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Abstract
This article deals with the analysis of CO

2
 emissions in Latin America by using a long memory process based on fractional 

integration. Using data of CO
2
 emission and CO

2
 emissions per capita, for 32 Latin American and Caribbean countries, the 

results show significant differences according to the variable examined, the model used, and the country under examination. 
In particular, for the CO

2
 emissions, mean reversion is found in Belize and also under some circumstances in Antigua and 

Barbuda, Colombia, Dominica, Dominican Republic, Ecuador, Grenada, Honduras, Nicaragua, Panama, Peru, and Uruguay. 
Thus, shocks in these series have a transitory effect. With respect to the time trends, only for some Caribbean countries, 
namely, Antigua and Barbuda, Aruba, Bahamas, Cuba, and Jamaica, the trend is insignificant; on the other hand, large 
countries like Brazil, Mexico, and Argentina display the highest time trend coefficients; for the CO

2
 emissions per capita, 

there are eleven countries where mean reversion is detected, and there are ten that share a lack of significance for the trend. 
The most significant trends now take place in Trinidad and Tobago, British Virgin Islands, Barbados, and Guyana. Policy 
implications of the results obtained are reported at the end of the paper.
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Introduction

The Intergovernmental Panel on Climate Change —IPCC 
(Masson-Delmotte et al. 2019)— estimates that human activi-
ties have caused global warming of approximately 1.0 °C with 
respect to pre-industrial levels, with a probable range of 0.8 
to 1.2 °C. Based on these measurements, global warming is 
likely to reach 1.5 °C between 2030 and 2052 if it continues to 

increase at the current rate. Moreover, carbon dioxide ( CO
2
 ) 

emissions have multiplied with the ensuing consequences. 
It is also true that this is not the only gas that contributes to 
global warming; there are other natural gases (methane, nitrous 
oxide) or artificial gases (fluorinated gases) that comprise the 
greenhouse gases (GHG). The sum and combination of gases 
cause climate change that is accompanied by climatic crises, 
and some regions in particular have been and will continue to 
be the most affected and vulnerable to the expected changes.

Carbon dioxide gases ( CO
2
 ) are generated from the com-

bination of a chemical compound of two elements, carbon 
and oxygen, considering a ratio of one to two; hence, its 
molecular formula is CO

2
 . This type of gas is present in the 

atmosphere in small amounts. CO
2
 plays a vital role in the 

Earth’s environment as it is considered one of the necessary 
ingredients for the life cycle of plants and animals.

Carbon is the fourth most abundant element in the uni-
verse, and on Earth, it is basic for life; the human being is 
18% carbon. It is also essential when it mixes with oxygen 
and turns into carbon dioxide ( CO

2
 ): humans exhale it when 

they breathe, and plants need it for photosynthesis. The CO
2
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cycle has worked for thousands of years within a certain 
natural balance (Aunion and Palanelles 2019).

According to Metz et al. (2005), the main activities that 
cause the emission of CO

2
 include mainly anthropogenic 

activities such as the combustion of fossil fuels, coal, oil, 
and gas and the production of materials such as cement. 
There are also natural forms of CO

2
 emissions such as vol-

canic activity which is the main pathway to the surface for 
the transfer of carbon stored deep in the Earth. However, 
the problem arises when the circle of harmony is abruptly 
and continuously interrupted. The importance of analyzing 
the behavior and evolution of CO

2
 lies in the fact that its 

disproportionate emission represents around two-thirds of 
the greenhouse gases generated mainly as a result of the 
burning of fossil fuels (Metz et al. 2005).

Within the so-called planetary carbon cycle during the 
last 800,000 years, CO

2
 emissions have fluctuated between 

170 and 330 parts per million, which have been considered 
acceptable levels for the sustainability of the planet. How-
ever, in the last 170 years, values have reached at least 415 
parts per million (Sardá, 2021). Masson-Delmotte et al. 
(2019) detail that CO

2
 emissions in particular have increased 

by 40% since the pre-industrial era. It should be noted that 
gaseous carbon is absorbed through two pathways, the ocean 
and vegetation, and the emissions that cannot be absorbed 
remain in the atmosphere. As mentioned above, the largest 
CO

2
 emissions are mainly due to the burning of fossil fuels 

and deforestation.
The exponential growth rate in emissions has produced 

measurable changes in terms of changes in atmospheric, 
land, and sea temperatures. In particular, the oceans have 
absorbed around 30% of the anthropogenic carbon dioxide 
emitted, which has led to their acidification. In turn, the 
warming produces an increase in the level of the ocean by 
thermal expansion and due to the melting of the poles.

With regard to the exponential increase in the emis-
sions of carbon dioxide, there are countries (Gil-Alana 
et al. 2016a, b) such as the BRICS (Brazil, Russia, India, 
China, and South Africa) whose trends are producing long-
term effects on climate change. Likewise, the case of the 
G7 countries (US, UK, Japan, France, Italy, Germany, and 
Canada), whose CO

2
 emissions are directly related to their 

level of development, require an analysis focusing on the 
long-term dynamics and trends. The emissions of CO

2
 in the 

BRICS and G7 countries represent 70% of the total emis-
sions of the world and three quarters of the accumulated 
carbon emissions.

Latin America and the Caribbean is one of the regions 
in the world most affected by Climate Change and external 
meteorological phenomena that are causing serious dam-
age to health, life, food, water, energy, and socioeconomic 
development. When analyzing the period between 1998 
and 2020, climate-related events and their impacts have 

claimed 312,000 lives and affected more than 277 million 
people in the region (World Meteorological Organization 
WMO 2021).

In particular, in the Latin American region, the year 
2020 was one of the three warmest years on record in 
Mexico, Central America, and the Caribbean and the sec-
ond warmest year in South America. Temperatures were 
1 °C, 0.8 °C, and 0.6 °C above the 1981–2010 average, 
respectively (WMO 2021). The glaciers in the Chilean 
and Argentine Andes region have receded during the last 
decades. Ice mass loss has accelerated since 2010, in line 
with rising seasonal and annual temperatures, and there 
has been a significant reduction in annual precipitation 
in the region.

Furthermore, the intense drought in the southern Amazon 
and the Pantanal has been one of the most serious in the last 
60 years, and 2020 was the year with the highest fire activity 
in the south of the Amazon. Similarly, throughout the Cen-
tral American region, drought has been widespread, directly 
impacting crop yields and food production, aggravating food 
insecurity in many areas (WMO 2021).

At the end of 2020, hurricanes Eta and Iota reached cate-
gory 4 intensity, particularly affecting Nicaragua, Honduras, 
and Guatemala. They made landfall in the same region in 
rapid succession, following identical trajectories that mainly 
affected rural areas with high rates of multidimensional pov-
erty within the well-known “Central American Dry Corri-
dor” (Bello and Peralta 2021).

In summary, the year 2020 witnessed a combination of 
extreme events in climatic terms. Heavy rains caused land-
slides, floods, hurricanes, droughts, warming oceans, and 
flash floods in rural and urban areas of Central America, 
the Caribbean, and South America. The effects of climate 
change are reflected in uncontrolled urbanization, the 
destruction of ecosystems that, together with factors such 
as poverty and malnutrition, generate a multidimensional 
problem (WMO 2021).

In view of the particular Latin American context in terms 
of vulnerability and impact, the importance of analyzing 
climate change by monitoring CO

2
 emissions over time and 

exploring the different effects generates an important topic 
to discuss in the development of the countries, consider-
ing that a significant percentage of the population in Latin 
America is living in highly vulnerable conditions.

Therefore, the principal objective of this research is 
to study the time patterns of CO

2
 emissions within Latin 

America and the Caribbean in order to detect the existence 
or not of persistence and trends, taking as a reference time 
series the period extending from 1960 to 2019, and consid-
ering that the data may present a long memory behavior, 
applying for this purpose fractional integration techniques. 
This methodology would appear to be very appropriate to 
determine the nature of the shocks, being transitory if the 
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order of integration is smaller than 1 or permanent if this is 
equal to or higher than 1.

In recent years, Latin America has faced significant chal-
lenges in terms of  CO2 emissions and their impact on the 
environment. The region’s growing industrialization, urbani-
zation, and agricultural expansion have led to increased emis-
sions, contributing to global concerns about climate change. 
Latin American countries vary in their contributions to  CO2 
emissions, with some being major emitters due to factors like 
energy production, deforestation, and transportation.

The impact of  CO2 emissions in Latin America is mul-
tifaceted. One critical aspect is the role of deforestation, 
particularly in the Amazon rainforest, which serves as a 
significant carbon sink. The loss of forests not only releases 
stored carbon dioxide but also diminishes the forest’s ability 
to absorb  CO2 from the atmosphere. This exacerbates the 
global carbon imbalance and accelerates climate change. 
Furthermore, the region’s vulnerability to climate change 
effects like extreme weather events, rising sea levels, and 
disrupted ecosystems poses a substantial risk to local 
communities and economies. Countries heavily reliant 
on agriculture, tourism, and natural resources can experi-
ence economic setbacks due to changing climate patterns. 
Vulnerable populations may face displacement and loss of 
livelihoods.

The Latin American region is remarkably heterogeneous 
in terms of climate, ecosystems, human population distribu-
tion, and cultural traditions. Land-use changes have become 
a major force driving ecosystem changes. Complex climatic 
patterns, which result in part from interactions of atmos-
pheric flow with topography, intermingled with land-use and 
land-cover change, make it difficult to identify common pat-
terns of vulnerability to climate change in the region. Water 
resources, ecosystems, agriculture and plantation forestry, 
sea-level rise, and human health may be considered the most 
important among the various sectors that may be impacted 
by climate change (Mccarthy et al. 2001).

The region is facing an asymmetrical dual challenge, 
since its contribution to total greenhouse gas emissions is 
limited, yet it is highly vulnerable to the effects of climate 
change. For example, agricultural activities are particularly 
sensitive to weather conditions and, thus, to climate change 
(Alatorre et al. 2014).

For its part, the IPCC (2022) report “Climate Change 
2022: Impacts, Adaptation and Vulnerability” confirms that 
Central and South America are “highly exposed, vulner-
able and strongly impacted by climate change,” a situation 
further aggravated by inequality, poverty, and increasing 
deforestation.

Taking as reference the data of Global Carbon Budget 
(2023) in Fig. 1, we verify that less than 10% of CO

2
 emis-

sions are generated in Latin America and the Caribbean. 
However, as mentioned above, it is one of the regions most 

impacted by climate change. Nevertheless, the cases of Bra-
zil and Mexico are relevant as they are the most emitting 
countries in the region, ranking 12th and 13th worldwide 
respectively.

In Latin America and the Caribbean, accelerating climate 
change is increasing the frequency and intensity of extreme 
weather events and thus the economic impacts for the region. 
For example, the two category 4 hurricanes, Eta and Iota, 
affected more than 8 million people in Central America and 
caused damages estimated in the tens of billions of dollars. In 
Honduras, the average annual loss due to weather events is esti-
mated at 2.3% of gross domestic product (World Bank 2021).

In ranking the impacts of extreme weather events between 
2000 and 2019, five Caribbean countries ranked in the top 
20 globally in terms of fatalities per capita, while in terms 
of economic losses as a share of GDP, eight of the top 20 
countries are in the Caribbean (Eckstein et al. 2021).

Climate events reduce the income of the poorest 40% of 
the population by more than double the average population 
of Latin America and the Caribbean and could push between 
2.4 and 5.8 million people in the region into extreme poverty 
by 2030 (Arga et al. 2020). Climate-related extreme events 
are also causing disruptions in energy systems. Disruptions 
in infrastructure services cost more than 1% of GDP on aver-
age across the region and up to 2% annually in several Cen-
tral American countries (Hallegatte et al. 2019).

On average, in Latin America and the Caribbean, 56% 
of losses following weather events are due to disruptions in 
transportation services. Furthermore, the evolving effects 
of climate change are reducing productivity and adaptive 
capacity in many sectors. Climate change will have long-
term negative impacts on yields of most crops in much of 
Latin America and the Caribbean, affecting food security 
and causing economic damage. For example, in Argentina, 
droughts could cause soybean yield losses of up to 50% by 
2050 (Rozenberg et al. 2019).

Therefore, the application of ARFIMA models in the 
Latin American region creates interesting and innova-
tive conclusions, since they have been applied in other 
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Fig. 1  Percentage of CO
2
 emissions by region. Source: Global Car-

bon Atlas (2023)
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geographical areas of the world with important results. For 
the Latin American region, it represents an important tool 
for discussion and analysis as it is one of the regions with 
more climate impacts particularly affecting the quality of 
life of developing countries. The methodology can create 
interesting contributions for regional public policy. In par-
ticular, the evidence of mean reversion obtained in six out of 
the 32 countries examined along with the 14 cases where the 
estimated order of integration is found to be smaller than 1 is 
something that may be related with the specific characteristic 
of the region of world under examination.

Literature review

The importance of the analysis of greenhouse gas emissions 
and particularly CO

2
 emissions around vulnerability to cli-

mate change in Latin American countries has led to the need 
to model the historical behavior of the variable, considering the 
economic, environmental, and social impact that it generates.

The study of environmental variables and their relation-
ship with econometrics is a field that has been increasingly 
applied. Chevallier (2009), Wang et al. (2013), Hammou-
deh et al. (2014), and others have examined price drivers of 
CO

2
 emission allowance prices. Similarly, there are several 

papers that have examined the efficiency of carbon emission 
markets (Daskalakis 2008; Joyeux and Milunovich 2010; 
Charles et al. 2013, etc.).

By looking at the historical evaluation of the CO
2
 emis-

sions, it is possible to determine the need of actions to 
recover the original levels after exogenous shocks in the 
data. Thus, if the series is stationary, the different shocks 
to its trend can be considered transitory. Thus, in the case 
of carbon dioxide, a policy intervention would not have to 
be considered urgent since the effects of the shocks on the 
variable may represent short-lived effects. In contrast, if the 
analysis of CO

2
 emissions confirms the non-stationary of the 

series, an effective articulation of a political nature is neces-
sary, since by its non-stationary behavior, shocks and their 
effects will tend to present permanent effects.11

The majority of the econometric methods investigat-
ing this variable and the effects of its shocks are related to 
stochastic convergence. Thus, for example, Strazicich and 
List (2003) examined CO

2
 emissions for 21 OECD coun-

tries within the years 1960–1997 by looking at the exist-
ence of unit roots in the log of the ratio of per capita emis-
sions to average per capita emissions. The study posits that 

if per capita emissions converge stochastically over time, 
the effects and shocks of emissions would and should be 
temporary, considering that the data may be stationary. On 
the other hand, in the presence of a unit root, these clashes 
would be permanent and would suggest a lack of conver-
gence. Strazicich and List (2003) claimed to find significant 
evidence for stochastic convergence of CO

2
 emissions per 

capita. In the same line, Im et al. (2003) applied conven-
tional cross-sectional regressions and panel unit root tests 
to investigate conditional convergence in CO

2
 emissions, 

with their results supporting this hypothesis. Westerlund 
and Basher (2007) provided evidence of convergence in 
CO

2
 emissions in 16 industrialized countries and 12 devel-

oping countries using three panel unit root tests that control 
for cross-correlation through a factor model. On the other 
hand, Romero-Ávila (2008) examined the existence of sto-
chastic and deterministic convergence of carbon dioxide 
( CO

2
 ) emissions in 23 countries over the period 1960–2002. 

Their results support both stochastic and deterministic con-
vergence in CO

2
 emissions, thus confirming the findings in 

Strazicich and List (2003). In both cases, this evidence sup-
portive of convergence becomes apparent after controlling 
for multiple breaks, which account for shocks and policy 
interventions. Other authors such as Aldy (2006) applied 
seismic techniques in 23 OECD countries for the time period 
1960–1999. They obtained ambiguous results and even when 
compared with a broader sample of countries, no evidence of 
convergence over time was found. Using a similar method-
ology, Panopoulou and Pantelidis (2009) concluded that in 
recent years, there may be two separate convergence clubs 
that converge at different equilibria. Barassi et al. (2007) 
employed a wide variety of tests, testing the null of a unit 
root and the null of stationarity for both individual series and 
for the OECD panel as a whole and allowing for cross-sec-
tional dependencies within the panel. These authors found 
little evidence to suggest that per capita CO

2
 emissions 

within the OECD were converging. Christidou et al. (2013) 
investigated the stationarity of per capita CO

2
 emissions 

within 36 countries for the time period 1870–2006, where 
a robust avoidance of stationary in the series is mentioned. 
Finally, Heil and Selden (2010) used tests for unit roots in 
the analysis of 135 countries over the period 1950–1992, 
finding stationarity in only 20 of the 135 analyzed countries. 
In the results of Jiaxiong and Yunhui (2022) and Ericsson 
et al. (2022), the interpretation of structural breaks suggests 
that being able to identify a single break or multiple breaks 
would indicate that the climate may not only change gradu-
ally but may present changes abruptly.

In terms of long-term analysis, the evolution of CO
2
 

emissions has presented moments of exponential growth 
related to population growth, industrialization, and his-
torical moments in which certain countries, such as 
China and India, have undergone a process of productive 

1 1We are clearly referring to shocks that increase the number of 
emissions. The contrary happens if the shock is negative: actions 
should then be taken if the series is stationary since the shock will 
otherwise disappear by itself in the long run.
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transformation. These structural changes in the trend lines in 
CO

2
 emissions have been studied, for example, in the works 

of Altinay and Karagol (2004), Lee and Chang (2005, 2009), 
Lanne and Liski (2004); Mckitrick and Strazicich (2005), 
etc. In this context, allowing for structural breaks within 
the unit root hypothesis, Mckitrick and Strazicich (2005) 
examined 121 countries in the period 1950–2000 finding 
significant evidence against the unit root in most of the coun-
tries, together with significant evidence of structural breaks. 
Ordás Criado and Grether (2011) investigated the presence 
of stationarity in CO

2
 per capita in 166 countries during the 

period 1960–2012, concluding that convergence in the rela-
tive measure can be found in the presence of diverging and 
rising emissions in the unscaled data. Focusing on per capita 
emissions in levels, they highlight that strong divergence and 
increasing emissions are prevalent worldwide in the early 
period 1960–1980, but stabilization (in gaps and emissions) 
seems to take place after the oil price shocks of the 1970s.

In view of the above literature, it is clear that there is no 
consensus about the nature of CO

2
 emissions in terms of 

its stationary or non-stationary nature, and that the results 
vary substantially depending on the methodology used, the 
countries, and the time period examined. Nevertheless, most 
of these studies focus on unit root/stationarity methods that 
simply consider an integer degree of differentiation, i.e., 1 in 
case of non-stationary series (unit roots) or 0 in the presence 
of stationarity. The present paper goes one step further in the 
sense that we examine the CO

2
 emissions (and CO

2
 emissions 

per capita) from a fractional integration viewpoint, i.e., we 
allow for fractional degrees of differentiation. This literature 
belongs to the category of long memory models, so-named 
because observations which are far away in the past still have 
an influence on the present value, and a full description of 
these models is given in the following section. Using long 
memory models, we find the papers by Barassi et al. (2010) 
and Cuestas and Gil-Alana (2016), Claudio-Quiroga and Gil-
Alana (2022), and Luis et al. (2023). In the latter, they exam-
ine the degree of persistence in the carbon emission allow-
ance spot prices, using daily data for the period 2007–2014, 
and accounting for structural breaks and non-linearities in the 
data. The authors conclude that there is no evidence of non-
linearities for the period examined. In a similar way, Luis et al. 
(2017) used fractional integration in a model that allows non-
linear trends and structural breaks for CO

2
 emissions in the 

BRICS and G7 countries with a longer time series, including 
the last 150 years. In the paper, they showed that the results 
significantly change in both the degree of integration and the 
non-linearities depending on the countries under examina-
tion. Musolesi and Mazzanti (2014) studied non-linearities, 
heterogeneities, and unobserved effects in the carbon dioxide 
emissions-economic development relationship, while Gil-
Alana et al. (2016a, b) examined the long memory property 
and the persistence of carbon emission allowance prices.

In view of the above literature, it is evident that there are 
no empirical papers studying the level of persistence in the 
CO

2
 emissions in Latin America with fractional integration 

techniques. In the following section, we precisely describe 
this methodology.

Methodology

We start by providing some definitions of long memory pro-
cesses. Using a time domain approach, a covariance station-
ary process, x(t), t = 0, ± 1, …, is said to be long memory if 
the infinite sum of the autocovariances is finite, i.e., defin-
ing the autocovariance function as γ(u) = E[(x(t) − Ex(t)) 
(x(t + u) – Ex(t))], x(t) displays the property of long memory 
if:

Alternatively, a frequency domain characterization of 
long memory is the following. A process x(t) is long mem-
ory if its spectral density function, defined as the Fourier 
transform of the autocovariances, i.e.,

displays a pole or singularity at any frequency on the spec-
trum, i.e.,

In many cases, the singularity or pole in the spectrum 
occurs at the zero frequency, that is,

And in such a case, a very popular model to describe this 
behavior is the fractionally integrated model (or I(d) model) 
expressed as

where B is the backshift operator (Bx(t) = x(t − 1)); d is a real 
value, and u(t) is an integrated of order 0 (and denoted by 
I(0)) process, indicating by this a covariance stationary pro-
cess, where the infinite sum of the autocovariances is finite, 
or in the frequency domain, if the spectral density function 
is positive and bounded in the spectrum (i.e., 0 < f(λ) < ∞, 
for all λ).

We are interested in the estimation of the time trend 
coefficients for the emissions in the context of long mem-
ory processes and, for this purpose, in the empirical appli-
cation carried out in “Empirical results”, we consider the 
following model:

(1)
∑u=∞

u=−∞
∣ �(u) ∣= ∞

(2)f (�) =
1

2�

∑∞

u=−∞
�(u)e

i�u

(3)f (�) → ∞, � ∈ [0,�)

(4)f (�) → ∞, as� → 0
+

(5)(1 − B)dx(t) = u(t), t = 1, 2, ...,
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where y(t) indicates the CO
2
 emissions (or emissions per capita) 

along time; α and β are unknown parameters referring respec-
tively to an intercept and a linear time trend, and x(t) is assumed 
to be integrated of order d, or I(d), so that u(t) is I(0) or a short-
memory process. Then, if d > 0, x(t) displays long memory, and 
the higher the value of d is, the higher the level of association 
between observations, noting that the polynomial in B, (1 – B)d 
can be represented using a binomial expansion as

which is valid for any real value d, and thus Eq. (5) can be 
expressed as:

Thus, if d is a non-integer value, x(t) will be a function of 
all its past history, and the differencing parameter d can be 
taken as a measure of the degree of persistence in the data. 
On the other hand, depending on the value of d, different 
processes can be considered such as:

1. Anti-persistence, if d < 0
2. Short memory processes, if d = 0
3. Long memory covariance stationary, if 0 < d < 0.5
4. Long memory and mean reversion, if 0.5 ≤ d < 1
5. Unit roots or I(1) processes, if d = 1
6. Explosive processes, if d ≥ 1

We estimate d using a methodology presented in Robinson 
(1994) and that is based on a frequency domain representation 
of the Whittle function. It is a testing procedure that does not 
impose stationarity prior to the estimation; it has a standard 
limit distribution and is the most efficient method in the Pit-
man sense against local departures from the null.

Data

Taking as reference the data obtained from the Global Car-
bon Budget (2021) for the period 1960–2019 with an annual 
frequency, Tables 1 and 2 analyze the descriptive results of 
each country of Latin America and the Caribbean, initially 
considering country emissions in terms of megatons of CO

2
 

( MtCO
2
) (in Table 1) and then emissions per capita in terms 

of tons of CO
2
 (Table 2).

We see in Table 1 that the country that generates the most 
emissions in the region is Mexico with an average value of 
302.07 MtCO

2
 , followed by Brazil with 243.06 MtCO

2
 , 

(6)y(t) = � + �t + x(t), (1 − B)dx(t) = u(t), t = 1, 2, ...

(7)

(1 − B)d =
∑∞

j=0

(

d

j

)

(−1)jBj = 1 − dB +
d(d − 1)

2
B2 − ...,

(8)x(t) = dx(t − 1) −
d(d − 1)

2
x(t − 2) + ... + u(t)

Argentina with 122.76, Venezuela with 115.10, and Colom-
bia with an average emission of 52.67 MtCO

2
 . There are 

countries where the average value of emissions is representa-
tive, for example, Chile, Peru, and Cuba with average values 
ranging between 41 and 25 MtCO

2
 . On the other hand, the 

countries with the lowest emissions of MtCO
2
 are mainly con-

centrated in the Caribbean: Dominica (0.08 MtCO
2
) , Virgin 

Islands (0.09), and Grenada (0.13). When analyzing the maxi-
mum values reached in MtCO

2
 emissions, once more coun-

tries such as Brazil (523.89), Mexico (496.30), Venezuela 
(192.75), and Argentina (192.37) display the highest values. 
These countries are at the same time the ones with the greatest 
variations in the emissions of MtCO

2
 in the region.

Table 2 displays the results of per capita emissions in 
tons of carbon dioxide TCO

2
; the countries with the highest 

Table 1  Descriptive statistics. CO
2
 emissions

Country Mean Std. Dev Maximum Minimum

Antigua and Barbuda 0.35 0.20 1.26 0.04
Argentina 122.76 43.55 192.37 48.76
Aruba 1.09 0.78 2.82 0.18
Bahamas 2.71 2.21 9.71 0.41
Barbados 0.88 0.41 1.61 0.17
Belize 0.30 0.17 0.64 0.04
Bolivia 8.26 6.23 22.58 1.00
Brazil 243.06 138.20 523.89 46.85
British Virgin Islands 0.09 0.07 0.21 0.004
Chile 41.94 23.54 85.83 13.48
Colombia 52.67 21.79 102.20 16.39
Costa Rica 4.05 2.63 8.51 0.49
Cuba 25.36 6.25 35.51 12.17
Dominica 0.08 0.06 0.18 0.01
Dominican Republic 11.99 8.00 27.38 1.03
Ecuador 19.04 12.79 43.21 1.56
El Salvador 3.67 2.19 6.85 0.58
Grenada 0.13 0.09 0.30 0.02
Guatemala 6.92 4.95 20.51 1.34
Guyana 1.56 0.43 2.39 0.62
Haiti 1.23 0.92 3.37 0.18
Honduras 4.09 3.24 10.93 0.62
Jamaica 7.26 2.52 11.58 1.47
Mexico 302.07 146.08 496.30 63.05
Nicaragua 2.80 1.46 5.55 0.53
Panama 4.89 3.23 12.50 1.00
Paraguay 2.80 2.15 8.27 0.30
Peru 27.38 13.18 57.15 8.17
Suriname 1.84 0.57 2.84 0.43
Trinidad and Tobago 21.85 14.16 46.96 1.31
Uruguay 5.45 1.19 8.59 3.17
Venezuela 115.10 45.76 192.75 51.88



109591Environmental Science and Pollution Research (2023) 30:109585–109605 

1 3

emissions per person are found in the Caribbean islands: 
Trinidad and Tobago (17.61 TCO

2
 ), Aruba (13.50 TCO

2
 ), 

and Bahamas (12.38 TCO
2
 ), and fourth place is occupied 

by Venezuela (5.89 TCO
2
 ). The countries with the lowest 

CO
2
 emissions per capita in the region are Paraguay (0.56 

TCO
2
 ), Guatemala (0.63 TCO

2
 ), Nicaragua (0.64 TCO

2
 ), 

and El Salvador (0.67 TCO
2
 ). The countries that present 

the maximum values in per capita emissions are the Baha-
mas, Trinidad and Tobago, Aruba, and Antigua and Bar-
buda, respectively. In terms of variations with respect to 
the mean, it is worth mentioning the important changes in 
the islands of Bahamas, Trinidad and Tobago, Aruba, and 
Antigua and Barbuda. It is noticeable throughout all the 
descriptive statistics of per capita emissions (in Table 2) 
that the countries in the Caribbean display the highest 
emissions and variations with respect to the mean.

Empirical results

We separate this section in two sub-sections referring 
respectively to the CO

2
 emissions and the CO

2
 emissions 

per capita.

CO2 emissions

Tables 3 and 5 display the estimates of the differencing 
parameter d in Eq. (6) under the assumption that u(t) is a 
white noise process in Table 3, and under autocorrelation in 
Table 5. In the two tables along with the estimates of d, we 
also report the 95% confidence bands of the non-rejection 
values of d using Robinson’s (1994) tests. The second col-
umn refers to the case where α and β in Eq. (6) are assumed 
to be zero a priori, that is, we do not consider deterministic 
terms in the model; the third column in the tables refers 
to the case with an intercept only, that is, imposing β = 0 
a priori, while the last column corresponds to the model 
with a constant and a linear time trend, i.e., estimating α 
and β along with d from the data. We report in bold in the 
tables for each country the selected specification, based on 
the t-values on the d-differenced regressions, noting that the 
two equalities in Eq. (6) can be expressed as:

where
ỹ(t) = (1 − B)dy(t), 1̃(t) = (1 − B)d1(t),  a n d 

t̃(t) = (1 − B)dt(t) , and based on the fact that u(t) in Eq. (6) is 
I(0) by construction, the t-values on the coefficients α and β 
apply. Thus, if both coefficients are statistically significant, we 
keep that model as the appropriate one; however, if β is found 
to be insignificant, we move to the model in column 3 with 
an intercept; finally, if both coefficients are statistically insig-
nificant, we choose the model with no deterministic terms.

Table 3 reports the estimates of d for each series under the 
assumption that the error term is a white noise process. Thus, 
the whole structure of dependence is captured throughout 
the differencing parameter d. As earlier mentioned, we 
report the values of d under three different scenarios:

1. Imposing a priori that α = β = 0 in Eq. (6), i.e., we do not 
consider any deterministic term in the model

2. Imposing that only β = 0 a priori in Eq. (6), i.e., includ-
ing an intercept

3. Allowing α and β being freely estimated from the data 
along with the other parameters, i.e., we permit here a 
linear time trend in the model

Table  4 reports the selected specifications for each 
series. We notice evidence of mean reversion (statistical 

(9)ỹ(t) = �1̃(t) + � t̃(t) + u(t)

Table 2  Descriptive statistics. CO
2
 emissions per capita

Country Mean Std. Dev Maximum Minimum

Antigua and Barbuda 4.93 3.11 19.78 0.68
Argentina 3.69 0.59 4.69 2.33
Aruba 13.50 6.88 27.87 2.87
Bahamas 12.38 12.41 49.26 4.60
Barbados 3.27 1.39 5.76 0.75
Belize 1.36 0.36 2.13 0.39
Bolivia 1.01 0.48 1.97 0.27
Brazil 1.53 0.51 2.58 2.58
British Virgin Islands 4.40 2.26 7.77 0.40
Chile 2.94 1.01 4.65 1.66
Colombia 1.55 0.24 2.09 1.02
Costa Rica 1.14 0.18 1.81 0.36
Cuba 2.49 0.50 3.46 1.67
Dominica 1.09 0.82 2.59 0.18
Dominican Republic 1.49 0.69 2.55 0.30
Ecuador 1.61 0.72 2.71 0.33
El Salvador 0.67 0.30 1.12 0.21
Grenada 1.26 0.84 2.81 0.16
Guatemala 0.63 0.22 1.17 0.31
Guyana 2.10 0.51 3.05 0.99
Haiti 0.15 0.07 0.30 0.02
Honduras 0.66 0.26 1.12 0.30
Jamaica 3.01 0.70 4.33 0.90
Mexico 3.42 0.91 4.45 1.59
Nicaragua 0.64 0.16 0.95 0.30
Panama 1.77 0.57 2.96 0.88
Paraguay 0.56 0.27 1.17 0.16
Peru 1.24 0.28 1.97 0.80
Suriname 4.29 1.15 6.68 1.45
Trinidad and Tobago 17.61 9.84 35.36 1.47
Uruguay 1.77 0.34 2.54 1.04
Venezuela 5.89 0.72 7.68 4.09
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significance of d < 1) for Ecuador, Belize, Grenada, Colom-
bia, Peru, and Dominica. Thus, shocks are transitory in 
these countries. For the majority of cases, however, we 
cannot reject d = 1, and for Guatemala and Paraguay, the 
estimate of the differencing parameter d is even signifi-
cantly higher than 1. Thus, except for the abovementioned 
six countries, shocks in the emissions are expected to be 
permanent requiring policy actions if we would like the 
series to return to their original long-term projections. The 
time trends are significant (and positive) in 24 out of the 32 
countries examined. The highest coefficients correspond to 
Brazil (6.707), Mexico (6.398), Argentina (2.213), Chile 
(1.170), and Colombia (1.356), which is clearly related with 
the economic weight of these countries. According to the 

Economic Commission for Latin America and the Carib-
bean, ECLAC (2022), the mentioned countries represent 
80% of the Latin American GDP, implying a clear relation-
ship between the number of emissions and the economic 
activity in these countries. No significant trends are found 
in Antigua and Barbuda, Aruba, Bahamas, Cuba, Jamaica, 
Paraguay, Uruguay, or Venezuela.

In Tables 5 and 6, we allow for autocorrelation in the 
error term, i.e., u(t) in Eq. (6) is time dependent. However, 
instead of imposing a classical autoregressive moving aver-
age (ARMA) process for the error term, we use here an 
old non-parametric methodology (Bloomfield 1973) that 
approximates this type of structures with a lower number of 
parameters, and which the spectral density function (in log) 

Table 3  Estimates of d. White 
noise errors

The values in parenthesis refer to the 95% confidence band of the non-rejection values of d using Robin-
son’s (1994) tests. The values in bold refer to the selected specifications in relation with the deterministic 
terms

Country  (CO2 emissions) No terms An intercept An intercept and 
a time trend

Antigua and Barbuda 0.77 (0.55, 1.10) 0.76 (0.49, 1.10) 0.77 (0.54, 1.10)
Argentina 0.78 (0.58, 1.09) 1.01 (0.83, 1.32) 0.99 (0.75, 1.31)
Aruba 0.95 (0.79, 1.17) 0.96 (0.81, 1.17) 0.96 (0.81, 1.17)
Bahamas 0.86 (0.73, 1.03) 0.86 (0.72, 1.03) 0.86 (0.73, 1.03)
Barbados 0.79 (0.62, 1.05) 0.85 (0.73, 1.07) 0.84 (0.67, 1.06)
Belize 0.63 (0.55, 0.79) 0.68 (0.60, 0.80) 0.47 (0.28, 0.73)
Bolivia 0.94 (0.85, 1.07) 0.94 (0.85, 1.07) 0.92 (0.81, 1.08)
Brazil 1.02 (0.85, 1.31) 1.14 (0.96, 1.41) 1.15 (0.92, 1.41)
British Virgin Islands 1.09 (0.95, 1.29) 1.10 (0.97, 1.30) 1.10 (0.95, 1.30)
Chile 1.03 (0.89, 1.28) 1.12 (0.96, 1.43) 1.13 (0.94, 1.45)
Colombia 0.88 (0.73, 1.12) 0.76 (0.65, 0.93) 0.76 (0.63, 0.95)
Costa Rica 0.95 (0.82, 1.22) 0.96 (0.84, 1.22) 0.95 (0.78, 1.23)
Cuba 0.96 (0.81, 1.19) 1.05 (0.88, 1.29) 1.04 (0.88, 1.28)
Dominica 0.84 (0.76, 0.97) 0.87 (0.79, 1.00) 0.83 (0.69, 0.99)
Dominican Republic 0.97 (0.81, 1.33) 0.95 (0.80, 1.31) 0.96 (0.75, 1.31)
Ecuador 0.66 (0.59, 0.78) 0.71 (0.64, 0.82) 0.48 (0.33, 0.70)
El Salvador 0.96 (0.83, 1.16) 0.98 (0.87, 1.17) 0.98 (0.85, 1.17)
Grenada 0.79 (0.72, 0.89) 0.81 (0.75, 0.91) 0.72 (0.62, 0.87)
Guatemala 1.24 (1.11, 1.42) 1.22 (1.08, 1.40) 1.24 (1.10, 1.42)
Guyana 0.87 (0.73, 1.07) 0.78 (0.59, 1.00) 0.81 (0.66, 1.01)
Haiti 0.96 (0.83, 1.20) 0.98 (0.84, 1.22) 0.97 (0.80, 1.24)
Honduras 0.94 (0.86, 1.06) 0.94 (0.86, 1.05) 0.92 (0.83, 1.06)
Jamaica 0.96 (0.80, 1.16) 0.95 (0.79, 1.15) 0.95 (0.81, 1.14)
Mexico 0.83 (0.70, 1.05) 1.01 (0.89, 1.18) 0.99 (0.85, 1.17)
Nicaragua 0.83 (0.69, 1.10) 0.83 (0.71, 1.08) 0.80 (0.63, 1.08)
Panama 0.89 (0.80, 1.02) 0.88 (0.79, 1.01) 0.86 (0.76, 1.01)
Paraguay 1.24 (1.06, 1.54) 1.24 (1.06, 1.55) 1.26 (1.07, 1.57)
Peru 0.79 (0.66, 0.99) 0.78 (0.66, 0.97) 0.76 (0.61, 0.97)
Suriname 0.86 (0.67, 1.06) 0.83 (0.63, 1.05) 0.85 (0.71, 1.05)
Trinidad and Tobago 0.99 (0.86, 1.19) 1.01 (0.88, 1.20) 1.01 (0.86, 1.20)
Uruguay 0.83 (0.55, 1.08) 0.76 (0.59, 1.03) 0.76 (0.58, 1.03)
Venezuela 0.65 (0.50, 0.85) 0.92 (0.77, 1.15) 0.91 (0.72, 1.15)
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is similar to the one produced by an AR model. In addition, 
this Bloomfield (1973) approximation accommodates very 
well in the context of the tests of Robinson (1994) used in 
this article (see, e.g., Gil-Alana 2004). Table 5 displays the 
results for the three abovementioned cases in relation with 
the deterministic terms (no terms; with an intercept, and 
with an intercept and a linear time trend), while in Table 6, 
we report the specific coefficients of the selected models.

The first noticeable feature observed in Tables 5 and 
6 is that evidence of mean reversion is found in the cases 
of Antigua and Barbuda, Belize, Uruguay, Dominican 
Republic, and Nicaragua. For the rest of the countries, we 

cannot reject the unit root null hypothesis (d = 1). Thus, 
Belize is the only country that displays mean reversion 
under the two types of specifications for the error term. 
However, the most significant time trends take place at 
Brazil (7.358), Argentina (2.406), Colombia (1.479), Chile 
(1.210), and Venezuela (1.462) (surprisingly, Mexico dis-
plays now an insignificant trend), and they are insignificant 
also for Antigua and Barbuda, Aruba, Bahama, British 
Virgin Islands, Cuba, Dominica, Guatemala, Jamaica, 
Surinam, and Trinidad and Tobago. Summarizing then 
the results in terms of the time trends, we see that Bra-
zil, Argentina, Chile, and Colombia, along with Mexico 

Table 4  Estimated coefficients 
in the selected models in 
Table 3

The values in parenthesis in columns 3 and 4 are the t-values associated to the estimated coefficients
a Mean evidence of “mean reversion” at the 95% level
b Estimates of d which are significantly higher than 1

Country  (CO2 emissions) No terms An intercept An intercept 
and a time 
trend

Antigua and Barbuda 0.77 (0.55, 1.10) –- –-
Argentina 0.99 (0.75, 1.31) 46.558 (7.97) 2.213 (3.04)
Aruba 0.96 (0.81, 1.17) 0.621 (1.95) –-
Bahamas 0.86 (0.73, 1.03) –- –-
Barbados 0.84 (0.67, 1.06) 0.158 (1.81) 0.018 (2.88)
Belize 0.47 (0.28, 0.73)a 0.021 (0.83) 0.0096 (12.15)
Bolivia 0.92 (0.81, 1.08) 0.559 (1.67) 0.362 (4.51)
Brazil 1.15 (0.92, 1.41) 41.100 (3.19) 6.707 (2.30)
British Virgin Islands 1.10 (0.95, 1.30) 0.0016 (0.20) 0.0026 (1.76)
Chile 1.13 (0.94, 1.45) 12.352 (4.56) 1.170 (2.06)
Colombia 0.76 (0.63, 0.95)a 14.934 (4.17) 1.356 (6.64)
Costa Rica 0.95 (0.78, 1.23) 0.341 (1.71) 0.136 (4.35)
Cuba 1.05 (0.88, 1.29) 13.671 (6.55) –-
Dominica 0.83 (0.69, 0.99)a 0.0066 (0.76) 0.0027 (4.58)
Dominican Republic 0.96 (0.75, 1.31) 0.555 (0.58) 0.444 (4.19)
Ecuador 0.48 (0.33, 0.70)a  − 1.111 (− 1.60) 0.695 (12.03)
El Salvador 0.98 (0.85, 1.17) 0.522 (1.76) 0.095 (2.68)
Grenada 0.72 (0.62, 0.87)a 0.0105 (1.90) 0.0046 (7.84)
Guatemala 1.24 (1.10, 1.42)b 1.113 (2.12) 0.336 (2.02)
Guyana 0.81 (0.66, 1.01) 0.657 (3.82) 0.027 (2.35)
Haiti 0.97 (0.80, 1.24) 0.232 (1.40) 0.051 (2.55)
Honduras 0.92 (0.83, 1.06) 0.402 (1.11) 0.173 (4.99)
Jamaica 0.95 (0.79, 1.15) 1.551 (1.90) –-
Mexico 0.99 (0.85, 1.17) 56.600 (3.77) 6.398 (3.42)
Nicaragua 0.80 (0.63, 1.08) 0.436 (1.79) 0.083 (5.32)
Panama 0.86 (0.76, 1.01) 0.741 (1.42) 0.189 (4.61)
Paraguay 1.24 (1.06, 1.54)b –- –-
Peru 0.76 (0.61, 0.97)a 7.296 (2.30) 0.757 (4.18)
Suriname 0.85 (0.71, 1.05) 0.423 (1.95) 0.035 (2.15)
Trinidad and Tobago 1.01 (0.86, 1.20) 1.975 (0.87) 0.595 (1.97)
Uruguay 0.76 (0.59, 1.03) 4.443 (7.19) –-
Venezuela 0.92 (0.77, 1.15) 57.428 (4.88) –-
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(under the assumption of no autocorrelation) and Ven-
ezuela (with autocorrelated errors), are the countries that 
display significant positive trends. This is clearly related 
with their economic activity and geographical character-
istics, and it is possible to relate them to the initiatives of 
the NGO Climate Analytics and New Climate Institute 
(2022), which analyzes the commitments and actions of 
governments and compares them against the objectives of 
the Paris Agreement. These results are presented in the 
Climate Action Tracker (CAT) where the countries with 
the highest greenhouse gas emissions are reflected, since 
they represent 80% of total emissions in the region. These 
major emitters include the six largest economies in Latin 
America: Brazil, Mexico, Argentina, Colombia, Chile, and 
Peru. According to the Climate Policy Update tracking 

CAT, the initiatives of the first four countries are rated 
as “highly insufficient.” While in the case of Chile and 
Peru, they are ahead, although they are still considered 
“insufficient” emphasizing that nine out of the twenty most 
vulnerable countries in the world to climate change are in 
the Latin American region, which supports the hypothesis 
of a highly representative trend in the emissions.

CO2 emissions per capita

Table 7 displays the estimates of d under the assumption 
of white noise errors. We notice here that the time trend is 
required in 19 countries; for another group of 11 countries, 
the intercept is sufficient to describe the deterministic part, 
and only Antigua and Barbuda and Bahamas display no 

Table 5  Estimates of d 
under the assumption of 
autocorrelated errors

The values in parenthesis refer to the 95% confidence band of the non-rejection values of d using Robin-
son’s (1994) tests. The values in bold refer to the selected specifications in relation with the deterministic 
terms

Country  (CO2 emissions) No terms An intercept An intercept and a time trend

Antigua and Barbuda 0.20 (− 0.39, 0.76) 0.06 (− 0.36, 0.75) 0.06 (− 0.29, 0.75)
Argentina 0.56 (0.44, 0.92) 0.77 (0.60, 1.18) 0.54 (0.09, 1.16)
Aruba 0.90 (0.48, 1.38) 0.93 (0.60, 1.39) 0.93 (0.51, 1.39)
Bahamas 1.31 (0.90, 1.91) 1.31 (0.88, 1.91) 1.32 (0.89, 1.97)
Barbados 0.75 (0.49, 1.49) 0.94 (0.67, 1.51) 0.92 (0.36, 1.53)
Belize 0.64 (0.51, 0.90) 0.68 (0.54, 0.86) 0.29 (− 0.14, 0.82)
Bolivia 1.16 (0.94, 1.54) 1.13 (0.92, 1.55) 1.17 (0.90, 1.60)
Brazil 0.81 (0.66, 1.23) 0.97 (0.77, 1.72) 0.80 (0.30, 1.78)
British Virgin Islands 1.22 (0.94, 1.64) 1.25 (0.97, 1.66) 1.28 (0.89, 1.65)
Chile 0.88 (0.70, 1.20) 0.83 (0.67, 1.09) 0.81 (0.56, 1.10)
Colombia 1.30 (0.99, 1.62) 0.54 (0.23, 1.48) 1.05 (0.57, 1.63)
Costa Rica 0.79 (0.64, 1.05) 0.81 (0.65, 1.05) 0.68 (0.40, 1.05)
Cuba 0.94 (0.65, 1.30) 0.95 (0.61, 1.37) 0.96 (0.67, 1.38)
Dominica 1.08 (0.87, 1.91) 1.09 (0.87, 1.84) 1.20 (0.81, 1.82)
Dominican Republic 0.69 (0.55, 0.92) 0.70 (0.56, 0.90) 0.42 (0.10, 0.89)
Ecuador 0.73 (0.53, 1.06) 0.77 (0.58, 1.10) 0.46 (− 0.02, 1.14)
El Salvador 1.10 (0.81, 1.53) 1.06 (0.81, 1.44) 1.05 (0.76, 1.45)
Grenada 0.97 (0.84, 1.17) 1.03 (0.89, 1.24) 1.03 (0.80, 1.29)
Guatemala 1.33 (0.85, 1.93) 1.43 (0.77, 1.84) 1.42 (0.76, 1.83)
Guyana 1.06 (0.67, 1.45) 0.71 (0.06, 1.38) 0.88 (0.20, 1.36)
Haiti 0.86 (0.67, 1.15) 0.85 (0.64, 1.14) 0.80 (0.56, 1.18)
Honduras 1.09 (0.93, 1.31) 1.10 (0.96, 1.31) 1.13 (0.93, 1.36)
Jamaica 1.13 (0.69, 1.63) 1.15 (0.68, 1.64) 1.13 (0.76, 1.59)
Mexico 0.89 (0.67, 1.35) 1.33 (0.87, 1.69) 1.33 (0.87, 1.68)
Nicaragua 0.62 (0.46, 0.85) 0.66 (0.50, 0.84) 0.48 (0.19, 0.82)
Panama 1.09 (0.91, 1.35) 1.07 (0.88, 1.31) 1.09 (0.88, 1.34)
Paraguay 0.90 (0.66, 1.25) 0.90 (0.61, 1.22) 0.89 (0.53, 1.26)
Peru 0.83 (0.62, 1.17) 0.78 (0.56, 1.11) 0.75 (0.49, 1.11)
Suriname 1.04 (0.63, 1.55) 0.97 (0.14, 1.60) 1.00 (0.63, 1.55)
Trinidad and Tobago 1.06 (0.75, 1.52) 1.17 (0.84, 1.58) 1.15 (0.63, 1.61)
Uruguay 0.62 (0.22, 1.03) 0.44 (0.14, 0.85) 0.39 (0.07, 0.84)
Venezuela 0.48 (0.38, 0.77) 0.87 (0.33, 1.37) 0.87 (0.41, 1.34)
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deterministic terms in their models. The highest time trend 
coefficients occur now in the cases of Trinidad and Tobago 
(0.4248) and British Virgin Islands (0.0972) followed by 
Barbados (0.0619) and Grenada (0.0413) (see Table 8), 
which are all small island states in the Caribbean. In the 
particular case of Trinidad and Tobago, the composition 
of its energy matrix stands out, since it obtains practically 
all of its energy from hydrocarbons. Therefore, renew-
able energies play a marginal role (Latin American Energy 
Organization —LAEO; International Energy Agency 
2021). Trinidad and Tobago’s economic structure is highly 
dependent on oil and gas exploitation and generation. In 
2010, Trinidad and Tobago was the world’s second largest 

producer of greenhouse gases per capita (Oxford Busi-
ness Group 2021). By 2018, the country’s per capita  CO2 
emissions related to fuel combustion continued to outpace 
other countries in Latin America and the Caribbean by a 
wide margin (International Energy Agency 2022). In the 
case of Barbados, 93% of its electricity is generated by 
fossil fuels while the remaining percentage is generated 
by solar energy (LAEO 2021). One of the main reasons for 
the high per capita CO

2
 emissions in this country is related 

to the fact that 18.93% of the population is employed in 
the industrial sector, which includes mining, quarrying, 
manufacturing, construction, electricity, gas, and water 
(Statista 2022). The island of Barbados is greatly affected 

Table 6  Estimated coefficients 
in the selected models in 
Table 5

The values in parenthesis in columns 3 and 4 are the t-values associated to the estimated coefficients
a Mean evidence of mean reversion at the 95% level

Country  (CO2 emissions) No terms An intercept An intercept 
and a time 
trend

Antigua and Barbuda 0.20 (− 0.39, 0.76)a –- –-
Argentina 0.54 (0.09, 1.16) 47.414 (7.37) 2.406 (11.02)
Aruba 0.93 (0.60, 1.39) 0.624 (1.97) –-
Bahamas 1.31 (0.90, 1.91) –- –-
Barbados 0.92 (0.36, 1.53) 0.156 (1.76) 0.017 (2.08)
Belize 0.29 (− 0.14, 0.82)a 0.015 (0.44) 0.0096 (9.77)
Bolivia 1.17 (0.90, 1.60) 0.733 (1.92) 0.359 (1.86)
Brazil 0.80 (0.30, 1.78) 36.183 (2.73) 7.358 (8.63)
British Virgin Islands 1.22 (0.94, 1.64) –- –-
Chile 0.81 (0.56, 1.10) 11.854 (4.47) 1.210 (6.85)
Colombia 1.05 (0.57, 1.63) 14.921 (4.05) 1.479 (2.58)
Costa Rica 0.68 (0.40, 1.05) 0.197 (0.63) 0.138 (9.67)
Cuba 0.95 (0.61, 1.37) 13.728 (6.60) –-
Dominica 1.08 (0.87, 1.91) –- –-
Dominican Republic 0.42 (0.10, 0.89)a  − 0.769 (− 0.56) 0.436 (10.83)
Ecuador 0.46 (− 0.02, 1.14)  − 1.228 (− 0.47) 0.696 (8.78)
El Salvador 1.05 (0.76, 1.45) 0.529 (1.78) 0.093 (2.02)
Grenada 1.03 (0.80, 1.29) 0.017 (1.50) 0.0044 (2.61)
Guatemala 1.43 (0.77, 1.84) 1.305 (2.78) –-
Guyana 0.88 (0.20, 1.36) 0.644 (3.68) 0.027 (1.88)
Haiti 0.80 (0.56, 1.18) 0.186 (1.13) 0.050 (4.71)
Honduras 1.13 (0.93, 1.36) 0.472 (1.88) 0.173 (2.41)
Jamaica 1.15 (0.68, 1.64) 1.337 (1.66) –-
Mexico 1.33 (0.87, 1.69) 61.583 (4.46) –-
Nicaragua 0.48 (0.19, 0.82)a 0.401 (1.65) 0.082 (9.46)
Panama 1.09 (0.88, 1.34) 0.821 (1.81) 0.197 (2.14)
Paraguay 0.89 (0.53, 1.26) 0.127 (0.50) 0.131 (5.99)
Peru 0.75 (0.49, 1.11) 7.289 (2.24) 0.755 (4.20)
Suriname 0.97 (0.14, 1.60) 0.432 (1.98) –-
Trinidad and Tobago 1.06 (0.75, 1.52) –- –-
Uruguay 0.39 (0.07, 0.84)a 4.383 (10.23) 0.036 (2.93)
Venezuela 0.87 (0.41, 1.34) 54.637 (4.71) 1.462 (1.95)
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by various aspects of climate change, including rising sea 
levels and increased storm intensity. As such, the shift 
towards renewable energy on the island is an attempt to 
mitigate some of the effects of climate change that the 
country is undergoing (Illes 2021). The island is also 
experiencing a significant increase in the amount of energy 
that is being generated from renewable energy.

Focusing next on the values of d, we observe that mean 
reversion takes place in the cases of Ecuador (d = 0.64), 
Belize (d = 0.68), Grenada (0.71), Guatemala (0.77), Panama 
(0.80), and Dominica (0.83), while in the rest of the cases, 
the I(1) hypothesis cannot be rejected. Thus, for these six 
countries where mean reversion is obtained, if there is a 
shock in the series of emissions per capita, its effect will 

disappear by itself in the long run though it may take some 
time to disappear completely.

Allowing for autocorrelated errors using the model of 
Bloomfield (1973) (Tables 9 and 10), the time trend is 
required in 17 countries, and the highest coefficients corre-
spond to Guyana (0.1048), Barbados (d = 0.0602) and Chile 
(0.0483). Mean reversion occurs in five countries; Antigua 
and Barbuda (0.08), Nicaragua (0.41), Uruguay (0.43), 
Dominican Republic (0.44), and Haiti (0.55), all small 
islands, and the unit root null is rejected in favor of d > 1 
only in the case of Mexico (1.31). In this context of autocor-
related errors, the intervals are wide and due to this, there 
are two countries where both the I(0) and the I(1) hypotheses 
cannot be rejected: Paraguay and Venezuela.

Table 7  Estimates of d under 
the assumption of white noise 
errors

The values in parenthesis refer to the 95% confidence band of the non-rejection values of d using Robin-
son’s (1994) tests. The values in bold refer to the selected specifications in relation with the deterministic 
terms

Country:  CO2 per capita No terms An intercept An intercept and 
a time trend

Antigua and Barbuda 0.77 (0.56, 1.10) 0.75 (0.49, 1.10) 0.76 (0.51, 1.10)
Argentina 0.89 (0.72, 1.13) 1.03 (0.83, 1.32) 1.03 (0.83, 1.32)
Aruba 0.79 (0.62, 1.02) 0.80 (0.65, 1.01) 0.80 (0.65, 1.01)
Bahamas 0.88 (0.75, 1.05) 0.88 (0.75, 1.04) 0.88 (0.75, 1.04)
Barbados 0.78 (0.59, 1.04) 0.84 (0.71, 1.06) 0.84 (0.68, 1.06)
Belize 0.70 (0.50, 0.91) 0.63 (0.50, 0.85) 0.68 (0.54, 0.87)
Bolivia 0.84 (0.71, 1.03) 0.84 (0.72, 1.03) 0.82 (0.67, 1.03)
Brazil 0.94 (0.71, 1.25) 1.20 (0.98, 1.47) 1.19 (0.97, 1.47)
British Virgin Islands 0.87 (0.72, 1.08) 0.91 (0.79, 1.10) 0.90 (0.75, 1.10)
Chile 0.99 (0.82, 0.25) 1.15 (0.94, 1.51) 1.15 (0.94, 1.51)
Colombia 1.02 (0.86, 1.26) 0.79 (0.61, 1.02) 0.83 (0.70, 1.02)
Costa Rica 0.94 (0.70, 1.25) 0.97 (0.75, 1.29) 0.97 (0.75, 1.28)
Cuba 0.93 (0.76, 1.14) 1.03 (0.87, 1.27) 1.03 (0.87, 1.27)
Dominica 0.84 (0.76, 0.97) 0.88 (0.79, 0.99) 0.83 (0.71, 0.99)
Dominican Republic 0.97 (0.70, 1.32) 0.95 (0.74, 1.30) 0.96 (0.74, 1.29)
Ecuador 0.59 (0.46, 0.80) 0.68 (0.58, 0.85) 0.64 (0.50, 0.84)
El Salvador 0.90 (0.75, 1.12) 0.94 (0.81, 1.14) 0.94 (0.80, 1.13)
Grenada 0.76 (0.69, 0.87) 0.80 (0.74, 0.91) 0.71 (0.59, 0.88)
Guatemala 0.86 (0.71, 1.06) 0.75 (0.58, 0.97) 0.77 (0.62, 0.98)
Guyana 1.08 (0.92, 1.28) 1.05 (0.86, 1.27) 1.05 (0.87, 1.28)
Haiti 0.82 (0.66, 1.08) 0.86 (0.70, 1.12) 0.83 (0.63, 1.12)
Honduras 0.83 (0.70, 1.07) 0.80 (0.71, 0.96) 0.77 (0.65, 0.96)
Jamaica 0.98 (0.83, 1.16) 0.95 (0.79, 1.14) 0.95 (0.81, 1.13)
Mexico 0.85 (0.68, 1.06) 1.02 (0.90, 1.18) 1.02 (0.90, 1.18)
Nicaragua 0.89 (0.72, 1.14) 0.79 (0.57, 1.10) 0.82 (0.64, 1.10)
Panama 0.87 (0.73, 1.05) 0.80 (0.67, 0.97) 0.80 (0.67, 0.98)
Paraguay 1.04 (0.86, 1.29) 1.03 (0.82, 1.31) 1.03 (0.82, 1.31)
Peru 0.91 (0.77, 1.10) 0.82 (0.67, 1.04) 0.83 (0.69, 1.04)
Suriname 0.91 (0.79, 1.09) 0.89 (0.74, 1.07) 0.90 (0.77, 1.07)
Trinidad and Tobago 0.90 (0.75, 1.11) 0.92 (0.79 1.11) 0.91 (0.76 1.11)
Uruguay 0.86 (0.70, 1.11) 0.79 (0.61, 1.06) 0.79 (0.61, 1.06)
Venezuela 0.70 (0.51, 0.95) 0.70 (0.41, 1.02) 0.75 (0.55, 1.03)
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As a robustness approach, in the final part of the manu-
script, we extend the analysis by replacing the linear trend in 
(6) by a non-linear one of the form of the Chebyshev poly-
nomials in time, with the disturbances still being integrated 
of order d. In particular, the model used is now

where m indicates the order of the Chebyshev polynomial 
Pi,N(t) defined as:

(10)yt =
m
∑

i=0

�iPi,N(t) + xt, t = 1,2,...

(11)
Pi,N(t) =

√

2cos[i�(t − 0.5)∕N]; t = 1, 2,… ,N; i = 1, 2, …

with P
0,N(t) = 1 . If m = 0 in Eq. (10), then, the model con-

tains only an intercept; if m = 1, it contains a linear struc-
ture, and if m > 1, the model becomes non-linear, where 
the higher the value of m is, the higher is the non-linear 
structure.2 The parameters �i, i = 1, 2…m are the non-lin-
ear parameters where the significance of m > 1 parameters 

Table 8  Estimated coefficients 
in the selected models in 
Table 7

The values in parenthesis in columns 3 and 4 are the t-values associated to the estimated coefficients
*Mean evidence of mean reversion at the 95% level

Country:  CO2 per capita No terms An intercept An intercept 
and a time 
trend

Antigua and Barbuda 0.77 (0.56, 1.10) –- –-
Argentina 1.03 (0.83, 1.32) 2.3742 (13.96) –-
Aruba 0.80 (0.65, 1.01) 11.5298 (3.06) –-
Bahamas 0.88 (0.75, 1.05) –- –-
Barbados 0.84 (0.68, 1.06) 0.7137 (2.16) 0.0619 (2.56)
Belize 0.68 (0.54, 0.87)a 0.5369 (3.60) 0.0190 (2.79)
Bolivia 0.82 (0.67, 1.03) 0.2397 (2.63) 0.0281 (4.48)
Brazil 1.20 (0.98, 1.47) 0.6395 (8.81) –-
British Virgin Islands 0.90 (0.75, 1.10) 0.3629 (0.92) 0.0972 (2.68)
Chile 1.15 (0.94, 1.51) 1.6277 (8.84) –-
Colombia 0.83 (0.70, 1.02) 1.0260 (11.55) 0.0152 (2.19)
Costa Rica 0.97 (0.75, 1.28) 0.3465 (3.80) 0.0223 (2.12)
Cuba 1.03 (0.87, 1.27) 1.9198 (9.51) –-
Dominica 0.83 (0.71, 0.99)a 0.1227 (1.00) 0.0373 (4.29)
Dominican Republic 0.96 (0.74, 1.29) 0.2766 (2.22) 0.0377 (2.72)
Ecuador 0.64 (0.50, 0.84)a 0.3462 (1.66) 0.0364 (4.24)
El Salvador 0.94 (0.80, 1.13) 0.2116 (3.74) 0.0127 (2.17)
Grenada 0.71 (0.59, 0.88)a 0.1415 (1.29) 0.0413 (7.65)
Guatemala 0.77 (0.62, 0.98)a 1.1543 (5.15) 0.0293 (2.22)
Guyana 1.05 (0.87, 1.28) 0.3054 (6.54) 0.0146 (2.02)
Haiti 0.83 (0.63, 1.12) 0.0674 (3.40) 0.0037 (2.63)
Honduras 0.77 (0.65, 0.96)a 0.2871 (5.73) 0.0137 (4.66)
Jamaica 0.95 (0.79, 1.14) 0.9421 (2.58) –-
Mexico 1.02 (0.90, 1.18) 1.6662 (9.33) –-
Nicaragua 0.82 (0.64, 1.10) 0.3045 (4.47) 0.0087 (1.87)
Panama 0.80 (0.67, 0.98)a 0.8582 (4.90) 0.0330 (2.92)
Paraguay 1.03 (0.82, 1.31) 0.1429 (2.83) 0.0173 (2.37)
Peru 0.82 (0.67, 1.04) 0.8454 (6.91) –-
Suriname 0.89 (0.74, 1.07) 1.5873 (3.01) –-
Trinidad and Tobago 0.91 (0.76 1.11) 2.7490 (1.35) 0.4248 (2.23)
Uruguay 0.79 (0.61, 1.06) 1.7012 (8.61) –-
Venezuela 0.70 (0.41, 1.02) 6.6656 (13.73) –-

2 2A detailed description of the Chebyshev polynomails in time can 
be found in Hamming (1973) and Smyth (1998). Bierens (2001) used 
these polynomials in the context of unit root models, and Bierens and 
Martins (2010) proposed its use in time-varying cointegrating mod-
els.
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implies non-linearity of the time series. Cuestas and Gil-
Alana (2016) proposed a testing procedure for the integra-
tion order in a model given by Eqs. (10) and (5). See Ham-
ming (1973) and Smyth (1998) for a detailed description of 
these polynomials. Bierens (1997) uses them in the context 
of unit root testing. The latter author proposes several unit 
root tests, which account for a drift and a unit root under 
the null hypothesis and stationarity around a linear or non-
linear trend under the alternative. Hence, within the analysis 
of the order of integration of the variables, Bierens (1997) 
unit root tests allow us to test whether the process is lin-
ear or non-linear trend stationary. In addition, Bierens and 
Martins (2010) propose the use of Chebyshev polynomials 
in the framework of time-varying cointegrating parameters. 
There are several advantages in using these polynomials; 

first, since they are orthogonal, it avoids the problem of 
near collinearity in the regressor matrix in comparison 
with using regular time polynomials. Second, according to 
Bierens (1997) and Tomasevic et al. (2009), it is possible 
to approximate highly non-linear trends with a rather low 
degree of polynomials. Finally, given their particular shape, 
they are good to approximate cyclical behavior. The results 
for both  CO2 emissions and  CO2 emissions per capita are 
respectively reported across Tables 11 and 12.

Starting with the results in Table 11  (CO2 emissions), we 
observe that non-linear structures are visible in a number of 
cases. In particular, there are 12 countries with at least one 
of the two non-linear coefficients (θ2 and θ3) being statisti-
cally significant; for a group of 7 countries, the two coef-
ficients are significant, and for the remaining 13 countries, 

Table 9  Estimates of d 
under the assumption of 
autocorrelated errors

The values in parenthesis refer to the 95% confidence band of the non-rejection values of d using Robin-
son’s (1994) tests. The values in bold refer to the selected specifications in relation with the deterministic 
terms

Country:  CO2 per capita No terms An intercept An intercept and a time trend

Antigua and Barbuda 0.27 (− 0.41, 0.76) 0.08 (− 0.26, 0.70)  − 0.03 (− 0.47, 0.74)
Argentina 0.74 (0.16, 1.10) 0.67 (0.35, 1.14) 0.68 (0.28, 1.16)
Aruba 0.70 (0.26, 1.26) 0.81 (0.41, 1.26) 0.79 (0.36, 1.26)
Bahamas 1.33 (0.94, 1.92) 1.32 (0.90, 1.90) 1.32 (0.90, 1.90)
Barbados 0.68 (0.44, 1.44) 0.91 (0.64, 1.52) 0.90 (0.43, 1.52)
Belize 1.02 (0.30, 1.53) 0.76 (0.31, 1.45) 0.88 (0.53, 1.40)
Bolivia 1.04 (0.67, 1.58) 0.98 (0.57, 1.66) 1.00 (0.54, 1.67)
Brazil 0.57 (0.36, 1.10) 0.87 (0.59, 1.73) 0.75 (0.18, 1.69)
British Virgin Islands 0.96 (0.68, 1.38) 1.04 (0.78, 1.44) 1.02 (0.67, 1.43)
Chile 0.83 (0.60, 1.23) 0.74 (0.53, 1.07) 0.70 (0.43, 1.07)
Colombia 0.89 (0.63, 1.25) 1.07 (0.24, 1.46) 1.07 (0.74, 1.43)
Costa Rica 0.46 (0.32, 1.09) 0.64 (0.46, 1.04) 0.51 (0.07, 1.05)
Cuba 0.91 (0.67, 1.31) 0.97 (0.66, 1.41) 0.97 (0.69, 1.41)
Dominica 1.08 (0.86, 1.48) 1.17 (0.92, 1.63) 1.23 (0.86, 1.63)
Dominican Republic 0.47 (0.36, 0.94) 0.62 (0.46, 0.90) 0.44 (0.08, 0.93)
Ecuador 0.53 (0.29, 1.11) 0.69 (0.40, 1.18) 0.63 (0.27, 1.17)
El Salvador 0.81 (0.60, 1.36) 0.99 (0.74, 1.42) 0.99 (0.64, 1.41)
Grenada 0.94 (0.80, 1.22) 1.01 (0.86, 1.27) 1.01 (0.75, 1.30)
Guatemala 0.91 (0.57, 1.24) 0.71 (0.08, 1.24) 0.81 (0.32, 1.25)
Guyana 1.22 (0.72, 1.70) 1.07 (0.40, 1.73) 1.08 (0.41, 1.74)
Haiti 0.66 (0.43, 1.02) 0.67 (0.46, 1.04) 0.55 (0.24, 1.00)
Honduras 0.81 (0.60, 1.17) 0.92 (0.73, 1.24) 0.89 (0.60, 1.26)
Jamaica 1.18 (0.79, 1.67) 1.20 (0.77, 1.73) 1.16 (0.79, 1.64)
Mexico 0.85 (0.43, 1.17) 1.31 (1.05, 1.70) 1.31 (1.03, 1.70)
Nicaragua 0.61 (0.04, 1.01) 0.35 (0.06, 0.78) 0.41 (0.00, 0.82)
Panama 1.00 (0.75, 1.34) 0.96 (0.66, 1.31) 0.96 (0.70, 1.30)
Paraguay 0.79 (0.41, 1.26) 0.66 (0.45, 1.21) 0.67 (− 0.22, 1.21)
Peru 0.96 (0.74, 1.33) 0.83 (0.44, 1.21) 0.84 (0.56, 1.22)
Suriname 1.14 (0.86, 1.57) 1.13 (0.76, 1.60) 1.13 (0.82, 1.60)
Trinidad and Tobago 0.92 (0.65, 1.40) 1.06 (0.77, 1.49) 1.06 (0.51, 1.60)
Uruguay 0.68 (0.36, 1.07) 0.43 (0.10, 0.90) 0.43 (0.10, 0.90)
Venezuela 0.41 (0.04, 0.92) 0.28 (− 0.12, 1.10) 0.53 (− 0.21, 1.09)
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there is no evidence of non-linearities. On the other hand, the 
orders of integration are smaller than in the previous tables, 
and mean reversion takes place in 12 countries (Bahamas, 
Belize, Colombia, Dominica, Ecuador, Grenada, Guyana, 
Honduras, Mexico, Panama, Peru, and Suriname). Of these 
twelve countries, all except two display a non-linear pattern.

Table 12 reports the results for the CO
2
 emissions per 

capita. Again, non-linearities are observed in 19 coun-
tries, and in five of them (Cuba, Ecuador, Panama, Peru, 
and Suriname) with the two non-linear coefficients being 

statistically significant. Similarly to the previous table, of the 
fourteen countries where mean reversion occurs, in twelve of 
them, non-linearities are detected, implying a clear relation 
between the two issues.

As a robustness method, we use alternative non-linear 
I(d) approaches like the one based on Fourier functions 
in time (Gil-Alana and Yaya 2021) and another one that 
employs neural networks (Yaya et al. 2021), and, though the 
results differ quantitatively in some cases, the conclusions 
were very similar to those reported across Tables 11 and 12.

Table 10  Estimated coefficients 
in the selected models in 
Table 9

The values in parenthesis in columns 3 and 4 are the t-values associated to the estimated coefficients
a Mean evidence of Mean reversion at the 95% level

Country:  CO2 per capita No terms An intercept An intercept 
and a time 
trend

Antigua and Barbuda 0.08 (− 0.26, 0.70)a 4.898 (12.73) –-
Argentina 0.68 (0.28, 1.16) 2.448 (15.75) 0.0306 (4.32)
Aruba 0.81 (0.41, 1.26) 11.539 (3.08) –-
Bahamas 1.32 (0.90, 1.90) –- –-
Barbados 0.90 (0.43, 1.52) 0.7016 (2.11) 0.0602 (2.01)
Belize 0.76 (0.31, 1.45) 0.5852 (3.91) –-
Bolivia 1.00 (0.54, 1.67) 0.2454 (2.63) 0.0286 (2.38)
Brazil 0.75 (0.18, 1.69) 0.6237 (8.59) 0.0278 (6.91)
British Virgin Islands 0.96 (0.68, 1.38) –- –-
Chile 0.70 (0.43, 1.07) 1.6232 (9.54) 0.0483 (5.91)
Colombia 1.07 (0.24, 1.46) 1.0111 (11.23) –-
Costa Rica 0.51 (0.07, 1.05) 0.3842 (4.49) 0.0229 (8.28)
Cuba 0.97 (0.66, 1.41) 1.9148 (9.64) –-
Dominica 1.08 (0.86, 1.48) –- –-
Dominican Republic 0.44 (0.08, 0.93)a 0.2963 (2.21) 0.0376 (9.42)
Ecuador 0.63 (0.27, 1.17) 0.3471 (1.62) 0.0365 (4.21)
El Salvador 0.99 (0.64, 1.41) 0.2115 (3.73) 0.0125 (1.71)
Grenada 1.01 (0.75, 1.30) 0.2057 (1.79) 0.0393 (2.56)
Guatemala 0.81 (0.32, 1.25) 1.1451 (5.02) 0.0297 (1.96)
Guyana 1.08 (0.41, 1.74) 0.3058 (6.58) 0.1048 (1.89)
Haiti 0.55 (0.24, 1.00)a 0.0568 (3.20) 0.0036 (5.97)
Honduras 0.89 (0.60, 1.26) 0.2885 (5.56) 0.0138 (3.05)
Jamaica 1.20 (0.77, 1.73) 0.8110 (2.30) –-
Mexico 1.31 (1.05, 1.70) 0.8110 (2.30) –-
Nicaragua 0.41 (0.00, 0.82)a 1.6632 (10.10) 0.0076 (5.10)
Panama 0.96 (0.70, 1.30) 0.8461 (4.72) 0.0345 (1.73)
Paraguay 0.67 (− 0.22, 1.21) 0.1348 (2.68) 0.0157 (7.05)
Peru 0.83 (0.44, 1.21) 0.8417 (6.85) –-
Suriname 1.13 (0.76, 1.60) 1.4635 (2.81) –-
Trinidad and Tobago 0.92 (0.65, 1.40) –- –-
Uruguay 0.43 (0.10, 0.90)a 1.7609 (15.88) –-
Venezuela 0.28 (− 0.12, 1.10) 5.9178 (30.65) –-
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Concluding comments 
and recommendations

In this article, we have examined CO
2
 emissions in Latin 

America and the Caribbean countries using a long memory 
model based on fractional integration. This technique is 
appropriate first if we want to determine the nature of the 
shocks, which are transitory if the differencing parameter is 
smaller than 1. In addition, not taking into account this long 
memory feature (i.e., a positive order of integration) of the 
data may produce spurious results in the time trend coef-
ficients of the models.

We can summarize the main results reported in this work 
as follows: Starting with the CO

2
 emissions, and focusing 

first on the case of white noise errors, Belize along with 
Ecuador, Granada, Colombia, Peru, and Dominica display 

mean reversion and thus transitory shocks. It is worth not-
ing that for all these countries, we also observe significant 
positive trends, being particularly important in the cases of 
Colombia, Peru, and Ecuador that present the highest coeffi-
cients. Noting that the differencing parameter is smaller than 
1 in these cases, it is expected that in the event of shocks, 
the series will reverse to their original trends. In the rests of 
the cases (and particularly Guatemala and Paraguay where 
the differencing parameter is significantly higher than 1), the 
effects of shocks are expected to be permanent, which may 
alter the trend of the variable. Still in this context of white 
noise errors, the time trend coefficient is found to be sig-
nificantly positive in 24 out of the 32 countries examined, 
with the highest values obtained for Brazil (6.707), Mexico 
(6.398), and Argentina (2.213), which are three of the most 
industrialized and populated countries in Latin America and 

Table 11  Estimated values in an I(d) model with non-linear trends.  CO2 emissions

Country d θ0 θ1 θ2 θ3

Antigua and Barbuda 0.73 (0.46, 1.08) 0.182 (0.73)  − 0.050 (− 0.36) 0.048 (0.51) 0.063 (0.90)
Argentina 0.89 (0.63, 1.22) 115.61 (7.10)  − 40.973 (− 4.79) 2.381 (0.45)  − 8.421 (− 2.28)
Aruba 0.91 (0.75, 1.14) 0.737 (0.75)  − 4.312 (− 0.76) 0.115 (0.37) 0.242 (1.12)
Bahamas 0.77 (0.63, 0.97)* 1.816 (0.86) 0.603 (0.51)  − 0.320 (− 0.42)  − 1.187 (− 2.11)
Barbados 0.77 (0.58, 1.02) 0.817 (4.87)  − 0.379 (− 4.02)  − 0.052 (− 0.87)  − 0.017 (− 1.52)
Barbados 0.49 (0.25, 0.78)* 0.301 (11.21)  − 0.170 (− 10.55) 0.014 (1.09)  − 0.016 (− 1.52)
Bolivia 0.81 (0.64, 1.02) 0.384 (4.71)  − 5.877 (− 5.85) 1.788 (2.88)  − 1.120 (− 2.49)
Brazil 1.02 (0.75, 1.32) 241.80 (4.33)  − 133.05 (− 4.02) 17.754 (1.10)  − 22.65 (− 2.11)
British Virgin Islands 0.89 (0.67, 1.14) 0.084 (3.91)  − 0.068 (− 5.52) 0.009 (1.38) 0.002 (0.37)
Chile 1.00 (0.73, 1.39) 35.807 (3.22)  − 21.837 (− 3.34) 7.086 (2.16)  − 1.040 (− 0.47)
Colombia 0.72 (0.56, 0.93)* 53.860 (3.22)  − 20.928 (− 6.14) 0.750 (0.32)  − 5.993 (− 3.44)
Costa Rica 0.87 (0.63, 1.20) 3.783 (4.90)  − 2.584 (− 5.87) 0.375 (1.47)  − 0.107 (− 0.59)
Cuba 0.82 (0.53, 1.15) 26.348 (5.83)  − 2.448 (− 0.95)  − 3.451 (− 2.21)  − 3.311 (− 2.94)
Dominica 0.51 (0.32, 0.74)* 0.075 (11.03)  − 0.054 (− 14.59) 0.014 (4.72)  − 0.003 (− 1.42)
Dominican Republic 0.99 (0.73, 1.32) 11.327 (2.92)  − 7.805 (− 3.42) 0.574 (0.49)  − 0.043 (− 0.05)
Ecuador 0.28 (0.08, 0.54)* 19.213 (23.43)  − 12.046 (− 20.44) 0.975 (1.86)  − 2.463 (− 5.26)
El Salvador 0.85 (0.69, 1.07) 3.123 (4.36)  − 2.130 (− 5.26) 0.163 (0.68) 0.230 (1.34)
Grenada 0.23 (0.04, 0.48)* 0.129 (41.77)  − 0.089 (− 38.32) 0.018 (8.41) 0.001 (0.51)
Guatemala 1.25 (1.11, 1.40) 3.928 (0.75)  − 2.468 (− 0.75) 0.855 (0.68)  − 0.240 (− 0.32)
Guyana 0.75 (0.58, 0.97)* 1.387 (4.43)  − 0.321 (− 1.82) 0.039 (0.33)  − 0.200 (− 2.32)
Haiti 0.81 (0.52, 1.17) 1.330 (3.77)  − 0.824 (− 4.14) 0.285 (2.31)  − 0.207 (− 2.32)
Honduras 0.34 (0.13, 0.65)* 4.078 (30.58)  − 3.015 (− 33.44) 1.045 (13.37)  − 0.390 (− 5.61)
Jamaica 0.93 (0.78, 1.13) 5.317 (1.97)  − 1.881 (− 1.20)  − 0.810 (− 0.95) 0.027 (0.04)
Mexico 0.76 (0.56, 0.99)* 300.39 (11.67)  − 137.56 (− 9.52)  − 20.98 (− 2.23)  − 10.05 (− 1.44)
Nicaragua 0.76 (0.54, 1.08) 2.606 (5.61)  − 1.416 (− 5.43) 0.227 (1.34)  − 0.240 (− 1.91)
Panama 0.49 (0.27, 0.76)* 4.879 (13.87)  − 2.923 (− 13.84) 1.101 (6.49)  − 0.833 (− 5.86)
Paraguay 1.28 (1.11, 1.54) 1.761 (0.66)  − 1.174 (− 0.69) 0.218 (0.35)  − 0.087 (− 0.23)
Peru 0.37 (0.01, 0.77)* 27.170 (18.29)  − 11.478 (− 11.75) 3.391 (4.06)  − 4.433 (− 6.03)
Suriname 0.75 (0.56, 0.99)* 1.645 (4.27)  − 0.417 (− 1.93)  − 0.120 (− 0.84)  − 0.290 (− 2.74)
Trinidad and Tobago 0.90 (0.74, 1.09) 20.802 (3.22)  − 12.647 (− 3.41) 2.236 (1.07)  − 2.381 (− 1.64)
Uruguay 0.71 (0.48, 1.00) 4.940 (4.78)  − 0.582 (− 1.00) 0.465 (1.18)  − 0.259 (− 0.86)
Venezuela 0.73 (0.44, 1.05) 108.61 (5.61)  − 40.168 (− 3.70)  − 4.262 (− 0.58) 7.896 (1.44)
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the Caribbean. The eight countries where the time trends 
are insignificant are Antigua and Barbuda, Aruba, Bahamas, 
Cuba, Jamaica, Paraguay, Uruguay, and Venezuela.

Allowing the error term to be autocorrelated, and thus, 
including more structure in the model, evidence of reversion 
to the mean is found in the cases of Antigua and Barbuda, 
Belize, Uruguay, Dominican Republic, and Nicaragua, and 
in all of these except Antigua and Barbuda, the time trend 
coefficient is significantly positive. For the rest of the coun-
tries, we reject this hypothesis (mean reversion) in favor of 
d being equal to or higher than 1. The time trends are signifi-
cant in 17 countries, and the highest coefficients correspond 
to Brazil and Argentina. Performing non-linear trends of the 
form of the Chebyshev polynomials in time, we note that 
mean reversion is found in a large number of cases.

This implies a complex scenario in terms of intervention. 
Likewise, the cases of countries such as Brazil, Argentina, 
Colombia, Chile, and Venezuela show a statistically signifi-
cant trend over time. This may be related to the growth of 
hydrocarbon and mining sectors that represent high percent-
ages in the net exports of the mentioned countries.

Considering that in spite of facing important challenges 
on climate change and not being able to rule out perma-
nent effects in their emissions and effects caused by CO

2
 

emissions, countries such as Antigua and Barbuda, Aruba, 
Bahama, British Virgin Islands, Cuba, Dominica, Gua-
temala, Jamaica, Mexico, Suriname, and Trinidad and 
Tobago do not present a clear trend regarding future behav-
ior. Although as detailed in the WMO (2021), sea level rise 
poses a great risk to low-lying coastal areas in the Latin 

Table 12  Estimated values in an I(d) model with non-linear trends.  CO2 emissions per capita

(*) Indicates statistical evidence of mean reversion at the 95% level

Country D θ0 θ1 θ2 θ3

Antigua and Barbuda 0.73 (0.46, 1.09) 2.243 (0.57) 0.027 (0.01) 0.309 (0.21)  − 0.849 (− 0.76)
Argentina 0.97 (0.75, 1.26) 3.402 (5.38)  − 0.453 (− 1.22)  − 0.038 (− 0.20)  − 0.228 (− 1.76)
Aruba 0.75 (0.59, 0.97)* 10.668 (1.51)  − 2.184 (− 0.55) 0.726 (0.28) 2.366 (1.22)
Bahamas 0.79 (0.64, 0.98)* 6.613 (0.61) 5.5054 (0.83)  − 1.127 (− 0.29)  − 5.557 (− 1.99)
Barbados 0.77 (0.57, 1.01) 3.041 (4.82)  − 1.259 (− 3.55)  − 0.267 (− 1.17)  − 0.062 (− 0.37)
Belize 0.58 (0.37, 0.82)* 1.288 (7.97)  − 0.296 (− 3.18)  − 0.170 (− 2.42)  − 0.040 (− 0.72)
Bolivia 0.81 (0.64, 1.03) 0.956 (4.66)  − 0.452 (− 3.90) 0.072 (1.01)  − 0.097 (− 1.84)
Brazil 1.12 (0.87, 1.40) 1.523 (3.37)  − 0.490 (− 1.78) 0.014 (0.12)  − 0.143 (− 1.88)
British Virgin Islands 0.76 (0.58, 0.99)* 3.197 (2.03)  − 1.593 (− 1.80)  − 0.855 (− 1.48) 0.602 (1.41)
Chile 1.09 (0.83, 1.47) 1.289 (2.21)  − 0.858 (− 1.37) 0.372 (1.32) 0.024 (0.13)
Colombia 0.66 (0.48, 0.89)* 1.549 (13.42)  − 0.158 (− 2.43) 0.053 (− 1.16)  − 0.138 (− 3.85)
Costa Rica 0.98 (0.76, 1.29) 0.995 (2.85)  − 0.390 (− 1.91)  − 0.010 (− 0.10)  − 0.041 (− 0.59)
Cuba 0.83 (0.55, 1.14) 2.667 (5.97) 0.013 (0.05)  − 0.272 (− 1.78)  − 0.309 (− 2.81)
Dominica 0.52 (0.33, 0.75)* 1.054 (11.43)  − 0.765 (− 14.1) 0.200 (4.67)  − 0.034 (− 0.97)
Dominican Republic 0.97 (0.73, 1.29) 1.365 (2.90)  − 0.662 (− 2.41)  − 0.076 (− 0.54)  − 0.003 (− 0.03)
Ecuador 0.37 (0.14, 0.66)* 1.624 (15.29)  − 0.596 (− 8.54)  − 0.173 (− 2.90)  − 0.206 (− 3.93)
El Salvador 0.86 (0.70, 1.07) 0.549 (3.82)  − 0.283 (− 3.46) 0.019 (0.39) 0.041 (1.20)
Grenada 0.32 (0.15, 0.56)* 1.245 (29.69)  − 0.819 (− 28.4) 0.126 (4.98) 0.024 (1.08)
Guatemala 1.08 (0.89, 1.29) 0.545 (2.12)  − 0.178 (− 1.15) 0.031 (0.44)  − 0.013 (− 0.29)
Guyana 0.72 (0.55, 0.95)* 1.898 (5.05)  − 0.363 (− 1.72) 0.091 (0.64)  − 0.211 (− 1.96)
Haiti 0.72 (0.42, 1.07) 0.160 (5.04)  − 0.060 (− 3.35) 0.015 (1.31)  − 0.019 (− 2.15)
Honduras 0.67 (0.50, 0.88)* 0.625 (9.62)  − 0.244 (− 6.27) 0.063 (2.30)  − 0.033 (− 1.54)
Jamaica 0.93 (0.78, 1.13) 2.017 (1.67)  − 0.350 (− 0.50)  − 0.349 (− 0.92)  − 0.058 (− 0.22)
Mexico 0.81 (0.62, 1.03) 3.438 (9.32)  − 0.678 (− 3.26)  − 0.453 (− 3.52)  − 0.135 (− 1.45)
Nicaragua 0.79 (0.59, 1.08) 0.545 (3.82)  − 0.115 (− 1.43) 0.010 (0.20)  − 0.055 (− 1.50)
Panama 0.64 (0.47, 0.87)* 1.654 (7.73)  − 0.458 (− 3.79) 0.187 (2.14)  − 0.223 (− 3.25)
Paraguay 1.08 (0.88, 1.32) 0.511 (1.83)  − 0.229 (− 1.36) 0.0004 (0.01)  − 0.021 (− 0.43)
Peru 0.56 (0.31, 0.86)* 1.176 (10.47)  − 0.131 (− 2.02) 0.098 (1.96)  − 0.174 (− 4.30)
Suriname 0.72 (0.53, 0.96)* 3.825 (4.62)  − 0.241 (− 0.52)  − 0.585 (− 1.89)  − 0.731 (− 3.08)
Trinidad and Tobago 0.83 (0.67, 1.02) 16.378 (3.51)  − 8.451 (− 3.20) 1.125 (0.70)  − 1.892 (− 1.65)
Uruguay 0.72 (0.50, 1.02) 1.621 (4.83)  − 0.022 (− 0.11) 0.162 (1.28)  − 0.076 (− 0.80)
Venezuela 0.50 (0.13, 0.93)* 5.904 (15.12) 0.029 (0.12)  − 0.046 (− 0.25) 0.496 (3.19)
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American and Caribbean region, and people living in these 
areas are particularly at risk. This risk may increase due to 
a possible doubling of the frequency of even small rises in 
water level (0.1 to 0.2 m).

Now, taking into account the values of per capita CO
2
 

emissions, and starting once more with the model with no 
autocorrelation for the error term, mean reversion takes 
place at Belize, Dominica, Ecuador, Grenada, Guatemala, 
Honduras, and Panama, all small Central American coun-
tries; lack of this property is observed in all the remaining 
countries. Focusing on the time trend coefficient, this is sig-
nificant in 19 countries, and the most significant coefficients 
are now the British Virgin Islands, Barbados, and Trinidad 
and Tobago, confirming that particularly these small Carib-
bean states show the highest trend levels that might have 
pronounced impact in climatic terms. This also implies the 
need for the effective application of efficient projects in 
terms of emission regulations, since they can become per-
manent effects for the ecosystem.

If autocorrelation is permitted, Antigua and Barbuda, 
Dominican Republic, Haiti, Nicaragua, and Uruguay are the 
only countries showing reversion to the mean. Thus, perma-
nent effects of shocks are expected in the majority of the coun-
tries. The time trends are now significant in 17 countries, the 
highest coefficients being observed in Guyana and Barbados.

As a general conclusion, we observe very few countries 
displaying mean reversion (see Table 13 for a summary of 
the results). We see that the results are very similar to the 
two variables ( CO

2
 emissions and emissions per capita), 

and though there are some differences in the countries 
depending on the modelization of the error term, most of 
these are relatively small countries in Central America 

and the Caribbean. For the rest of the countries, shocks 
are expected to be permanent. Thus, in the event of nega-
tive exogenous shocks (increasing the number of emis-
sions), strong policy measures will be required to recover 
the series to their original levels. On the other hand, if the 
shock is positive, reducing the emissions, there is no need 
for strong actions on the part of the authorities since the 
series will remain at the lower established level.

In general terms, we have to highlight that efforts have 
to be taken to remove the positive time trends observed in 
some countries along with the high levels of persistence 
observed in many countries that indicate the permanent 
nature of the shocks in the series of CO

2
 emissions. It is 

clear that in Latin America, although there are countries 
with high levels of development and therefore higher lev-
els of carbon dioxide emissions, the region as a whole is 
receiving direct and indirect impacts of climate change as 
detailed in WMO (2021) and confirmed by this research.

It can be seen that in the particular case of Latin Amer-
ica and the Caribbean, it has become one of the regions 
of the world where climate shocks are expected to be 
increasingly intense in the form of heat waves, reduced 
crop yields, forest fires, destruction of coral reefs, and phe-
nomena related to extreme sea levels.

In conclusion, and taking into consideration the socio-
environmental conditions of the region, climate change must 
be considered as one of the main threats to Latin American 
societies, as it may cause structural alterations in agriculture 
and food systems, considering the projected reductions in 
yields of most crops. In addition, as mentioned by WMO 
(2021), the projected historical impacts of climate change 
can be related from a sectoral perspective that includes direct 
impacts on the agricultural sector and the availability of 
water resources; impacts on forest and ecosystem services; 
direct impacts on socioeconomic development, infrastruc-
ture, and forced displacement; and loss of living conditions, 
limiting the development conditions of populations with 
high levels of inequality and poverty, which is a common 
denominator in the Latin American and Caribbean region. It 
is therefore urgent to adopt effective mitigation and emission 
reduction measures and policies that include risk prevention 
and management measures, particularly in countries with 
permanent changes in their structures and to reflect on how 
these decisions do not indirectly affect the small states of 
the region, which have historically played a marginal role in 
international decision-making.
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