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Abstract: Background: Electrodermal activity (EDA) serves as a prominent biosignal for assess-
ing sympathetic activation across various scenarios. Prior research has suggested a connection
between EDA and fluctuations in Parkinson’s disease (PD), but its precise utility in reliably detect-
ing these fluctuations has remained unexplored. This study aims to evaluate the efficacy of both
basic and advanced analyses of EDA changes in identifying the transition to the ON state following
dopaminergic medication administration in individuals with PD. Methods: In this observational
study, 19 individuals with PD were enrolled. EDA was continuously recorded using the Empatica
E4 device, worn on the wrist, during the transition from the OFF state to the ON state following
levodopa intake. The raw EDA signal underwent preprocessing and evaluation through three distinct
approaches. A logistic regression model was constructed to assess the significance of variables
predicting the ON/OFF state, and support vector machine (SVM) models along with various Neural
Network (NN) configurations were developed for accurate state prediction. Results: Differences
were identified between the ON and OFF states in both the time and frequency domains, as well
as through the utilization of convex optimization techniques. SVM and NN models demonstrated
highly promising results in effectively distinguishing between the OFF and ON states. Conclusions:
Evaluating sympathetic activation changes via EDA measures holds substantial promise for detect-
ing non-motor fluctuations in PD. The SVM algorithm, in particular, yields precise outcomes for
predicting these non-motor fluctuation states.

Keywords: electrodermal activity; Parkinson; machine learning

MSC: 68T20

1. Introduction

Parkinson’s disease (PD) is a progressive neurological disorder affecting more than
10 million people worldwide [1] and is the second most common neurodegenerative disease.
PD symptoms appear gradually and worsen as disease progresses. Different motor and
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non-motor symptoms constitute the clinical hallmarks of PD, including bradykinesia, rigid-
ity, tremor, or postural instability as cardinal motor symptoms, and cognitive/behavioral
disorders, sleep disturbances, or autonomic alterations as frequent non-motor manifesta-
tions. Autonomous nervous system dysfunction symptoms are highly prevalent in PD,
being present in up to 80% of cases [2], and might affect multiple physiological spheres (e.g.,
gastrointestinal, cardiovascular, urogenital, or thermoregulatory). Autonomic dysfunc-
tion imposes a significant burden on people with PD, deeply limiting their health-related
quality-of-life [3].

Autonomous nervous system (dys)function can be assessed by capturing different
physiological signals. Skin conductance measures have been traditionally used to evaluate
the level of activation of the sympathetic division. To that end, the most used biosignal is
electrodermal activity (EDA), which measures the electrical properties of the individual’s
skin. Typically, it is recorded as a conductance or a potential signal through placing
electrodes in contact with the skin [4], although recent developments now allow it to be
acquired through different sensors. The amplitude of this measurement is strongly related
to the autonomous nervous system activity. In the literature, the most expanded uses of this
signal are studies linking EDA measurements to anxiety [5] or stress [6]. While there are not
many studies that make use of these signals in the context of Parkinson’s disease, our recent
literature review found that when they are utilized in this disease, they frequently employ
a variety of methods without established normative values specific to Parkinson’s disease.

Dopaminergic replacement therapy represents the standard symptomatic treatment for
PD. The ON state is the denomination used to designate when the medication is working
and symptoms are controlled, while the OFF state defines the time when the medication
effect is over or is not working. Fluctuations among ON/OFF states are common as the
disease progresses; these fluctuations significantly affect quality-of-life of people with
PD [7]. Its assessment, often in terms of onset, frequency, and severity, is crucial to perform
treatment adjustments and, up to now, is usually conducted by relying on self-reported
diaries filled in by patients.

The instrumental detection of fluctuations has been proved effective using accelerome-
ters but it is limited to detecting changes in motor symptoms exclusively [8,9]; the study of
non-motor fluctuations remains notably unexplored. Previous evidence identified differ-
ences between the level of sweating (measured as the amplitude of the EDA) in PD patients
in ON and OFF states, showing higher levels of EDA in the OFF state [10]. Moreover,
previous studies suggest there might be a relationship between EDA measures and motor
fluctuations in PD [11], but its usefulness to accurately detect their non-motor counterparts
remains largely unexamined.

Different methods have been employed to analyze the EDA signal, with the most
common approaches occurring in the time and frequency domains. Time domain analyses
offer a wealth of information; however, pinpointing specific points, such as the onset
of ON/OFF states or peaks, can be challenging due to the presence of noise and other
events. [4,12]. On the other hand, frequency domain analysis offers fewer details but is
generally more robust, sensitive, and simpler to implement [6]. However, there remains a
scarcity of studies utilizing this domain to evaluate the EDA signal in PD. Some studies
have employed the tonic and phasic decomposition of the signal to obtain results [13],
and a recent study introduced a new index for evaluating the EDA signal from a stress
perspective [14].

To date, signals from wearable sensors recording autonomic nervous system (ANS)
activity, electrodermal activity (EDA), heart rate (HR), blood volume pulse (BVP), and
skin temperature (TEMP), have been used in combination to look for markers to detect
wearing-off in people on L-dopa [15].

Machine learning applications, a subset of artificial intelligence, have shown promise in
addressing various challenges in medical diagnosis and treatment. In PD, these techniques
have been used to analyze spatiotemporal features from different sensors related to motor
features detection (e.g., accelerometers or gyroscopes) to identify the patient’s status [15] by
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employing methods like Support Vector Machines (SVM), artificial neural networks (ANN),
or convolutional neural networks (CNN). There is remarkably scarce evidence regarding
the use of these techniques to perform advanced analysis of nervous system (ANS) activity
biosignals like EDA.

The objective of this study was to assess the capability of simple and advanced EDA
analyses, along with a machine learning algorithm, to detect non-motor fluctuations in
individuals with PD.

2. Materials and Methods
2.1. Study Design

An observational study design was conducted for recording EDA signals pre-post
administration of levodopa, following the Strengthening the Reporting of Observational
studies in Epidemiology (STROBE) standards [16]. All the methods were in accordance
with the 1964 Declaration of Helsinki and ethical approval was obtained by an independent
ethics committee for clinical research (Num 22/496). All patients gave written informed
consent prior to enrollment.

2.2. Participants
2.2.1. Eligibility Criteria

Inclusion criteria were: (1) age >18 years, (2) clinical diagnosis of idiopathic PD accord-
ing to the UK Brain Bank Criteria [17], (3) stabilized dosing of dopaminergic medication
with at least one morning dosing of levodopa. Exclusion criteria were: (1) presence of
cognitive impairment (MMSE < 24 points) [18], (2) diagnosis of other neurological diseases,
(3) Intolerance to the off state, (4) motor impairments that prevents one from remaining
seated for two hours, (5) previous diagnosis of autonomic impairment.

2.2.2. Characteristics

Twenty-three PD patients were initially enrolled, although data from four patients
were not analyzed due to presence of events that altered the EDA recordings, such as
fever (n = 1), high level of sweating during data collection (n = 1), missed data because of
technical problems with the EDA sensor (n = 1), or extreme values of the EDA signal (n = 1).
A group of 19 PD patients was finally analyzed. Their characteristics are shown in Table 1.

Table 1. Demographic and clinical data from participants. Abbreviatures: H&Y: Hoehn and
Yahr; UPDRS-III: Unified Parkinson’s Disease Rating Scale-Motor Part; LEDD: L-Dopa Equivalent
Daily Dose.

Variable Participants (N = 19)

Sex, Number of males (%) 6 (31.58)
Age in years, mean ± SD 60.8 ± 12.28

Disease duration in years, mean ± SD 5.9 ± 4.1

H&Y stage, N (%)

1 4 (21.05)

1.5 2 (10.53)

2 7 (36.84)

2.5 2 (10.53)

3 4 (21.05)
UPDRS III OFF score, mean ± SD 29.47 ± 13.6

UPDRS III ON score, mean ± SD 20 ± 10.15

UPDRS III OFF to ON change score, ± SD 9.73 ± 6.85
LEDD in mg/day, mean ± SD 672.98 ± 495.98

LEDD in mg/morning dose, mean ± SD 204.12 ± 672.98
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2.3. Acquisition of Electrodermal Activity

EDA signal was collected using the E4-Empatica device (Empatica Inc., Boston, MA,
USA). The E4 device is a wristband, weighting 25 g, with a band of polyurethane, a battery
of around 24 h, Bluetooth for the data transfer, and a flash memory up to 60 h of data
storage [19]. It is composed of different sensors, including a PPG sensor to measure heart
rate, a 3-axis accelerometer, and an infrared thermopile to measure skin temperature, in
addition to the galvanic skin response (GSR) sensor to measure EDA, although only the
latter was used for the purpose of this study. The GSR sensor measures the fluctuations
of the skin’s electrical properties with a sampling frequency of 4 Hz and expressed in
microSiemens (µS).

2.4. Experimental Procedure

The study was conducted from February 2023 to May 2023. There are two different
phases in the protocol, before and after the medication intake. The different activities of
each phase are detailed in Figure 1.
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Figure 1. Phases in the protocol to record each session with the patients.

During the recruitment phase, the concepts of ON and OFF states were explained to
the patients, and all participants demonstrated a clear ability to identify these states and
associate them to the action of medication. To ensure standardized assessments, all patients
were initially evaluated in the OFF state, defined as having abstained from dopaminergic
medication for more than 12 h based on their usual dosing schedule and confirmed with
the patient as feeling in OFF state. These assessments were conducted in the early morning
before the first morning dose of dopaminergic medication and fasting.

The first procedural step involved attaching the Empatica device to the patients’
wrists and synchronizing it with a mobile phone for data recording. Once the device
was set up, the patients’ Unified Parkinson’s Disease Rating Scale (UPDRS) Part III scores
were assessed.

Subsequently, the patients were instructed to take their morning dose of dopaminergic
medication with a glass of water, and the exact time of intake was recorded. After a
30-min rest period to allow for proper absorption of the medication, a light breakfast was
provided. The patients were then asked to note the exact time when they felt they had
entered a full ON state. This time was also noted, and a second UPDRS Part III assessment
was performed.

Throughout this process, the electrodermal activity (EDA) signal was continuously
recorded. To ensure a controlled environment and avoid potential stress-induced variations
in EDA baseline levels, the patients’ total time spent at the hospital was approximately 2 h,
with less than 1 h spent in the OFF state and around 1 h in the ON state. Room temperature
was controlled, and the patients remained comfortably seated throughout the study.

2.5. Data Analysis

The different steps to evaluate the signal are reflected in Figure 2. The software used
to perform this analysis was MATLAB version: 9.13.0 (R2022b) [20] and different toolboxes
were utilized, including the Signal Processing Toolbox, the Statistics and Machine Learning
Toolbox, and the script available for the convex optimization problem [13].
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2.5.1. Pre-Processing

The EDA signal was filtered using a 5th order low-pass normalized cut-off frequency
of 0.025 Hz Butterworth filter to deal with noise and motion artefacts [21]. For each patient,
we labelled the EDA signal with the different states (OFF state, before levodopa, and ON
state, when the patient stated they entered in a full ON state after levodopa intake) having
a total of 2.221 min of recording session (14.44 h in OFF state and 22.58 h in ON state).

2.5.2. Feature Extraction (Time, Frequency, and Convex Optimization)

For the time domain features, the overall signal in ON and OFF states was considered
to calculate the following parameters: mean, standard deviation, maximum, minimum,
and the first differentiate. Then we calculated the count of the Skin Conductance Response
(SCR) peaks, defined by the “peaks” of the EDA recorded by the electronic device and the
sum of the areas under those peaks for all the patients included in this study [22]. After
studying the overall signal, we split the EDA signal into windows of 30 s, to evaluate the
average of those windows in each state. A total of 4.407 windows were obtained and all
calculations were reapplied to each window.

For the frequency domain analysis, the Fast Fourier Transformation was used to
convert the EDA time series of the ON and OFF states for each patient into a discrete
Fourier transformation to perform a spectral analysis. The main feature calculated in the
frequency domain was the average power in ON/OFF state analyzed [23].

Then, a convex optimization approach was used. According to this method, the
EDA was divided into a 3-component signal: a phasic component, a tonic component,
and noise [13]. The phasic component is defined by the short-time response to a specific
stimulus, the tonic component is defined by limited changes to the baseline level as long as
fluctuations, and the noise is defined as white gaussian noise [13]. This analysis considered
the following features for each tonic and phasic component: the average value over time
and its standard deviation, and the area under the curve.

2.5.3. Statistics Analysis

The statistical analysis was implemented in a script in MATLAB version: 9.13.0
(R2022b) using the statistics and machine learning toolbox. For all analyses, alpha was set
at 0.05 for statistical significance and 95% confidence intervals were obtained. Descriptive
statistics were used to summarize the different features extracted from the EDA signal
and all covariates in ON/OFF states separately. For hypothesis testing, we first used a
basic approach whereby a paired samples T-test or Wilcoxon signed rank test, according
to the Shapiro–Wilk normality test, were used to compare the differences in EDA features
from ON to OFF. Then, the relationship between EDA features and ON/OFF states was
assessed with a logistic regression to identify the relationship between the features and
the dependent variable. To improve the power of the statistical tests, the EDA signal
was split into windows of 30 s [24] and the different features in each approach were
calculated for each specific window. In logistic regression, the dependent variable was the
fluctuation state (fstate) with two levels (OFF/ON) and the independent variables were all
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the above-mentioned EDA features in the time, frequency, and convex analyses, as well as
socio-demographic and clinical characteristics (age, sex, H&Y state, LEDD, UPDRS-III, and
disease duration).

2.5.4. Sophisticated Classification

The different features extracted in the time and frequency domains and from convex
decomposition were used to create a classifier that discriminated between both fluctuation
states, ON and OFF. The data provided to the classifier were all the EDA features (time,
frequency, and convex approaches) as well as socio-demographic and clinical characteristics
(age, H&Y stage, time with disease, and UPDRS-III difference between ON/OFF). The
classifier selected was an SVM algorithm as it provides very good results in the literature
in applications related to EDA measurements [25]. Initially, a Bayesian classifier was also
considered but discarded as the accuracy results obtained were lower than 55%. The main
functionality of the SVM method is that uses a hyperplane to discriminate between two
different classes, in this case, the classes ON and OFF. The kernel function in a SVM is a
relevant factor to solve the classification problem as it transforms the data used as input
into the required output. There are different kernel functions utilized (e.g., linear, radial,
sigmoid, and polynomial kernel). The data were divided into train/test set considering the
rule 70%/30%. The total dataset had 4.407 different elements. To complete the analysis, dif-
ferent configurations of neural networks (ANN and SNN) have been used with the purpose
of improving the performance obtained with the SVM. The behavior of neural networks
is inspired in the human brain functionality. The network is composed of layers and the
minimum unit is a neuron that has an input and it produces an output. It receives numerical
input features and produces numerical outputs. The Artificial Neural Networks (ANNs)
are based on continuous-valued activations and perform computations using operations
such as weighted sums and activation functions. ANNs typically do not inherently capture
the temporal dynamics of data, as they process input data instantaneously. The Spiking
Neural Networks (SNN) transmit the information using discrete binary events and are
designed to mimic the behavior of biological neurons more closely. SNNs are well-suited
for tasks involving time-dependent data, such as event-driven processing, temporal coding,
and precise spike timing.

3. Results
3.1. Basic Analysis
3.1.1. Time Domain

The average and median amplitude, number of peaks, and area under those peaks in
OFF and ON states for the overall EDA signal and after signal windowing are shown in
Table 2.

Table 2. Main characteristics of the time features of the overall EDA signal and after signal win-
dowing (considering a length of 30 s per window) in ON and OFF states. Abbreviations: SCR: Skin
Conductance Response.

Feature

Overall Signal After Signal Windowing

State State

OFF ON OFF ON

Amplitude, mean ± SD, µS 1.62 ± 2.56 1.18 ± 1.7 2.16 ± 3.34 1.36 ± 2.4
Amplitude, median, µS 1.43 0.94 1.21 0.64

SCR peaks, N 83.78 ± 27.76 146.26 ± 45.14 0.87 ± 0.63 1.03 ± 0.64
Area under peaks, µS2/Hz 14.59 ± 32.66 16.23 ± 29.89 1.2 ± 2.1 1.52 ± 1.9

For the overall signal (see Figure 3A), there were statistically significant differences
between ON and OFF according to the number of peaks of the EDA (t = −5, p < 0.001)
with a mean difference = 63 (95% CI: 40.15, 84.79) and a large effect size (Cohen’s d = 1.62).
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There were no statistically significant differences between ON and OFF according to the
mean, median, or area under the peaks (all p > 0.05).
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Figure 3. (A). Example of electrodermal activity (EDA) signal evolution over time. (B). Raincloud
plot showing the EDA signal according to the non-motor fluctuation state. Each dot represents a
single participant.

After signal windowing (see Figure 3B), there were statistically significant differences
between ON and OFF according to the mean amplitude of the EDA (t = 4.12, p < 0.001)
with a mean difference = 0.78 (95% CI: −0.62, −0.22) and a small effect size (Cohen’s d
= 0.27). Also, a statistically significant difference between ON and OFF according to the
median amplitude of the EDA was found (t = 4.095, p < 0.001) with a mean difference = 0.57
(95% CI: −0.62, −0.21) and a small effect size (Cohen’s d = 0.13). Considering the number
of peaks, a statistically significant difference was also found between the ON and OFF
(t = −6.67, p < 0.001) with a mean difference = −0.16, (95% CI: 0.1, 0.19) and a small effect
size (Cohen’s d = 0.15). Finally, statistically significant differences were found for the area
under the peaks of the ON and OFF (t = −3.23, p = 0.0012) with a mean difference = −0.32
(95% CI: −0.14, −0.03) and a small effect size (Cohen’s d = 0.11).

3.1.2. Frequency Domain

The average power for overall signal in the OFF and ON states was 11.00 ± 27.73 µS2/Hz
and 6.24 ± 16.04 µS2/Hz, respectively, which was statistically significant between them
(t = 1.8, p = 0.04), with a mean difference = 4.76 (95% CI: −10.31, 0.79) and a small effect
size (Cohen’s d = 0.21).

After signal windowing, the average power in the OFF and ON states was
15.02 ± 36.16 µS2/Hz and 6.65 ± 22.83 µS2/Hz, respectively, which was statistically sig-
nificant between them (t = 5.15, p < 0.001), with a mean difference = 8.37 (95% CI: −3.41,
−7.61) and a small effect size (Cohen’s d = 0.27).
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3.1.3. Convex Optimization Approach

The phasic and tonic component average values and the average area under the curve
in the ON and OFF state for the overall signal and after signal windowing are shown in
Table 3.

Table 3. Main characteristics of the convex optimization features of the EDA signal in ON and OFF
states for the overall signal and after signal windowing. Abbreviations: AUC: Area Under de Curve.

Feature

Overall Signal After Signal Windowing

State State

OFF ON OFF ON

Amplitude, phasic average ± SD, µS 2.64 ± 4.4 1.91 ± 1.96 0.32 ± 0.35 0.33 ± 0.29
Amplitude, tonic average ± SD, µS −1.86 ± 2.46 −3.32 ± 5.79 −0.36 ± 0.35 0.39 ± 0.34
AUC phasic component, µS2/Hz 2.11 ± 2.69 2.91 ± 4.84 1.16 ± 1.19 1.33 ±1.18
AUC tonic component, µS2/Hz 2.14 ± 2.06 2.84 ± 5.33 1.35 ± 1.37 1.56 ± 1.36

For the overall signal, neither the tonic or phasic components showed statistically
significant differences between ON and OFF according to the mean amplitude or area
under the peaks (all p > 0.05).

After signal windowing, there were statistically significant differences between ON
and OFF according to the area under the peaks for the tonic component (t = −1.96, p = 0.04)
with a mean difference = −0.21 (95% CI: 0.01, 5.26) and a small effect size (Cohen’s d = 0.15).
There were no statistically significant differences between ON and OFF according to the
mean amplitude for the tonic and phasic components or the area under the peaks for the
phasic component (all p > 0.05).

3.2. Advanced Analysis

The values of the estimated coefficients, standard errors, and p-values of the logistic
regression model are shown in Appendix A Table A1. The EDA features that showed
a significant prediction ability to detect ON/OFF states were the amplitudes, the SCR
peaks, the power (frequency domain), and the amplitude of the tonic component. The
most relevant EDA features to distinguish between ON/OFF were the amplitude of the
tonic component (log odds = 10.51) and the area under the curve of the phasic component
(log odds = 8.297). Additionally, the age, the H&Y state, the disease duration, the LEDD
(in the morning), the total daily LEDD, and the UPDRS III also showed a significant
prediction ability, although neither of them showed log odds > 1. The performance of
this model showed an accuracy, precision, recall, and F1 of 60.28%, 65.22, 72.48%, and
67.01%, respectively.

3.3. Sophisticated Classification

The answer to the classification problem was solved using a SVM model and different
neural networks (NN) models. Those results are presented below.

3.3.1. SVM

The results of the different SVM classifiers used are shown in Table 4. The classifier
with the greatest accuracy was the radial type, whereas the most specific was the linear
kernel and the one with greatest sensitivity was the polynomial kernel.

3.3.2. Neural Network Models

The type of neural networks used in this work were artificial neural networks and
spiking neural networks. The results provided by them are shown in Table 5.

Different configurations were tested trying to find the best performance. As presented
in the results, the best classification provided by the neural networks in terms of accuracy
is provided by the artificial neural network of two hidden layers, the best specificity
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performance is provided by the spiking neural network of one hidden layer, and finally, the
best sensitivity is provided by the artificial neural network of one hidden layer. In general
terms, the best global classifier performance is provided by the artificial neural network of
two hidden layers.

Table 4. Results of the Support Vector Machine (SVM) classifiers to discriminate between ON
and OFF state based on Electrodermal Activity (EDA) features and socio-demographic and clinical
characteristics of Parkinson’s disease. Abbreviations: NPV: Negative Predictive Value; PPV: Positive
Predictive Value.

SVM Type Accuracy Specificity Sensitivity PPV NPV

Linear kernel 0.63 0.98 0.42 0.977 0.48
Radial kernel 0.72 0.88 0.507 0.77 0.7

Polynomial kernel 0.61 0.82 0.67 0.945 0.62
Sigmoid 0.6 0.80 0.45 0.65 0.48

Table 5. Results of the Neural Networks (NN) to discriminate between ON and OFF state based
on Electrodermal Activity (EDA) features and socio-demographic and clinical characteristics of
Parkinson’s disease. Abbreviations: AuC: Area Under the Curve.

Neural Network Type Configuration Accuracy Specificity Sensitivity AuC F Score

Artificial 1 hidden layer 0.86 0.86 0.86 0.85 0.89
Artificial 2 hidden layers 0.87 0.9 0.85 0.88 0.9
Spiking 1 hidden layer 0.82 0.91 0.76 0.87 0.89
Spiking 2 hidden layers 0.83 0.84 0.84 0.86 0.88

3.4. Evaluation of the Intermediate State

Apart from solving the problem of the classification between the OFF and ON states
using the electrodermal activity in PD patients, it is also interesting to evaluate what
happens in the intermediate state, that is in the process of changing from OFF state to
ON. This intermediate state has been measured as the time between the ingestion of
the medication and the reported ON state from the patient. The average time in this
intermediate state for the patients considered in the database was 1.329 s.

We have used the ANN configuration with two hidden layers, presented in the
previous section, as it provided the best global performance. The already trained model has
been used to extract the OFF or ON state of the patient to understand the changing process.

Figure 4 shows a sample of the transitioning process for a PD patient from OFF to ON
state. The figure shows the state predicted by the ANN model considering windows of 30 s
and it shows how the transition from OFF to ON state is not a sudden change but a slow
and smooth change that combines characteristics of both, until its final stabilization.
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4. Discussion

This study evaluated the characteristics of the electrodermal activity in the PD patients
in response to dopaminergic medication administration and thus corresponding to the
different states known as OFF (without medication) and ON (with medication).

Although there are no normative values for EDA in PD, we have determined that the
mean value of the overall EDA signal decreases with dopaminergic activation (1.62 ± 2.56 µS
for the OFF period and 1.18 ± 1.7 µS for the ON period). The windowing procedure appears
to increase those values but keeps a similar trend (2.16 ± 3.34 µS and 1.36 µS ± 2.4 µS
for the OFF and ON states, respectively). We identified differences in the time domain
(amplitude mean, amplitude median, SCR number of peaks, and the area under peaks),
in the frequency (average power), and in the complex optimization approach (under the
peaks for the tonic component) concluding a small effect size between those states. The
average mean values for the overall signal and for the windowed signal comparing the
ON and OFF states showed a higher arousal activity in the OFF state, as patients without
levodopa drugs are more nervous, more excited, more affected by pain, and, therefore, they
tend to sweat more because of a higher sympathetic tone [10]. Moreover, windowing the
signal was useful to extract characteristics about the signal that later allowed us to train
different ML models to predict the OFF and ON states.

Using logistic regression as a straightforward analytical approach to detect signal
changes resulting from LEDD administration, our model showed a moderate accuracy of
67.01%. This model incorporated the EDA features mentioned earlier, as well as socio-
demographic and clinical characteristics. When assessing the socio-demographic and
clinical variables, we found that age, Hoehn and Yahr (H&Y) stage, disease duration,
LEDD dosage, and UPDRS score were all significant factors in the evaluated model. In
our study, we found that the average amplitude of the EDA signal did not show statistical
significance. Interestingly, this parameter is considered a crucial measure in various models
within the literature for predicting patient status [25]. This discrepancy might be attributed
to the limitations of the logistic regression model, which may fail to capture non-linear
relationships between variables or handle complex decision boundaries, especially in cases
of multicollinearity. Furthermore, the AuC-ROC score of the model is only 0.603, indicating
that for a reliable and accurate discrimination between ON and OFF states, more sophisti-
cated analytical approaches should be employed to enhance predictive capabilities. In the
context of discriminating between ON and OFF states, the current model’s performance
might be hindered by the intricate and multifaceted nature of Parkinson’s disease dynam-
ics. Employing advanced analytical techniques and machine learning algorithms could
potentially unlock hidden patterns and yield higher predictive accuracy.

The application of machine learning techniques is widespread in the medicine and
biomedicine fields and its usage in Parkinson patients may allow to identify the complex
relationships between the characteristics of the patient’s data. The usage of the SVM
algorithm to evaluate the EDA signal has been previously reported [25] to detect stress
conditions in individuals or to identify boredom, pain, or surprised emotions [26] providing
very good results. Moreover, the utilization of neural network to evaluate the EDA in
patients was studied previously in order to identify the arousal status with very promising
results [27].

The first ML model proposed, a SVM model was tested with different kernel configura-
tion to extend the potential relationship between the data. The results provided promising
metrics to identify the fluctuations in Parkinson patients, achieving an accuracy of 72%
using a radial based function in the kernel of the SVM. The radial based function of the
SVM model provides the best results of the different configurations tested. This function is
powerful and more complex than the linear and polynomial ones as its main property is
the capacity of combining different polynomial kernels several times looking for non-linear
separable data [28]. This type of kernel is likely more suitable for these signals, given the
presence of non-linear relationships among the utilized features that can be effectively
captured by this type of kernel function [29]. In the literature, this function is among
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the most commonly employed when working with SVM methods for arousal classifica-
tion [30]. Consequently, our study demonstrates that SVM methods can effectively identify
autonomic changes in response to levodopa intake in PD patients, producing promising
results. Both techniques employed a cross-validation mechanism to assess the model’s
generalization performance on an independent dataset [31]. This process involves creating
various subsets from the training data to detect any potential overfitting in the model.

The results presented above demonstrate the robustness of the Support Vector Ma-
chine (SVM) in accurately identifying the state of the patient (ON or OFF). The literature
has already established that SVM-based models exhibit strong robustness and precision
compared to other classifiers [32]. This study not only validates the effectiveness of SVM
using the EDA signal to identify stress levels [25] and emotional arousal [26], but also to
determine the fluctuation state of PD patients.

However, there is room for improvement in terms of enhancing the performance of
the designed models. Various configurations of neural networks were explored to assess
their capacity to detect the fluctuation states in PD patients.

The results obtained from the artificial and spiking configurations of the neuronal
networks demonstrated a very solid performance. This indicates that these neural network
models effectively captured the complex relationships among input features, thereby
improving upon models like logistic regression that fail to capture the non-linear patterns
in the data. The primary distinction between the two models is that, despite our dataset’s
limitations, spiking neural networks offer an efficient approach to conserving energy and
reducing computational costs, as opposed to traditional neural networks [33].

Both neural network approaches presented here are viable options for deploying an
application with embedded machine learning algorithms aimed at identifying the status
of the patient. This would allow for medication adjustments based on the patient’s state,
ultimately leading to an enhanced quality of life.

The transition between the OFF and ON state, called in our study the intermediate
state, was also evaluated using the information gathered from the PD patients and the
ANN with the best performance obtained in the model construction. The results showed
that the transition between both states is not a sudden change but a smooth transition from
one to another, clearly conditioned to the levodopa pharmacokinetics and absorption [34].

EDA serves as a potential biomarker for Parkinson’s disease (PD), facilitating the
detection of changes in dopaminergic stimulation. Depending on the choice of features
and the design of the model, the patient’s condition can be assessed with greater precision.
To explore this potential, we constructed a neural network-based model utilizing these
features to enhance its performance.

Our proposed approach harnesses the power of a single non-invasive device, such
as Empatica, to capture EDA data. This approach distinguishes itself from other con-
temporary analysis techniques, described in the literature [35], which rely on canonical
correlation analysis and utilize four biosignals (EDA, temperature, heart rate, and blood
pressure volume).

However, it’s important to note that our model’s performance could not be personal-
ized for each individual due to the limited number of patients in our database. Also. the
sample of patients recruited for the database created had heterogeneous clinical character-
istics (H&Y state, age, LEDD) that could also have conditioned the results obtained in the
models. In the future, as the database expands, we envision the potential for individualized
models to further optimize performance outcomes.

5. Conclusions

In this study, we examined the analysis of electrodermal activity in Parkinson’s dis-
ease (PD) patients and its association with non-motor fluctuations. We investigated the
characteristics of electrodermal activity in PD patients during different medication stages,
referred to as ‘OFF’ (without medication) and ‘ON’ (with medication), identifying some
differences between both conditions.
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We employed a logistic model to assess the significance of considered variables,
including electrodermal activity features, as well as social, demographic, and clinical
factors, in classifying the states of PD patients. Additionally, we constructed SVM and
various NN models to identify its power and suitability to discriminate between the OFF
and ON states with a good level of accuracy.

While our study utilized a dataset from 19 patients to identify these ‘ON/OFF’ states,
future work could benefit from adopting an intra-patient approach, using patient-specific
characteristics to train the model, thus enhancing accuracy. Longer recording sessions
during ‘OFF’ and ‘ON’ periods could provide valuable data for individualized algorithm
training. Additionally, exploring other machine learning techniques such as convolutional
neural networks or generative adversarial networks could be considered to assess their
performance compared to the classifiers built in this study.

Furthermore, our analysis focused solely on electrodermal activity to discriminate
between states, but there is potential to incorporate data from other biosignals, such as
heart rate, temperature, or blood volume pulse, as features in the algorithms introduced
here, enriching the potential relationships identified between the data.

The potential of combining biosignals with machine learning algorithms for the char-
acterization and treatment of PD fluctuations remains a promising avenue for further
development.
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Appendix A

Table A1. Results of the logistic regression model. Abbreviations: AUC: Area Under de Curve; H & Y:
Hoehn and Yahr; LEDD: L-dopa equivalent daily dose, SCR: Skin Conductance Response, UPDRS-III:
Unified Parkinson’s Disease Rating Scale-Motor Part. * The values with asterisk indicate that they are
statistically significant (values lower than 0.05).

Variable Estimate Standard Error p-Value

Intercept 0.68 0.24 0.014 *

EDA features

Amplitude (time domain) 0.05 0.04 0.18
SCR peaks 0.31 0.062 <0.001 *

Area under Curve 0.25 0.034 0.27
Power (frequency domain) −0.016 <0.001 <0.001 *

Amplitude (phasic component) −9.957 × 105 2.14 × 106 0.64
Area Under Curve (phasic component) 8.297 1.78 × 104 0.64

Amplitude (tonic component) 10.51 4.61 0.02 *
Area Under Curve (tonic component) 0.082 0.039 0.04 *

Sociodemographic and
clinical characteristics

Age −0.02 3.76 × 103 <0.001 *
H & Y state 0.3214 0.087 <0.001 *

Disease duration −0.029 0.0143 0.038 *
LEDD (morning) −3.261 × 10−4 1.17 × 10−4 0.005 *

LEDD 4.84 × 10−3 5.541 × 10−4 <0.001 *
UPDRS-III −0.018 8.026 × 10−3 0.017 *
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