, Congo, Gabon, Kenya, Madagascar,
Mauritania, Namibia, and Zimbabwe. If m = T0.5, this hypothesis is also supported by
Malawi and Morocco. Thus, for these groups, our results support the hypothesis of cointe-
gration with a rapid reversion of the series to a long-run equilibrium relationship. On the
other extreme end, evidence of nonstationary I(1) is found for Liberia and Sierra Leone for
the two bandwidth numbers, and also for Ghana, if m = T0.5. In all the other countries, the
estimate of the differencing parameter is in the interval (0, 1), and evidence of cointegration
(in the sense that the order of integration of the residuals is lower than the minimum of
the two individual series) is found in the cases of Angola, Botswana, Cameroon, Central
African Republic, Congo, Gabon, Kenya, Madagascar, Malawi, Morocco, Namibia, Nigeria,
Tanzania, Uganda and Zimbabwe for the two bandwidth numbers, but also for Benin,
Burkina Faso, Mauritania, and Tunisia if m = T0.6. Thus, the countries with no evidence
of cointegration are Chad, Cote d’Ivoire, Egypt, Ghana, Guinea, Guinea Bissau, Lesotho,
Liberia, Libya, Mali, Niger, Rwanda, Sierra Leone, Senegal, South Africa, Sudan, and Zam-
bia. Among the 19 countries listed in Table 7 with evidence of cointegration, 11 countries
display short memory equilibrium relationships between their maximum and minimum
temperatures, i.e., I(0) evidence. These countries include Angola, Botswana, Cameroon,
Congo, Gabon, Kenya, Madagascar, Mauritania, Morocco, Namibia, and Zimbabwe, while
the remaining eight countries indicate long memory cointegration, i.e., I(d > 0).

5. Conclusions

This paper investigates persistence and linear trends in the maximum and minimum
annual average temperatures in 36 African countries. The statistical distribution of maxi-
mum and minimum temperature series, with the diurnal range in the climatological study
as they act as an important factor driving global warming, have gingered our interest.
Historical datasets from 1901 to 2021 are analyzed with the annual range series. The re-
sults first establish long-term memory in maximum and minimum temperatures over the
historic years, implying that the temperature series is often strongly correlated with its
past lag values. This is a persistence property, often measured as fractional integration.
It assists in uncovering the correlation property of this series, classified as long memory,
mean-reverting and non-mean-reverting, and these have implications for erratic and pre-
dicted climatic series. Thus, long-term memory observed in this paper further indicates the
possibility of temperatures in Africa being predicted for future values. The trend analysis
shows evidence of trend shifts in the plots and these are revealed further in the positive
significant trend coefficients with an insignificant positive trend in the range series. Note
that the trend analysis allows one in making future predictions, but the approach used in
this paper checking future predictions based on fractional integration is relatively novel
and hardly adopted in climatological studies. Few papers along this line are those of [23]
and, [6,36,38], among others.
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Our results support the hypothesis of fractional cointegration. This implies that both
maximum and minimum temperatures follow a long-run equilibrium relationship with
shocks in the range displaying transitory effects and not producing permanent discrepan-
cies between the maximum and minimum temperatures. Also, 17 countries among the 36
African countries are at a very high risk of climate change due to the absence of long-term
co-movement in the maximum and minimum temperatures in those countries, compared
to other countries with mild effect. Although most African countries are prone to the effect
of climatic change as the econometric findings reveal, some regions of the continents are
fairer than others.

Findings in this paper are of relevance for climatological studies in a number of
ways. It allows for the proper understanding of historical temperature patterns in Africa,
which is crucial for predicting and mitigating the impacts of climate change. Thus, it
helps in studying the large-scale climate patterns that influence Africa’s climate in its
different regions (see [51]). Understanding these patterns and their potential impacts on
different parts of Africa is essential for developing effective adaptation and mitigation
strategies. Additionally, research on large-scale climate patterns in Africa can contribute to
global climate models, improving the accuracy of climate projections and enhancing our
understanding of the global climate system.

As a final issue, we should note that the last century was a particularly convulsive
era for humankind; due to this, issues such as heterogeneity (changes in the variance)
and stability (structural breaks) in the data should also be taken into account, noting
that some authors have found that long memory and nonlinearities and breaks are issues
which are intimately related ([52,53]; etc.). Thus, nonlinear deterministic trend structures,
based, for instance, on Chebyshev polynomial in time [54], Fourier functions [55], or
neural networks [56] could be examined in these data, while still under the assumption of
long-range dependence. Work in this line is now in progress.
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