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ABSTRACT The optimization of convolutional neural networks (CNN) generally refers to the improvement
of the inference process, making it as fast and precise as possible. While inference time is an essential factor
in using these networks in real time, the training of CNNs using very large datasets can be costly in terms
of time and computing power. This study proposes a technique to reduce the training time by an average of
75% without altering the results of CNN training with an algorithm which partitions the dataset and discards
superfluous objects (targets). This algorithm is a tool that pre-processes the original dataset, generating a
smaller andmore condensed dataset to be used for network training. The effectiveness of this tool depends on
the type of dataset used for training the CNN and is particularly effectivewith sequential images (video), large
images and images with tiny targets generally from drones or traffic surveillance cameras (but applicable
to any other type of image which meets the requirements). The tool can be parameterized to meet the
characteristics of the initial dataset.

INDEX TERMS Computer vision, dataset, deep learning, training optimization, OpenCV, YOLO.

I. INTRODUCTION
Cameras and video technology is continuously improving,
and it is increasingly common to find images in FullHD,
2K, 4K or even 8K used as input for training convolu-
tional neural networks (CNN) [1]. Computing capacity has
also increased significantly [2], and a great deal of effort
is being made to develop hardware with the capacity to
run neural networks in real time [3]. This hardware is
becoming increasingly compact, efficient, and affordable,
enabling embedded or distributed training systems for the
construction of distributed object detection and surveillance
systems [4], [5], [6].
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Limited progress has been made however in CNN train-
ing [7]. While neural networks are, in theory, trained only
once and then later depend on inference, the fact is that
neural networks are continuously being retrained, either with
new datasets or modifications in the parameters of training
algorithms.

Given the current size of images [8], and the need for
increasingly exact or precise detection of objects within these
images, training times are growing [9] as classic methods of
optimizing training become less effective [10].

There are two commonly used methods to reduce training
times for deep neural networks:

1. Image size reduction [11]. This is an effective
method if the objects to be detected or classified
occupy a sufficiently large part of the total image so
that, even when the image is reduced, these objects
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still provide sufficient information for the training
algorithm [9] [13].

2. Partition of the original image into a mosaic of
images [7], [14], [15]. This method reduces the size
of the image, dividing it into several parts with a prede-
fined size (usually 3×3 or 4×4) with equal dimensions
(length and width) to maintain the same proportions as
the original image.

Both methods reduce the size of images, which can be
processed using more modest hardware, particularly when
memory is the principal limitation to processing large images.
Both methods, however, have certain drawbacks:

• Image size reduction [16]. If objects are small, the
loss of resolution may mean these objects become unde-
tectable.

• Partition of the original image into a mosaic of
images. The image being processed may be smaller but
there are more images to process. Additionally, objects
may be cut between two images. The superimposition
of the regions is a way to minimize this although it
does not solve the problem as the area of superimpo-
sition must be very large resulting in an even greater
reduction of the object, reducing the effectiveness of this
solution.

In this study we propose a method to optimize training times
without the losses indicated above. This method was vali-
dated in a case study using traffic images captured by drone.
This involved a handicap because the objects of interest were
very small compared with the total size of the image. Thus,
a solution to reduce the original image was ruled out. For
example, the size of a car or pedestrian in an image taken
by a drone at a height of 50 meters may be approximately
20 × 20 pixels, if we reduce the image to a size that can be
processed by a PyTorch or Tensor Flow type network, that is,
up to 640×640 pixels, we are reducing the image to one-fifth,
and the objects will be too small to be accurately detected
by the neural networks. Although YOLO can theoretically be
trained using target as small as 2×2 pixels [17], our tests with
targets smaller than 16 × 16 pixels had a very low degree of
precision.

In this study we will describe the method used to sig-
nificantly reduce processing times without diminishing the
effectiveness of the trained network.

II. TRAINING OPTIMIZATION ALGORITHM
This algorithm is designed to pre-process the labelled images
of a dataset prior to being used in the habitual training process
for a deep neural network. The dataset must be labelled
using the format of a YOLO type network [18]. Thus, the
input of this algorithm is one dataset, and the output another
dataset constructed using the original images but optimized
for training (also in YOLO format). For datasets other than
those of the YOLO type, the labels can be translated for use
in other formats. For this reason, the method is replicable and
extendible to other dataset formats.

A. TERMS USED IN ALGORITHM DEFINITION
• Target (Object) or BoundingBox: A labelled element
in the image that the neural network should detect. This
may be any of the type of object that the future neural
network will detect by inference.

• Selected object: An object labelled in the image that has
been selected as input for the neural network. This object
was chosen to be part of the set of objects used to train
the neural network.

• Discarded object: An object labelled to be discarded as
input in the neural network. This object may be dupli-
cated, cut, etc. and is discarded for training purposes.

• Cropped region: Portion of the image surrounding a
‘‘selected object’’. The size of this region is a config-
urable parameter of the algorithm. The region is the
piece of the image inputted into the neural network for
training in which there is at least one selected object.

• Key image: An image on which the object discard-
ing process is not applied. This is established every
‘‘N’’ images. This ‘‘N’’ parameter is configurable in the
algorithm.

The difference between an ‘‘object’’ and a ‘‘selected object’’
is that not all marked objects in the image to be recognized
are part of the input for training the neural network. Of all the
labelled objects, only a subset of these per image will be part
of the input of the neural network, the rest being discarded.

B. ALGORITHM
This algorithm, as opposed to the methods described in the
bibliography, consists of two phases:

1. Discard of objects and reduction of the training set.
2. Cropping of the training regions and new labelling of

objects.
To clarify, we will use a training dataset from high-definition
videos or consecutive images taken in short time intervals.
In either case, these images are from a great distance where
each image contains variousmarked targets for trainingwith a
very small size considering the total size of the image. Each of
these images is inputted into the algorithm in the same order
they were taken by the camera (see flow chart of all the steps
of the algorithm in Figure 1).
In the first phase, that of discarding, all targets are

checked against the objects in the previous image. The first
image of the dataset is considered a ‘‘key’’ image, so no target
is discarded, and this phase is omitted. If these targets show
relatively little movement compared to the previous image
they are discarded; they will not be selectable objects and will
be discarded. This parameter, ‘‘relatively small distance’’,
is configurable. The values which given the best results are
1% to 3% of the total image. In 2K or 4K resolution images
these are approximately 5 to 15 pixels. The principal factors
affecting the selection of this parameter are:

• Type of recorded scene. From very static scenes to
scenes with lots of movement. The more the objects
move the greater the discrimination distance.
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• Number of Frames Per Second (FPS) at input. When
the sequence of images is very close in time objects have
a smaller displacement between frames. The higher the
FPS the less the discrimination distance.

• Rotation of objects. If the target objects in the image
move in rotation, that is, around a central axis within the
BoundingBox rather than moving across the image, this
may cause a loss of the object for training. In this case,
pre-processing is simply not recommended.

FIGURE 1. Flow chart diagram of the functioning of the algorithm.

In the case studies, most of the recorded images are scenes
from highways with an average of 2 FPS, although there
are some images of agglomerations of people in pedestrian
streets or at sports events with a resolution of 1920 × 1080.
In these cases, the parameter was configured at 15 pixels of
displacement.

The second phase uses a set of objects that have not been
discarded and so are selectable objects. Each of the selectable
objects are delimited by a cropped region that is labelled in
the image for training purposes. This region is configurable
in terms of size and position, but all are the same size with
the same ratio or proportion as the original image. The size
of the region will depend on the grouping of the objects used
for training as well as the size of the image. Larger regions
encompass more space within the image, thus reducing the
total number of regions but also increasing the computation
cost of training. Furthermore, it is important that the region
is sufficiently large for the selected object to be contained
entirely within it. The cropped region must have the same
length-width proportions as the images used for training and
later for inference. This is a critical factor in the effectiveness
of convolutional neural networks. It is also important that

the region does not extend beyond the limits of the image,
maintaining the same proportions and size.

Each of the cropped regions is checked for other objects,
including those discarded in the first phase. For each of
the objects identified within the region one of the following
options is applied:
The Object Is Entirely Within the Cropped Region: This

object is labelled to be part of the training. If the object is
selectable, that is, not discarded in the first phase, it will now
be marked as ‘‘not selectable’’ as it is now part of a training
region.

FIGURE 2. Example of the pre-processor in operation. Using the original
image, two regions or sub-images are generated (green squares),
centered on the red target objects. The blue targets are ROI included for
training which do not generate their own sub-image.

The Object Is Partially Within the Cropped Region:
• If more than 50% of the object is within the region (this
value is configurable and set at 50% for the training pro-
cess), it is labelled but not marked as ‘‘not selectable’’
and will continue to open to creating its own training
region.

• If less than 50% of the object is within the region,
the object is not labelled and is deleted (for example,
by blurring the image throughGaussian elimination) and
it is not marked as ‘‘not selectable’’. In order not to
pollute the training process, these images are blurred
rather than eliminated (painted a background color) to
prevent the network from learning that a specific color
(the background color) has any specific utility and incor-
porating it into its training criteria.

• If the object has been deleted, the labelled and selectable
objects will be rechecked to verify that the deletion of a
specific object has not led to the elimination of any com-
plete objects if the areas of interest (BoundingBoxes)
overlap. If this is the case, restore the image in this area
to ensure the selectable object to be used in the training
is complete.

Figure 2 shows how from the original image 2 regions
or sub-images are generated (green boxes) with the training
targets marked in red. These targets generate regions or sub-
images, the blue targets are ROI included for training which
do not generate their own regions or sub-images. Figure 3
shows how from an original, full-sized image, 4 regions or
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sub-images are generated (green boxes) containing the train-
ing targets. In this example we see how one of the labelled
targets is partially blurred, marked in white, because it was
marked as discardable in one of the regions or sub-images
because it there is less than a 50% overlap.

FIGURE 3. Application with blurred targets (white box).

By creating a region centered on a selected object, the
network will always be trained with a central labelled object.
This may cause the network to learn to always expect to detect
objects in the center of the region or image. This will not be
a problem for this project, given that we have used YOLO
as a CNN, which initially divides the image into sections
(by default, into 7 × 7 sections) [16] and that each section
has the same probability of containing an object regardless of
its position [19], [20].

It is important to note that this method is not ideal for all
situations or for all datasets. For this article, we conducted
tests using three different datasets, all of them public and
verifiable, which allowed us to determine which factors are
most beneficial for this algorithm. From these case studies it
was determined that there is no optimum configuration for all
the configurable parameters of the application. The complete
set of images of the dataset determines the configuration and
effectiveness of the algorithm. The most key factors which
determine the effectiveness of the algorithm (as shown in
Figure 4 and Figure 5) are:

• Large images, such as FullHD, 2K, 4K or even larger,
and with small objects or ‘‘targets’’ to detect considering
the size of the image. Examples may be images taken
from a certain distance where the elements to detect are
distant.

• Images taken at short intervals. That is, video images.
It is not necessary that the time interval between images
is very short (images at 1 FPS is optimum) but they must
be sequential and taken from a relatively static camera.

• Few objects within the image or the objects are not
evenly distributed within the image. That is, objects
should be grouped in zones. These images will have
large areas with no objects to detect and these areas can
thus be eliminated from the training processes.

• There are static objects of interest in the image. It is
not necessary that static object predominate in the scene

but only that there be static objects of interest. This is
a factor that reduces the set of images for training, thus
reducing the size of the dataset and making the process
faster.

FIGURE 4. Frame 1 of a sequence of two video frames with static (blue)
and moving (red) objects of interest. There is a clear non-uniformity in
the density of objects in the image.

FIGURE 5. Frame 2 of a sequence of two video frames with static (blue)
and moving (red) objects of interest. There is a clear non-uniformity in
the density of objects in the image.

In summary, the types of datasets which best respond to
these factors are those consisting of video images from drones
or high-resolution static cameras. In this type of dataset, the
images are chronological and usually have high resolution.
Examples are drone videos observing beaches, roadways,
parks, large agglomerations of people or animals, etc. other
examples include security or surveillance cameras on high-
ways, streets, buildings, etc. where there are many objects
of interest distributed in specific areas of the image, such as
cars on a highway, or doorways and entrances for surveil-
lance cameras, etc. These images also generally contain static
objects of interest, such as people lying on the beach or parked
cars on a city street.

In this case, we used the YOLO neural network which
has a series of limitations which make it ideal for the pre-
processing algorithm. YOLO divides the image into regions
for analysis and each region is assigned a maximum number
of objects [19], [20]. Thus, YOLO is limited to a specific
number of objects per region. By dividing the image around
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groups of objects these are distributed within the new image,
permitting a greater number of detections given that there are
objects within each of the regions created by YOLO.

It is important to note that this limitation is not critical, but
it is a factor to be considered since the number of objects can
be [16], [17], [18] in the YOLO network. However, the higher
the number of objects the slower the process becomes with
greater memory consumption. This is a generic factor for all
the regions into which YOLO divides the original image, and
so the number of objects must be adjusted for the region with
the most objects rather than the average number.

III. EVALUATED DATASETS
To determine the effectiveness of the dataset pre-processing
algorithm, we experimented with three different datasets, all
publicly accessible: Drone [21], Roundabout [22] and Vis-
Drone [24]. The following section provides a description of
the principal characteristics of these datasets.

A. ‘‘DRONE’’ DATASET
This dataset consists of images of road traffic in Spain [21],
with 12 video sequences recorded by a UAV (Unmanned
Arial Vehicle) or drone and from static cameras. These
are principally images of critical traffic points such as
intersections and roundabouts. The videos are recorded at
1 frame per second in 4K resolution. The total dataset con-
sists of 17,570 images of marked objects (types) such as
‘‘cars’’ and ‘‘motorcycles’’. In total there are over 155,000
labelled objects in the dataset: 137,000 cars (88.6%) and
18,000motorcycles (11.4%). Three frames extracted from the
dataset are presented in Figure 6.

FIGURE 6. Frames extracted from the dataset, corresponding to a section
of interurban roadway and a split roundabout.

B. ‘‘ROUNDABOUT’’ DATASET
This dataset consists of areal images of rotundas in Spain
taken with a drone [22], along with their respective annota-
tions in XML (PASCAL VOC) files indicating the position
of the vehicles. In total, the dataset consists of 54 sequences
of drone video with a central view of roundabouts. There
are a total of over 65,000 images with a resolution of
1920 × 1080 with 245,000 labelled objects (types): 236,000
cars (96.4%), 4,900 motorcycles (2.0%), 2,000 trucks (0.9%)
and 1,700 buses (0.7%). Three frames extracted from the
dataset are presented in Figure 7.

C. ‘‘VISDRONE’’ DATASET
This dataset is a largescale reference point with carefully
annotated data for a computer vision of drone images.

FIGURE 7. Frames extracted from the dataset, corresponding to three
different roundabouts with light traffic, heavy traffic and very light traffic.

The VisDrone 2019 dataset was compiled by AISKYEYE
at the Machine Learning and Data Mining Laboratory at the
Tianjin University, China [24]. The complete dataset con-
sists of 288 video clips with a total of 261,908 frames and
10,209 static images captured by various drone-mounted
cameras with a wide range of different characteristics such as
location (14 different cities), setting (urban and rural), objects
(pedestrians, vehicles, bicycles, etc.) and density (dispersed
or very congested scenes).

FIGURE 8. Frames extracted from the dataset, corresponding to a parking
lot, an intersection, and a rotunda with different intensities of traffic.

It should be noted that the data set was compiled using
several different drones in various scenarios and under diverse
weather and lighting conditions. These frames were manually
annotated with specific objects of interest such as pedestrians,
cars, bicycles, and tricycles. Other important attributes are
also provided such as visibility of the scene, type of object and
ambient occlusion for a better use of the data. Three sample
frames from this dataset are provided in Figure 8.

TABLE 1. Types and their occurrence (number and percentage) in the
visdrone dataset.

For our study, we used only 79 sequences of video con-
sisting of 33,600 frames. There are a total of over 1.5 million
labelled items in the dataset, distributed as shown in Table 1.

IV. PRE-PROCESSING OF THE DATASETS
The three datasets were pre-processed using the algorithm
discussed in this study, using the following equipment: an
ninth generation Intel i7 processor with 64Gb RAM, SSD
hard drive and RTX 2060 graphics card with 8Gb RAM.
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For software, the study used Microsoft Visual C++ and the
OpenCV v4.5 library for their facility in generating compila-
tion files for both Windows and Linux.

A. PROCESSING THE ‘‘DRONE’’ DATASET
The dataset was processed as follows:

• Initial 640×360 image to maintain the same proportion
as the images in the original dataset.

• Objects of interest were discarded with their position
does not vary in 10px of the image.

• Deletion of counted objects when their area is less
than 50%.

• Key image every 7 frames.
After pre-processing the original dataset, the set is reduced to
some 15,000 images, with 43,000 labelled objects, of which
36,000 are cars (82.4%) and 7,600 motorcycles (17.6%).
A comparison of the original and pre-processed datasets is
provided in Figure 9 and Figure 10.

FIGURE 9. Evolution of the number of images and labels after
pre-processing of the ‘‘Drone’’ dataset. There is a slight decrease in
images and a significant decrease in labels.

FIGURE 10. Evolution of the number of labels assigned to each type after
pre-processing of the ‘‘Drone’’ dataset.

FIGURE 11. Training results for mAP_0.5 of the original and
pre-processed images of the ‘‘Drone’’ dataset.

Both datasets, the original and the pre-processed, were
used to train a ‘‘medium-sized’’ YoloV5 neural network with

the mAP metric adjusted to the value 0.5. The training results
in the different epochs are shown in Figure 11.
For this dataset, consisting of 17K images in 2K quality, the

training time using the YOLO algorithm and ‘‘Yolov5m’’ net-
work for 20 epochs, was 14 hours and 46 minutes, while the
training time using the same computer for the pre-processed
dataset was 1 hour and 35 minutes. If we reanalyze the
graph of the mAP_0.5 metric but considering training time
rather than epochs (Figure 12.), we see a time reduction of
some 89.3%.

FIGURE 12. mAP_0.5 graph of the time differences in training. The hours
of training are indicated on the horizontal axis.

There was a significant reduction in training time. The
additional time used for pre-processing, for this dataset
14 minutes, is largely insignificant compared to total training
time. For pre-processing, as opposed to the training process
for the network, what is most important is not only the
graphics card but also storage capacity since the algorithm
loads a great deal of images. In our case, we used an SSD
hard drive with a Read/Write speed of 600Mb/s.

B. PROCESSING THE ‘‘ROUNDABOUT’’ DATASET
The dataset was processed as follows:

• Initial 640×360 image to maintain the same proportion
as the images in the original dataset.

• Objects of interest were discarded with their position
does not vary in 10px of the image.

• Deletion of counted objects when their area is less
than 50%.

• Key image every 7 frames.
After pre-processing the original dataset, the total number of
images was increased to some 188,000, with 756,000 labelled
objects, of which 727,000 were cars (96.2%), 10,000 were
motorcycles (1.4%), 9,900 were trucks (1.3%) and 7,800
were buses (1.0%). Figure 13. and Figure 14. provide a
comparison of the original and pre-processed datasets. In this
case, the number of images increased by a rate of 1 to 3.04.

Both datasets, the original and the pre-processed, were
used to train a ‘‘medium-sized’’ YoloV5 neural network. The
training results in the different epochs are shown in Figure 15.

If we reanalyze the graph of the mAP_0.5 metric but
considering training time rather than epochs on the horizontal
axis (Figure 16.), we see a time reduction of some 43.0%.
To this time must be added an additional 30 minutes in pre-
processing time for this dataset.
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FIGURE 13. Evolution of the number of images and labels after
pre-processing of the ‘‘Roundabout’’ dataset. There are significantly more
images and labels.

FIGURE 14. Evolution of the number of labels assigned to each type after
pre-processing of the ‘‘Roundabout’’ dataset. Cars are the most affected
type with a significant increase in the number of labels.

FIGURE 15. Training results for mAP_0.5 of the original and
pre-processed images of the ‘‘Roundabout’’ dataset.

FIGURE 16. mAP_0.5 graph of the time differences in training. The hours
of training for the ‘‘Roundabout’’ dataset are indicated on the horizontal
axis.

C. PROCESSING THE ‘‘VISDRONE’’ DATASET
The dataset was processed as follows:

• Initial 640×360 image to maintain the same proportion
as the images in the original dataset.

• Objects of interest were discarded with their position
does not vary in 10px of the image.

• Deletion of counted objects when their area is less
than 50%.

• Key image every 7 frames.
After pre-processing the original dataset, the set of images
is increased to 51.5k images, with 600K labelled objects
(see Table 2). A comparison between the original and pre-
processed dataset is provided in Figure 17.

TABLE 2. Types and their occurrence (number and percentage) in the
Visdrone dataset after processing for the optimization of the training.

FIGURE 17. Evolution of the number of images and labels after
pre-processing of the ‘‘Visdrone’’ dataset. There is a slight increase in
images and a significant decrease in labels.

In this case, the number of images has increased by a
rate of 1 to 1.543 (154.3%) while the number of labelled
objects falls to 38.8%. Both datasets, the original and the
pre-processed, were used to train a ‘‘medium-sized’’ YoloV5
neural network. Training results in the different epochs are
shown in Figure 18.

If we reanalyze the graph of the mAP_0.5 metric but
considering training time rather than epochs on the horizontal
axis (Figure 19.), we see a time reduction of some 75.0%.
To this time must be added an additional 25 minutes in pre-
processing time for this dataset.

V. RESULTS
The results were validated using two networks with dif-
ferent training procedures. Firstly, a network trained using
original images without being reduced or cropped and, sec-
ondly, a network trained using pre-processed images using
the algorithm discussed in this study.

The validation was conducted not to determine the quality
of the model, since it was validated against the same dataset
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FIGURE 18. Training results for mAP_0.5 of the original and
pre-processed images of the ‘‘Visdrone’’ dataset.

FIGURE 19. mAP_0.5 graph of the time differences in training. The hours
of training for the ‘‘Visdrone’’ dataset are indicated on the horizontal axis.

with which it was trained. We note that the purpose of this
article is not to determine the success of the training itself
but rather whether the algorithm succeeds in reducing train-
ing times without any loss of effectiveness. The results in
themselves are not significant but the differences between
results if the network is trained using a pre-processed dataset
or the original. Thus, both training results were validated to
compare them. The terms used in this comparison are:

• Network A: Network resulting from the training based
on the original dataset.

• Network B: Network resulting from the training
based on the pre-processed dataset generated using the
algorithm discussed in this study.

A. ‘‘DRONE’’ CASE
Both networks used a validation process against the orig-
inal images, generating the confusion matrices shown in
Figure 20.

These matrices show, in the validation of Network B, that
is, the network generated from pro-processed images, a slight
increase in the number of ‘‘False Positives’’ especially in
the type ‘‘car’’. But a closer analysis shows that this is not
correct. In fact, the network has a higher success rate than
the labelled original. In the original images, small and distant
objects of interest are not labelled to avoid adding noise to
the training process. In the training with the original images
these objects are categorized correctly as true negatives, while
with the cropped images these objects simply are not included
in the training process (neither as true positives nor true
negatives).

FIGURE 20. Confusion matrices of the original (above) and pre-processed
images (below).

But in validating the original images, these ‘‘true nega-
tives’’ are detected as ‘‘true positives’’ by the network trained
with the pre-processed dataset. That is, Network B has a
greater sensibility to small, non-labelled objects, but posi-
tives, in the original images.

Figure 21 shows an original frame from the video without
any labelled objects as these are very far from the camera.
This image was analyzed by both neural networks (Net-
work A and Network B). In the case of Network A, the
objects were correctly learned as true negatives and were
not marked (Figure 22.). But in the case of Network B,
these distant objects were not inputted into the network, that
is, they w ere never marked as ‘‘selectable objects’’ and
so were never marked as objects to be discarded as ‘‘true
negative’’. Thus, in processing this image, Network B will
detect these objects as a target if the resolution of the image
permits.
Advantages Obtained During Training: In line with the

above, we found that both datasets produce a very similar
trained network, even for this dataset. It may be said that the
network generated using the pre-processed dataset is slightly
better, detecting smaller objects of interest and with fewer
false negatives.

Thus far, we have demonstrated that the training results
are similar, the two networks are equivalent. But this is not
the principal advantage of the algorithm which is the training
process itself where better results are obtained.
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FIGURE 21. Complete original image with not labelled objects as these
are too far away.

FIGURE 22. Upper right corner amplification of Figure 21, where appear
objects undetected by network A (trained with the original dataset).

FIGURE 23. Upper right corner amplification of Figure 21, where appears
objects detected by network B (trained with a pre-processed dataset).

B. ‘‘ROUNDABOUT’’ CASE
Both networks were used in a validation process against
the original images, generating the Figure 24 confusion
matrices.
Advantages Obtained During Training: For this dataset,

consisting of 65K images in 2K quality, the training time
using the YOLO algorithm and ‘‘Yolov5m’’ network for
30 epochs, was 3 days, 4 hours, and 3 minutes, while the
training time using the same computer for the pre-processed
dataset was 1 day, 8 hours and 46 minutes.

This is a perfect example of network training where the
results are the virtually the same, with very little differences
between them. The greatest difference, although minimum,
is in the case of the label ‘‘car’’ where there was a slight
confusion with ‘‘truck’’.

FIGURE 24. Confusion matrices of the original images (above) and the
pre-processed images (below).

C. ‘‘VISDRONE’’ CASE
Both networks were validated using the original images,
generating the confusion matrices shown in Figure 25.
Advantages Obtained During Training: For this dataset,

consisting of 33.6K images in FullHD quality, the training
time using the YOLO algorithm and ‘‘Yolov5m’’ network for
30 epochs, was 14 hours and 26 minutes, while the training
time using the same computer for the pre-processed dataset
was 3 hours and 36 minutes.

Here it is important to note that this training exercise
presented the largest differences, although these are not sig-
nificant if we consider that the network was not trained
effectively. The results of the training process in both cases,
for the original dataset and the pre-processed dataset, were
approximately 0.3 in the mAP_0.5 metric, a very poor
result.

We will explain the reasons for this poor performance
although it is important to note that these results also vali-
date the algorithm which is designed exclusively to reduce
training times rather than improve the training process
itself.

The reason for this poor training result is because the
network was trained using values downloaded repository
without any prior cleaning of the dataset. For this dataset,
the labelled original (not using YOLO) includes special
types and attributes. Thus, we have a ‘type 0’ to indicate
‘‘regions to ignore’’, see Figure 30, or attributes that indicate
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FIGURE 25. Confusion matrices of the original (above) and pre-processed
images (below).

if the labelled object is hidden, as shown in Figure 27 and
Figure 28, truncated or even confidence (score) of the labelled
objects.

To improve the training results, it is essential that the
dataset be initially cleaned and filtered of hidden objects,
highly distorted or cut objects, and dubious labels, relabeling
objects which are unlabeled but as perfectly recognizable
in the images (see Figure 27, Figure 28, Figure 29 and
Figure 30). This was not done here, firstly, because the pur-
pose of this article is not to evaluate the quality of the training
process of neural networks using known datasets but rather
to evaluate the time reductions in training provided by the
algorithm; secondly, a clean dataset with fewer labels can
optimize the training process, thus, this is further evidence of
the effectiveness of our pre-processing system. Regardless,
the algorithm reduced the training time to one quarter of the
original training time.

This improvement in training times is particularly impor-
tant given that the dataset in this case is not ideal for
pre-processing. Figure 26 shows how the images do not meet
some of the conditions for optimum effectiveness of the
algorithm such as the lack of concentration of objects in a spe-
cific zone of the image. As can be seen, the labelled objects
are distributed throughout the frame. In contrast, it does meet

FIGURE 26. Sample frames from an uncleaned dataset.

FIGURE 27. Sample frame from the labelled dataset.

FIGURE 28. Amplification of Fig. 27. showing totally hidden but labelled
targets (cars).

FIGURE 29. Amplification of Figure 27 showing targets (cars and
motorcycles) that are perfectly identifiable and not labelled in the
dataset.

other parameters that allow the algorithm to be effective, such
as the limited movement of objects between frames and many
objects remaining immobile over many frames.

By contrast, these images demonstrate the poor results of
the training which, while not a problem for pre-processing,
should be taken into consideration. Certain objects are
labelled but totally hidden (cars under trees, for example),
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FIGURE 30. Sample frame from the labelled dataset. Here we see the
upper part of the image is marked as not labelled (red box) while many
objects can be perfectly recognized.

mislabeled or unlabeled (motorcycles, for example). Oddly,
these same motorcycles are labelled in other frames of the
video. There are also zones of the image which are perfectly
recognizable but marked as to be ignored.

VI. DISCUSION
How is it possible that partitioning an image into smaller
images produces results which are inferior compared to the
original? In other words, how is it possible that the dataset,
in addition to being taken from smaller images, generates a
set of smaller images?

The explanation is found in the first criterium for eliminat-
ing cut images. That is, in the discarding of cut images which
only include objects of interest that do not move, for example
parked cars. In many frames the only cars appearing are
parked, with no other vehicles circulating. These cars are only
labelled once in the ‘‘key’’ frame which the configuration
established every 7 images (7 to 1 reduction).

FIGURE 31. Example of parked cars (in blue) and circulating cars (in red).

The result is that the pre-processed image is not only
smaller but also more equal. A parked car will appear in
all the frames of the video, giving it greater weight in the
training process while a car moving in front of the camera
only appears in the sequence of images for a few seconds.
Thus, a false positive of an object appearing in all the images
will be more highly penalized than a false positive of an
object which is only labelled in 5 or 10 frames. This means
the network can ‘overlearn’ some objects to the detriment of
others.

It is important to note that the static objects of interest
(parked cars, for example) are not only labelled once in
the pre-processed dataset, as shown in Figure 31, discarding
all other appearances because the object doesn’t move, but
are also labelled in every ‘‘key’’ image. By adjusting the
configuration of this value in the algorithm the repercussion
of static objects can be compensated, being very abundant
in the dataset versus objects which appear only in a limited
number of frames.

These two key points that the algorithm addresses primar-
ily achieve:

• Reducing the dataset size in terms of storage space by
20%. As mentioned earlier, the original and processed
image sets are not vastly different. In our tests, in the
worst case, it doesn’t even double the number of images.
However, these images are much smaller, going from
around 1.5MB (in jpg format) per original image to
about 100KB per processed image. This translates to a
significant reduction. It’s worth noting that the labeling
file size is negligible in these calculations, as it accounts
for less than 0.01% of the total dataset size.

• With smaller images, a larger number of images can be
loaded in parallel into the memory of the graphics cards.
In our case, we were able to go from loading 4 images
in parallel to loading 42 images. This makes the training
process more efficient.

The consequence of these two points results in training times
around 20% of the original time, with insignificant variation
in the quality of the trained network. Sometimes, it even
performs better than the original by avoiding overfitting in
datasets with imbalanced and low-quality targets.

VII. CONCLUSION
An analysis of the results shows that the image pre-processing
algorithm is more efficient in terms of time and computa-
tion, able to be executed using standard equipment without
any outstanding characteristics. Additionally, very significant
improvements were seen in training times with reductions
from at least 50% to, depending on the dataset, reduction
of 80%. If, for example, we focus on a success score of 0.95 in
the mAP_0.5 metric, very significant time reductions were
achieved, as shown in Figure 32:

• Drone Dataset. Training without improvement: 3 hours
and 36 minutes, with pre-processing: 30 minutes.
A reduction in training time of 87%.

• Roundabout Dataset. Training without improvement:
21 hours and 11 minutes, with pre-processing: 6 hours
and 34 minutes. A reduction in training time of 72%.

• Visdrone Dataset. A success score of 0.95 for the metric
was never achieved for this dataset. The highest success
score was in epoch 9, after 4 hours and 5 minutes for the
original dataset and 1 hour for the pre-processed dataset.
A reduction in training time of 76%.

As shown in Figure 33, similar results can be obtained if
the aim is simply a specific number of epochs.
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FIGURE 32. Comparison of time in achieving a score of 0.95 in the
mAP_0.5 metric.

FIGURE 33. Comparison of time in the training of 30 epochs.

Additionally, it was found that pre-processing does not
alter the quality of the training. If the dataset is clean or well
formatted, the training is successful in both cases, as seen in
the Drone and Roundabout datasets while, if the dataset is
not well labelled, the network trains with the same failures as
with the original.

To conclude, it is important to note the added benefit that
a network trained with a pre-processed dataset tends to be
more precise in distant, unlabeled objects, as can be seen in
Fig. 5, Figure 21 and Figure 22. In the complete images these
objects are trained as true negativeswhile in the pre-processed
network these objects are not part of the training. Thus, these
objects are detected in the image during the training process,
but in the validation, they are detected as false positives since
these are not marked in the original dataset.
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