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Advances in our understanding of the biology of spinal systems in organizing and

defining the content of exteroceptive information upon which higher centers define the

state of the organism and its role in the regulation of somatic and automatic output,

defining the motor response of the organism, along with the unique biology and spatial

organization of this space, have resulted in an increased focus on therapeutics targeted

at this extracranial neuraxial space. Intrathecal (IT) drug delivery systems (IDDS) are

well-established as an effective therapeutic approach to patients with chronic non-

malignant or malignant pain and as a tool for management of patients with severe

spasticity and to deliver therapeutics that address a myriad of spinal pathologies. The

risk to benefit ratio of IDD makes it a useful interventional approach. While not without

risks, this approach has a significant therapeutic safety margin when employed using

drugs with a validated safety profile and by skilled practioners. The present review

addresses current advances in our understanding of the biology and dynamics of the

intrathecal space, therapeutic platforms, novel therapeutics, delivery technology, issues

of safety and rational implementation of its therapy, with a particular emphasis upon the

management of pain.
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OVERVIEW

Delivery of therapeutics to the spinal cordmay be appropriate for three reasons. (1) The therapeutic
targets are associated with spinal systems: dorsal root ganglion cell, nerve root, dorsal or ventral
horn or the intrathecal space itself (meninges). Many states of pain and altered motor function
represent changes in normal spinal function induced by peripheral tissue and nerve injury or
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by changes secondary to spinal trauma (section, ischemia or
compression) or neurodegenerative processes (amyotrophic
lateral sclerosis, somatomotor atrophy). Pathological processes
may occur, such as cancer (meningeal carcinomatosis,
chordoma) or bacterial/fungal infection (meningitis) that
involve the intrathecal space and its contents. (2) Spinal delivery
of the therapeutic may be required because the therapeutic
platform does not have systemic access to the spinal space.
Such examples would be large molecules (such as ziconotide
and growth factors), antibodies, viral transfection platforms
delivering siRNA/shRNA or oligonucleotides, which have
restricted CNS access because of efficient blood brain barrier
function. (3) The therapeutic agent with a spinal target may be
effective after systemic delivery, but delivery of the agent directly
into the spinal canal permits reduces systemic drug exposure
while allowing high target concentrations with fewer effects
on peripheral and non-spinal systems. Such conditions may
serve to optimize therapeutic results by reducing the side effect
profile. As discussed in this document, this foundation has been
widely demonstrated with molecules, such as opiates or baclofen;
although they are systemically effective in their intrathecal
administration for the treatment of pain and spasticity, they
reduce systemic exposure, with a reduction in secondary effects
and improvement of the outcome.

Importantly, substantial advances in our understanding of
neuraxial biology have revealed a myriad of novel targets in the
dorsal horn and the dorsal root ganglia that regulate nociceptive
processing. Particularly exciting is the evolving implementation
by the neuraxial route of novel therapeutic platforms, such as
toxins and gene targeting to interdict nociceptive processing
by intrathecal delivery. This focus has resulted in an increased
interest in the fluid dynamics of the extracranial neuraxial
space and approaches to target more reliably the distribution
requirements of the different pathologies. Thus, some indications
may require limited segmental effects (as with various pain
or spasticity indications), while others may require a broader
distribution (as with meningeal cancers or neurodegenerative
disorders). Here, the use of patient specific infusion protocols
has become a point of interest, and we see changes in pump
delivery profiles (programming), catheter construction, and
configurations to allow broader distributions of small volumes
of infusate evenly along the extent of the neuraxis and reduce
the risk of local concentration-dependent pathologies that may
arise due to the restricted redistribution of infusate, which may
occur with small volume neuraxial infusion into a relatively low
flow space. In the following sections, we address these evolving
issues, which currently impact advances in the utilization of the
neuraxial route of delivery.

NEW INSIGHTS INTO EXTRACRANIAL
NEURAXIAL ANATOMY

The dural sac is the key structure for the distribution of infused
drugs at the subarachnoid level. The spinal dural sac, within
which is the cerebrospinal fluid, is constituted of the outer layer of
the dura and the closely adherent inner arachnoid layer, forming

the outer barrier of the spinal subarachnoid space (SSAS). The
spinal margins of the SSAS are formed by the pia, which in itself
is intimately associated with the surface of the spinal parenchyma
and surrounds the cord in all aspects. Interior to the pia mater is
the found glial limitans and beyond the glia and neurons. The
pial layer of the spinal meninges represents the main barrier
governing the transfer of drugs between the CSF and the spinal
cord (1–4). The structural complexity of SSAS comprises the
trabecular connection between the arachnoid and pia mater, the
subarachnoid ligaments that periodically attach the space in a
discontinuous manner along the longitudinal axis, and the nerve
roots that emerge from the dorsal and ventral horns.

Dura Mater
As shown in Figure 1, the dura mater, the most external
layer, represents 90% of the total thickness of the dural sac.
This fibrous structure, permeable to small molecules, confers
significant mechanical resilience to the dural sac. The dura
mater has a thickness of about 0.35 millimeters (mm) (0.25–
0.40) (5). It is comprised of around 80 concentric dural
laminas composed of collagen fibers distributed at random in
all spatial directions, forming a touch semi-permeable matrix
through which small, low molecular weight products can pass
(e.g., the route of drug movement after epidural delivery)
(Figure 2).

Arachnoid
The remaining internal 10% of the dural sac is formed by
the arachnoid layer, which is a semi-permeable cellular layer,
governing the passage of substances through the dural sac.
The arachnoid layer has a thickness of 50–60 microns (µm)
(Figure 3). Its barrier properties are due to arachnoid cells
strongly bonded by specific plasmatic membrane junctions, such
as tight junctions and desmosomes. There is no intercellular
space between the cells, and molecules administered within the
epidural space pass through the cell-rich subarachnoid layer.
Accordingly, arachnoid passage is increased by low molecular
weight solute, its lipophilicity, and reduced by hydrophobicity
(6) (Figure 3). Although the arachnoid is essentially avascular,
it provides a barrier protection for products moving from
the fenestrated dural vessels. The outer most layer acts as
a size-selective barrier through expression of claudin-11 in
tight junctions to regulate movement of dural vessel-derived
components (7).

The arachnoid layer and the underlying pial membrane to
be discussed below are linked by several components. The
trabecular arachnoid, bridging the arachnoid layer to the pia
mater, surrounds nerve roots and free blood vessels that pass
though the SSAS, providing to each one an arachnoid sleeve.
The thickness of an arachnoid sleeve ranges from 10 to
60µm. In some cases, one or more nerve roots are enclosed
by a single arachnoid sleeve, and, in others, the nerve root
has no arachnoid sleeves at all (1, 2). Trabecular arachnoid
and subarachnoid ligaments anchor the lateral, anterior, and
posterior sides of the spinal cord to the dural sac (8). These
dentate ligaments are reliably present and serve to secure each
side of the spinal cord to the dural sac. They serve as a
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FIGURE 1 | Human dural sac at the lumbar region. 1 = dural sac, 2 = nerve root cuff, 3 = dorsal root ganglia. With permission of Dr. Miguel A. Reina.
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FIGURE 2 | Human dura mater. Details of 4 dural lamina. Scanning electron microscopy. Magnification × 4,000. 1 = Dural lamina. With permission of Dr. Miguel A.

Reina.

land mark, demarcating the dorsal vs. ventral quadrants of the
spinal cord. Less commonly, posterior ligaments (posticum) are
formed of thin, inconsistent bands that attach the posterior
spinal cord to the inner surface of the dural sac (5). Both
posterior and posterior-lateral ligaments extend longitudinally
from the cervical to the mid thoracic or lumbar level. The thinner
ventral ligament is found on the anterior side of the SSAS.
These subarachnoid ligaments do not limit fluid movement,
but serve as impediments to linear flow patterns in the CSF
and serve to locally disrupt the flow leading to increased
local turbulence as driven by the local oscillatory movement,

which is discussed further below (9), and the movement of an

intrathecal therapeutic.

Pia Mater
The spinal cord (Figure 4) and nerve roots (Figure 5) are

surrounded by the pia mater, a poorly permeable layer formed

by pial cells that restrict the passage of large molecules and

particles from CSF into the spinal parenchyma. This cellular
layer, presenting with a smooth and bright appearance, is
made of flat overlapping pial cells (measuring, on average,
0.5–1µm) (6) linked by desmosomes, resulting in the resistive
barrier. Its thickness at the thoracic, lumbar, and conus
medullaris level is 3 to 5 pial cells (10–15µm). Two to
4 cells (3–4µm) were encountered at the nerve root level.
Behind the pia mater in spinal cord and nerve roots is the
subpial compartment. It is enclosed between the pial cellular
layer and a basal membrane, a limit membrane in contact
with neuroglial cells, displaying a large content of collagen
fibers, fibroblasts, a small number of macrophages, as well
as blood vessels. At the level of the medullary conus, there
are perforations or fenestrations over the entire surface of
the cellular layer of the pia mater. These fenestrations have
circular, ovoid, or elliptic shapes. While the dimensions of
these fenestrations vary, most of them measure 12 to 15µm
in length and 4 to 8µm in width. At the nerve root level, the
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FIGURE 3 | A human arachnoid layer. Scanning electron microscopy. Magnification x 25,000. The entire thickness of the arachnoid layer in blue. 1 = arachnoid cell, 2

= arachnoid trabeculate, 3 = cerebrospinal fluid. The drugs diffuse through the arachnoid layer from (A) to (B). The black dots mark the plasmatic membrane of

arachnoid cells where the molecules are lipid resistant. With permission of Dr. Miguel A. Reina.

pia mater also shows similar fenestrations but smaller in size
(1–4µm) (1, 10). Importantly, as noted above, while thin and
fenestrated, the pia represents an important barrier for diffusion
from the CSF into the parenchyma for large molecules and
particles (4).

TRANSLATIONAL INVESTIGATION OF
CEREBROSPINAL FLUID DYNAMICS

Cerebrospinal Fluid
The CSF contained in SSAS is Newtonian (e.g., its viscosity
remains constant, no matter the amount of shear) and its
viscosity ranges from 0.7.10−6 and 1.10−6m2/s, with molarity
between 290 and 320 mOsm. Therefore, it is similar to water and
0.9% NaCl at 37◦C. Its ionic content, low protein composition,
and minimal cellular constituents have been discussed in detail
in many texts (11).

CSF Elaboration
The volume of the CSF has obvious relevance as a determinant
of dilution of drugs in the SSAS. In man, about 500ml
of CSF is formed each day (12), mainly by the choroid
plexuses of the cerebral ventricles, with significant contribution
from the neuraxial parenchyma, reflecting the functional
role of the glymphatic system (13–15). While the CNS
has been considered to be devoid of lymphatic vessels,
data in both rodents and humans demonstrate that
lymphatic vessels are present and represent an extensive
network along both the transverse and sagittal sinuses, as
well as in sinuses at the skull base and, likely, the root
sleeves (16–18).

CSF Volumes
Classically, the entire CSF volume in man, including cranial and
spinal levels, was defined as 150ml, but Magnetic Resonance
Imaging (MRI) has made a major contribution to allowing
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FIGURE 4 | Human spinal cord. Bar, 1mm. 1 = Dura mater, 2 = arachnoid layer, 3 = cerebrospinal fluid, 4 = pia mater, 5 = motor nerve roots, 6 = sensorial nerve

roots. With permission of Dr. Miguel A. Reina.

estimation of CSF volumes and movement from human
axial images under physiological and pathological conditions
(19–22), with significant variability between patients (12,
19, 20, 22–24). Of note, there is little or no correlation
between patient weight and height and the entire CSF volume
(20–22). In preclinical models, CSF elaboration rates and
total CSF volumes have been reported, and these relative
volumes have been used to estimate the translation of
intrathecal dose/concentrations from the preclinical model to the
humans (25).

CSF FLUID DYNAMICS

Classically, formation of CSF in the choroid plexus and its
absorption in the arachnoid villi were believed to create a
“bulk flow” of CSF in the neuraxis (26). Such an assertion
would then be considered reasonably to yield a uniform
distribution of an intrathecal solute delivered to the lumbar
spinal cord to distribute rostrally and to the brain. Examination
of the local bolus or infusion of small lumbar volumes,
however, clearly shows that this is not the case (27). We
now appreciate that a fundamental property of the intrathecal
space is that the fluid volume of the extracranial neuraxis,
while not static, is a poorly stirred volume with the limited
rostrocaudal flow.

Oscillatory CSF Flow in the Spinal Cord
The characteristic property of neuraxial CSF is its oscillatory
dynamics. This property is a key to understanding issues facing
the delivery of neuraxial drugs and their behavior (28). This
oscillatory flow, occurring in all animals, including humans,
arises from pressure gradients in the CSF driven by two sources:
cerebral perfusion and venous drainage.

• Cerebral perfusion leads to a volume of blood (∼10 ml/heart
beat) being delivered cyclically into the closed cranial cavity.
This volume leads to a net caudal cyclical expulsion of a
volume of intracranial CSF into the compliant extracranial
(spinal) sac (28–30). Both the heart rate and the volume of
the patient’s CSF expulsed from the cranial cavity strongly
influence the distribution of and intrathecally delivered solute.
Doubling the heart rate (from 60 to 120 bpm) causes a
26.4% decrease in the maximum CSF concentration after
injection (e.g., enhanced movement from the injection site).
Doubling the stroke volume of CSF decreased the maximum
concentration after injection by 38.1% (31). In addition to the
heart rate, the CSF pressure waveform and flow are modulated
by other physiological factors, such as the respiratory rate or
increased abdominal pressure that impose separate pressure
gradients on the compliant neuraxial space (see the next
paragraph) (30).

• The extra-vertebral distribution of blood exiting the cord
and entering the low pressure venous system of the thoracic
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FIGURE 5 | Human nerve root of Cauda Equina. 1 = nerve root, 2 = Pia mater, 3 = cerebrospinal fluid, 4 = vessel within nerve root, 5 = a free vessel within

cerebrospinal fluid. With permission of Dr. Miguel A. Reina.

and abdominal cavities may be reversed with increased intra-
thoracic pressures (as with a Valsalva) that lead to compression
of the venous return and back filling of blood into the
large peri-spinal, valveless, venous sinuses (Batson’s plexus)
(32). This expansion of Batson’s plexus in the lower thoraco-
lumbo-sacral region has the effect of compressing the CSF
volume in the extracranial CSF compartment, forcing CSF to
move rostrally.

Factors Governing Spinal Oscillatory CSF
Flow
In the compliant volume provided by the spinal canal and the
non-compliant spinal cord, the cranial pressure pulse can lead
to oscillatory inflow and outflow at velocities up to 10 mm/s at
the cervical cord level, with the velocity depending on the spinal
canal diameter at any given spinal level (33). The amplitude of
the rostrocaudal movement of these pulsations is about 9mm
per cycle in the cervical CSF and about 4mm at the thoracic-
lumbar junction, with minimal movement in the distal part
of the lumbar sac. This gradient reflects several principles: (i)
Flow is determined by conservation of mass flow. (ii) The spinal
cord is only slightly compressible; however, the dural sac can
expand practically to the degree limited by the rigid structure of
the vertebral bodies and the contents of the epidural space (fat
and vascular plexi). This compliance serves to accommodate the
cyclical increases in spinal volume driven by intracranial blood

volume. (iii) The absorption by the compliant dural sac of the
energy/volume carried by the CSF pulse of the energy driving
the fluid pulsation, thereby accounting for the rostroal to caudal
reduction in the CSF pulsations. This property also suggests that
increasing peri-spinal blood volume in the surrounding vascular
plexi will not only generate its own pressure gradient in the spinal
CSF; the decrease in the perispinal space decreases compliance,
resulting in increased intrathecal pulse amplitude. Thus, the
amplitude of the CSF pulsations is increased with elevation of
intra-abdominal pressure (as with a Valsalva maneuver), leading
to back filling of the vertebral venous plexi (34, 35).

This oscillatory movement, combined with the presence of
the catheter and other geometric impediments in the SSAS
(trabeculae, roots, and blood vessels) will lead to greater diffusion
and convection that will enhance to a degree of the local
dispersion of the injected solute. Computational models based
on physical models incorporating local neuraxial geometry
and impediments in association with the principle of CSF
dynamics can serve to identify key variables for patient-to-patient
variability in drug distribution in the spinal canal observed
clinically (36).

Spinal Cord Biomechanical Morphology
Computational analyses have indicated that the balance between
local fluid acceleration and viscous forces produces a principal
ordered flow, consisting of pure oscillatory rostrocaudal motion
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with axial velocities on the order of a few centimeters per second
and amplitudes that, as noted above, decrease monotonically
along the length of the spinal canal from cervical to sacral. The
computational analysis also reveals a non-linear term associated
with the convective acceleration that contributes to a constant
flow that generates a local recirculating motion of the CSF
along the channel with characteristic velocities two orders of
magnitude smaller than the main one. This flow pattern is a
key to the local neuraxial distribution of drugs in the SSAS
(36, 37). Importantly, although poorly studied, eccentricities
(lordosis and kyphosis) found in the human spine affect the
magnitude and characteristics of slow bulk motion of CSF in
the SSAS. Such deformities or other spinal injuries, leading to
canal stenosis, can severely impact local solute redistribution
(33, 38).

Physical Complexity of the Intrathecal
Space and Solute Movement
Nerve roots altered CSF dynamics in terms of the velocity field,
constant flow, and vortex structures. Vortices were produced in
the cervical spine around the roots during CSF flow reversal.
The magnitude of constant CSF flow increased with nerve roots,
particularly within the cervical spine. This increase was located
axially upstream and downstream of the nerve roots due to the
interface of adjacent vortices that formed around the nerve roots
(39). Using Cynomolgus monkeys, the impact of SSAS catheter
implantation on CSF flow dynamics has been studied. The
Hagen–Poiseuille equation (describing the relationship between
pressure, fluidic resistance, and flow rate) was used to investigate
the impact of catheter implantation on flow reduction and
hydraulic resistance. Results showed that catheter insertion
had a significant impact on hydrodynamic parameters, altering
lumbar catheter implantation to a lesser degree than cervical
(40). Tangen et al., published potential guidelines considering
drug-specific kinetics of tissue uptake of intrathecal drugs,
which determine the speed of drug dispersion and influence
tissue targeting (39, 41). It was shown that drugs with lower
solubility advance 3 times more due to insufficient uptake in
adipose tissue, or spinal tissue (39). Current computational
capabilities are able to predict drug biodistribution mainly based
on parameters like infusion settings, drug chemistry, subject-
specific anatomy, and cerebrospinal fluid dynamics (31, 36, 38,
39, 41–43).

The development of computerized models based on
fluid physics that can predict the biodistribution of agents
administered intrathecally represents a potentially important
approach to help physicians in choosing medications
and schedule regimens and doses to improve treatment
programs (44–48). These models provide the ability to
perform representative in silico assays of subarachnoid
injection and infusion protocols, including injection site
location, injection rate, injection volume, and flush volume
(34, 35). In addition, the models can assess the impact of
physiological factors, including heart-induced increased
CSF stroke volume and deep breathing (Valsalva) and
posture (45). Understanding the anatomy and physiology

of CSF dynamics is an essential element for managing
the implementation of potential therapeutics for IDD in
patients with neuraxial pathologies (e.g., pain, spasticity, and
neuraxial infection/metastases.

TRANSLATIONAL INVESTIGATION OF THE
DISTRIBUTION OF INTRATHECALLY
DELIVERED DRUGS

On the surface, it might be anticipated that delivery of a
therapeutic into the intrathecal space will readily lead to
engagement of the appropriate intrathecal target. However, the
behavior of an intrathecal injectate delivered into the intrathecal
space with its restricted volume and its hydrodynamic properties
reveals often unanticipated complexities.

Local Intrathecal Drug Concentration
Gradient
Following intrathecal delivery of a therapeutic, a rostral-caudal
gradient from the catheter tip is typically observed. Such
gradients have been observed in patients and in animals
(46, 49). As an example, patients receiving IT infusions
of morphine (39) sampled at varying distances from the
infusion site showed CSF morphine concentrations, decreasing
as a function of segmental distances from the catheter
tip. These gradients are also evident from the dermatomal
distribution of the density of block produced by spinal
anesthetic (50).

The profile of this delivery gradient (height and spread) is
regulated by several factors. (1) The height of this gradient is
proportional to the concentration/dose delivered at the point
source. In principle, the steepness of the rostrocaudal gradient
is defined by the rate at which the solute is cleared from the
intrathecal space. Such clearance into the adjacent meninges and
parenchyma is governed by physicochemical factors, such as
molecular weight, charge, and lipophilicity (40). Large, charged
molecules are cleared slowly, while small lipophilic molecules
are cleared rapidly and, hence, in principle, establish a relatively
steep gradient around the drug delivery site. (2) The rostrocaudal
spread of the gradient reflects the volume that has been delivered
and the magnitude of the oscillatory flow, which diminishes from
cervical to sacral and the velocity of the oscillations and is altered
between cervical and lumbar by the relatively constricted thoracic
space (51, 52).

Different three-dimensional computational models have been
constructed for the investigation of CSF dynamics in the SSAS.
These results manifest a porous media model that incorporates
rostrocaudal (anisotropic) permeability variations within the
SSAS. The integration of anatomical and velocimetric data with
computational fluid dynamics principles allows reconstruction of
precise fields of velocity and pressure in the investigated domain.
Results are consitent with the physical biological model, showing
the presence of global asymmetries in CSF flow, and that the
net rostrocaudal flow through the spinal canal is insignificant
within a cardiac cycle, despite the relatively large-amplitude CSF
oscillation (53–55).
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Parenchymal Diffusion of a Molecule
Aside from a direct effect upon the meninges, an intrathecal
agent much reaches its target, typically with the parenchyma,
notably the dorsal horn for sensory and motor neurons for
motor systems. As reviewed above, after IT delivery, the initial
barrier tomovement into the parenchyma includes the pia, which
provides a barrier for high molecular weight molecules. In the
parenchyma, the rate of movement is typically modeled by the
diffusion, although the extracellular space, driven by the CSF-
tissue concentration gradient. Such parenchymal movement is
modeled as the rate at which a solute travels over a distance
in free space and that rate required to traverse the distance in
the tissue environment. This ratio is referred to as tortuosity.
Variables that impact upon tortuosity are: (i) molecular size
(larger globular solutes exhibiting slower diffusion than smaller,
linear molecules), (ii) geometrical size (volume fraction reflecting
the relative size of the extracellular space), and (iii) the chemical
interactions between the molecule and surrounding cells or
extracellular matrix. It is beyond the scope of this review to
discuss the complexity of these issues here, and the reader
is directed to learned reviews (56–58). However, the practical
implications of the role of parenchymal diffusion to drug action
can be seen in several examples reviewed elsewhere [see (59)]:
(i) Time of the onset of analgesia in preclinical modelscovaries
with spinal cord size (and depth to the dorsal lamina); (ii)
Small lipid soluble drugs diffuse rapidly into tissue. It has,
however, been long appreciated that, in this process, they
are cleared rapidly into the parenchymal vasculature. So, as
an example, while a lipophilic neuraxial analgesic (fentanyl)
may show a rapid onset as compared to a hydrophilic agent
(morphine), the ability of a lipophilic compound to reach deep
parenchymal sites may be limited by being cleared as it diffuses
and, accordingly, may require higher concentrations to sustain
a concentration gradient to drive parenchymal diffusion in the
face of its rapid clearance. (iii) With molecular weight, time of
the analgesic onset also reflects changes in drug movement into
the parenchyma with high molecular weight compounds, such
as the calcium channel blocker (ziconotide), showing a delayed
onset after delivery.

Intrathecal DRG Access
As discussed above, the roots are invested in an arachnoid layer
that terminates in a tight cuff proximal to the ganglion. This
organization raises the question of how, following IT delivery,
that even large molecules/particles (AAVs) can reach the cell-
rich portion of the DRG (see below). Macroscopically, the dura
and the arachnoid form a sleeve that continues to the proximal
edge of the DRG. The epineurium, the outer most covering of
peripheral nerves leading to the DRG, merges with the dura.
The arachnoid is continuous with the perineurium and merging
at the subarachnoid angle (60), which marks the end of the
SSAS between the arachnoid and the pia. It appears likely that,
at this point, the perineurium is open-ended to the SAS, and
appears to be a likely location of communication between the
CSF and DRG (61). More work is required to further define
this linkage.

CURRENT AND FUTURE ANALGESIC
PHARMACOLOGY

Rationale for Spinal Targeting of Analgesic
Therapeutics
The “pain experience” arising from exteroceptive
(somatic/musculoskeletal/visceral) stimuli or events, which
occur secondary to injury to the afferent-neuraxial pathways,
reflects the complex integrative process that occurs at supraspinal
levels (48). It is appreciated that supraspinal processes may
enhance nociception through bulbospinal projections that drive
enhanced dorsal horn excitability (62, 63). In all of these cases,
a pivotal component of the pain experience strongly depends
upon the content of the spinofugal message provided to the
brain secondary to the spinal processing of the afferent traffic.
This observation has been validated by the analgesic efficacy
of spinally targeted pharmaceuticals (64, 65). We recognize
that pain may have several orthogonal dimensions, classically
referred to as the “sensory discriminative” and the “affective
motivational” (66). It has been argued that changing the content
of the spinofugal information content may impact upon the
sensory-discriminative but leave unaltered the events underlying
the affective motivation (suffering) component of the pain state.
In this regard, we emphasize that altering dorsal horn afferent
processing by spinal agents targeting a number of processing
nodes clearly changes the content of the message being
transmitted from the spinal dorsal horn to supraspinal areas
believed to underlie affective processing (27, 67, 68), and so block
not only the behavioral effects of tissue and nerve injury on not
only evoked thresholds (e.g., allodynia and hyperalgesia) but also
on activities that endow a highly rewarding phenotype to spinal
drugs, which, otherwise, have no rewarding properties (69–71).
Consistent with these preclinical observation are the reported
improvements in wellbeing and emotional comportment in the
human suffering from severe pain syndromes (64, 65). These
joint observations point to the pivotal and defining role played,
from a clinical perspective, in the efficacy and utility achieved by
altering nociceptive processing at the levels of the dorsal horn.

Intrathecal Drug Delivery of Analgesics
and the Clinical Perspective
IDD allows for direct administration of spinally administered
agents to their location of action within the CNS. IT drug delivery
in principle has several advantages for the treatment of chronic
pain as compared to peripheral delivery. IDD allows for the
bypass of first-pass metabolism and a bypass of the blood-brain
barrier. Due to the direct delivery of treatment drugs to the
location of action, less drugs can be used, which can, in turn,
result in less interaction with systemic receptors and overall less
systemic adverse effects (45–48).

Many IT agents are utilized as the standard of care for the
treatment of chronic pain via IDD, but only two IT drugs are
approved for the treatment of chronic pain by the US Food and
Drug Administration (FDA). Both morphine and ziconotide are
approved as IT monotherapy for the treatment of chronic pain.
The Polyanalgesic Consensus Conference (PACC) guidelines
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provide a framework to utilize IT therapy in a safe, efficacious,
and evidence-based manner (72). The PACC guidelines are
revised on a regular basis to address deficiencies and innovations
in IDD. In the 2017 iteration of the PACC guidelines, disease-
specific states, type of pain, and location of pain were taken into
consideration (local vs. diffuse) (72).While there is FDA approval
for the treatment of chronic pain using monotherapy with IT
ziconotide or morphine and while there is evidence to show
that monotherapy can be efficacious (73), it is routine for pain
practitioners to report utilization of off-label medication and/or
combination therapy (72). There are a number of determinants
that have a significant impact on IDD. Important factors to
consider are CSF flow dynamics, the pharmacokinetic profiles
of individual intrathecal agents, rate of administration, drug
volume, and placement site of the catheter tip (38, 44, 74, 75).

Important factors related to ITmedications include drug dose,
drug volume, rate of administration, and lipid solubility. Of the
aforementioned drug factors, lipid solubilitymay be an important
determinant as it relates to IDD at low flow rates. The depth
of penetration by IT medications at the dorsal horn to exert
their effect on target sites is on the order of 1–2mm in humans
(76). Hydrophilic drugs like morphine or large molecules (like
ziconotide) are slowly cleared to the plasma and, hence, have
a higher likelihood to maintain a driving diffusion to penetrate
through the pia mater and diffuse to the superficial laminae of
the spinal dorsal horn (substantia gelatinosa), although their rate
of diffusion and, hence, time of the onset may be longer (40).
Hence, as reviewed above, lowmolecular weight, hydrophilic, low
lipophilicity IT drugs are more likely to have further rostrocaudal
spread in the CSF and to penetrate into the cord as well. A
hydrophobic drug like fentanyl will have a more limited spread
within the CSF (e.g., a narrower rostrocaudal gradient as it
undergoes rapid uptake clearance into the systemic circulation
through the parenchyma and the meninges with absorption into
the epidural fat (40).

Intrathecal Analgesics
In the following sections, we briefly review the common currently
approved intrathecal analgesics (72, 76–78).

Opioids
The mechanism of action intrathecal opioids is believed to exert
their effects predominantly at lamina II (substantia gelatinosa)
in the dorsal horn of the spinal cord (40, 79). It should be
appreciated that, in addition, the intrathecal drug (opiate) may
act directly to alter the excitability of the dorsal root ganglion
neurons. This suggestion is predicated on two considerations.
Even large molecules, such as antisense oligonucleotides and
adenoassociated viruses, can impact the dorsal root ganglion
after intrathecal delivery (see below). (2) in vitro studies have
demonstrated that opiate can alter the excitability of the neuronal
cell body (80, 81), and (3) increasing evidence suggests that the
excitability of the DRG neurons can lead to an enhanced afferent
traffic (82).

Clinical utilization opioids employed for intrathecal analgesia
are almost exclusively mu opioid agonists that range from polar

(morphine) to highly lipophilic (fentanyl). Aside from their mu-
opioid efficacy, an important difference (as reviewed below)
that some molecules (morphine) are strong activators of Mas
receptor G protein coupled receptors (MRGs) and accordingly
degranulate mast cells activate fibroblasts and may have a higher
likelihood of yielding intrathecal meningeal masses) (83–86).
Opioid medications are the most commonly utilized IT drug
class whether used alone or in combination therapy for the
treatment of chronic pain via IDD. While there are many opioid
medications utilized in the IT space, morphine (Infumorph R©)
is the only FDA-approved IT medication for the treatment of
chronic pain. The PACC guidelines make recommendation for
all of the commonly utilized medications in relation to the
level of evidence, recommendation grade, and the consensus
level. The level of evidence and recommendation grade was
based on the United States Preventative Services Task Force-
created hierarchies (87). Consensus rankings (strong, moderate,
weak) came from a determination by the authors of the
PACC guidelines. In patients with active cancer-related pain,
IT opioids are considered to have Level-1 evidence, a grade
A recommendation, and a strong consensus level. For patients
with non-cancer-related pain, IT opioids are considered to have
Level-3 evidence, a grade B recommendation, and a strong
consensus level (72). Additionally, the PACC guidelines consider
morphine as a line 1A drug across all groups (cancer/non-
cancer, diffuse/localized, nociceptive/neuropathic). The guideline
also takes into consideration other opioids, including fentanyl,
hydromorphone, and sufentanil, but these IT opioids are
considered further down in the algorithm (72). While all of the
opioids listed in the guidelines are utilized commonly in practice,
the guidelines recommend FDA-approved IT medications as the
first line.

While these opioids may have the same mechanism of action,
some may be more advantageous when treating localized or
diffuse pain. As noted, IT drugs that have lower lipophilicity
and are more hydrophilic are able to penetrate further into the
spinal cord and achieve wider spread in the CSF. Morphine and
hydromorphone, due to their ability to spread and penetrate the
cord, are recommended for diffuse pain. Conversely, drugs that
are more lipophilic and hydrophobic like fentanyl may be more
helpful in treating localized pain (74). Drugs like fentanyl diffuse
quickly out of the CSF and may achieve plasma levels that mirror
those observed after systemic delivery.

Traditional school of thought was that IDD was considered
in patients on very-high-dose opioids or patients with cancer.
More recent research has focused on IDD outcomes in patients
who are either opioid naïve or on low doses of system opioids.
Low-dose opioid IDD has been a topic of increasing interest and
research as opposed to using high-dose IDD in opioid-tolerant
patients. Several studies examined “microdosing” in IT therapy,
which involves weaning a patient totally off or to very low-
dose systemic opioid prior to trialing and implanting an IDD
(88, 89). Once a patient has been weaned down or off opioids, the
provider has the ability to utilize low-dose IT opioids. The PACC
guidelines also review this concept of low opioid dosing for IDD,
but further research in the form of randomized control trials is
needed (78).While this concept of low-dose IDD is touched on in
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the PACC guidelines and described in the literature (88, 90), there
is no current standardized or method of achieving low dosing
recommended in the literature.

Adverse Effects
Potential effects related to opioid infusion include respiratory
depression, peripheral edema, hormone changes, tolerance,
opioid-induced hyperalgesia, constipation, urinary retention,
pruritus, and intrathecal granuloma formation. Some of these
side effects may be curbed with utilization of low-dose IDD in
that a low-dose management strategy can lend to less overall side
effects, decrease potential for opioid-induced hyperalgesia, and
decrease the potential risk of granuloma formation at the catheter
tip (see below for detailed discussion).

Ziconotide

Mechanism of Action
Ziconotide (Prialt R©) selectively blocks presynaptic N-type
calcium channels in the dorsal horn of the spinal cord
(91). Blocking these calcium channels disrupts pain signal
transmission by inhibiting the release of calcitonin gene-related
peptide, glutamate, and substance P92.

Clinical Utilization
Ziconotide is the only non-opioid IT medication that is
approved by the FDA for the treatment of chronic pain. Early
clinical studies with intrathecal infusion ziconotide experienced
significant side effects, which were attributed to over dosing
based on a rapid dose escalation that failed to account of the
extended duration of the spinal effect onset presumed to be
secondary to the delayed movement of the molecule to the site
of target engagement in the dorsal horn. The PACC guidelines
consider IT ziconotide for the treatment of chronic pain
(cancer/non-cancer, diffuse/localized, nociceptive/neuropathic)
to have Level-I evidence, a Grade-A recommendation, and a
strong consensus (2, 72, 73, 92). Deer et al. found that ziconotide
as an initial drug for IDD resulted in improved pain control as
compared to ziconotide being added as a rescue agent; however,
the attrition rate—presumably due to ziconotide-related adverse
events, was very high (93). The combination of morphine and
ziconotide as initial IT agents has been recommended by both
the PACC (72) and other studies (73, 94), although there is still
room to thoroughly evaluate the benefits and associated risks of
this combination.

While ziconotide has been found to be a safe drug that can
provide pain relief, many times, its use is limited by potential
side effects and narrow therapeutic window (95–99). Side
effect to ziconotide may present early on during a trial or with
up-titration. In many cases, ziconotide side effects may appear
after the patient has been on a stable dose. Potential adverse
effects can include psychiatric disturbance, dizziness, confusion,
somnolence, myopathy, nystagmus, memory impairment,
nausea, and abnormal gait (95–101). Dosing paradigms
specifically designed to improve the safety and efficacy of
ziconotide have been proposed: bolus (flex) overnight dosing
and patient-controlled administration (102, 103).

Local Anesthetics

Mechanisms of Action
Local anesthetics block voltage-gated sodium channels in the
neuronal cell membrane, which results in the blockade of
action potential propagation (104). Unlike all of the other IT
medications that target the dorsal horn of the spinal cord, local
anesthetics are considered to exert their effects preferentially on
the fila radicularia due to a large surface to the volume ratio of the
rootlets as compared to that of the spinal cord (105).

Clinical Utillization
Bupivacaine is a highly lipid soluble amide local anesthetic
and the only local anesthetic included in the PACC guidelines.
In the most recent PACC guidelines, bupivacaine has been
recommended as a 1B combination treatment with opioids in
all treatment groups. The only drug recommendations higher
than bupivacaine and opioid combination therapy are the two
FDA-approved drugs (morphine and ziconotide) in all groups.
Bupivacaine is only considered as a sole therapy in localized
non-cancer pain (73). More commonly, bupivacaine has been
utilized due to inadequate analgesia with opioid monotherapy,
and it is considered to be the most common adjuvant utilized
in conjunction with IT opioid (2, 5, 21, 34, 47, 78, 79, 83, 106,
107).

Alpha-2-Agonists

Mechanisms of Action
Clonidine is an alpha-2 adrenergic agonist that may be used
intrathecally in the treatment of chronic pain. Activation of
alpha-2 adrenoceptors has been shown to block noxious stimuli
by pre- and post-synaptic mechanisms (108–110). Intrathecally,
clonidine has been shown to inhibit the neuroimmune activation
associated with neuropathic pain states (111). Clonidine more
specifically can inhibit glial cells that add to enhanced pain states
through the release of pro-inflammatory cytokines and inhibit
the activation of NF-κB and p38 (111).

Clinical Utilization
The PACC guidelines recommend clonidine as a Line-2
treatment across all groups (cancer/non-cancer, localized/diffuse,
nociceptive/neuropathic) (73). IT clonidine is not recommended
to be used as a sole agent but, rather, in combination with
an opioid, local anesthetic, or ziconotide. Clonidine is also
recommended to be combined with two or more of the
aforementioned drugs classes (72). IT clonidine has been
shown to be efficacious in a dose-dependent manner in terms
of pain control (111–113). At higher doses, there is better
pain control, and cardiovascular effects typically stabilize
(114). Clonidine has more cardiovascular side effects at
lower dosing (114). Other negative effects that have been
reported with IT clonidine include dizziness, dry mouth,
bradycardia, confusion, hypotension, nausea, orthostasis,
sedation, night terrors, depression, and insomnia (115). Sudden
discontinuation of clonidine due to device failure or an empty
pump can result in rebound hypertension, a serious adverse
effect (116).
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Baclofen
It is an agonist of the gamma aminobutyric acid (GABA)-B
receptor, approved by the FDA, intrathecally, for spasticity (117).
Animal studies indicate that baclofen has analgesic properties
when injected into the spine (118, 119), and, in humans, it has
shown efficacy, especially in patients with central pain associated
with spinal cord injury (120–122), but showing lack of efficacy
in complex regional pain syndrome (123). An animal study
demonstrated that intrathecal baclofen reduced only the Phase-
2 pain behavior after formalin injection, suggesting that the drug
blocks noxious stimulus-induced spinal sensitization (124), but
also modulating the effects of neuropathic pain in a nerve injury
animal model (125). PACC recommendations (72) proposed
with evidence Level II-2 as intrathecal medication for use to
treat spasticity, also, with evidence Level II-3 recommend as an
adjuvant to treat pain in Line 4.

Combination of Analgesic Therapies
The use of a combination of a local anesthetic and opioid
medication has been widely described in the acute and chronic
pain literature. Utilizing a combination of IT medications is
a way to employ a multimodal approach to the treatment
of chronic pain using IDD. It is generally accepted that a
multimodal approach to pain control is superior tomonotherapy.
Combination therapy is commonly used because local anesthetics
and opioid medications have been found to act synergistically
when given IT in acute pain and animal models (126–131). The
combination effects of local anesthetics and opioid medications
in terms of pain control are mostly manifested as reduction
of opioid dose escalation, which unfortunately plagues opioid
IDD (132–134). When bupivacaine is combined with opioids at
IDD initiation, it may help to limit the opioid dose escalation
(135, 136). A number of studies have shown that 10 mg/day
or more of IT bupivacaine can be helpful in the treatment of
chronic non-cancer pain (135, 137–139). In one double-blinded
randomized control trial by Mironer, there was no additional
benefit when bupivacaine was added to opioids vs. the use of
opioids alone (140). In the Mironer study, however, limited doses
between 4 and 8 mg/day of bupivacaine were administered (140).
Although long-term safety has been shown with bupivacaine
infusions intrathecally in animal models, there are potential
adverse effects, which include weakness, numbness, urinary
retention, and hypotension (141, 142). One study with 82 patients
being treated with IDD revealed significant decreases in systolic
blood pressure and mean arterial pressure over 1 year (143). The
decreased blood pressure associated with long-term thoracic IT
infusion of bupivacaine is thought to be secondary to blockade
of sympathetic efferents (143). The safety and efficacy of the low-
dose intrathecal (IT) combination of ziconotide and morphine
allows safe and rapid control of malignant pain refractory to oral
opioids (94). This combination has also been recommended in
the proposals of the PACC (72).

Intrathecal baclofen combinations have also been proposed
for the treatment of chronic pain and spasticity. In line with the
PACC proposals for its use as an adjuvant, reports have been
made of its combined use (144), with clonidine (122), ziconotide
(145), morphine (146), and bupivacaine (147, 148).

FUTURE DIRECTIONS IN NEURAXIAL
THERAPEUTICS

The richness of the dorsal horn pharmacology and the
characterization of that pharmacology as being relevant to
pain processing by the effects of the respective agonists and
antagonists have been accomplished through neuraxial studies
in a variety of well-defined preclinical models. These novel
neuraxial therapeutic targets have been reviewed in detail
elsewhere (59). Particularly notable has been the advances in
the development of novel therapeutic delivery platforms to be
delivered intrathecally to target a variety of neuraxial targets.

TARGETED TOXINS

Targeted toxins have been developed, such as those developed
using the botulinum toxin light chain, that reversibly alters
transmitter release in the afferent pathway at the first and second
order synapses (68), or toxins, such as SP-Saporin, that lead to
cell death of the second order neurokinin 1 expressing projection
neuron (149). Considerable work has indicated the efficacy of
toxins targeted at specific receptors on the nociceptive afferent,
such as for resiniferatoxin (150). Toxins arising from anthrax
can be developed, which target specific sites on nociceptive
afferents (151). Intrathecal delivery of these products has,
respectively, displayed long-lasting, if not irreversible, effects,
upon nociceptive processing preclinical models.

TARGETING THE GENOME

The targeting of the genome or message to alter the expression
of channels and protein contributing to the processing of
nociceptive information has been accomplished using antisense,
viral vectors or lipid-based deliveries for CRISPR or zinc
fingers or RNAi (152–156). Antisense oligonucleotides have
virtue, given their ability to target messages leading to specific
proteins. This platform has found significant implementation
in neurodegenerative disorders, such as somatomotor atrophy
(SMA), which are being successfully addressed by the use of
FDA-approved intrathecally delivered antisense oligonucleotides
(157, 158). These gene-targeting platforms requiring neuraxial
delivery are exciting as they promise to produce long-lasting
change in neuraxial processing at the level of the dorsal root
ganglion or spinal dorsal horn that may be achieved by a single
injection, perhaps foregoing the need for continued neuraxial
access or delivery, importantly, the increasing utilization of the
neuraxial route for novel targets and platforms.

ADVANCES IN NEURAXIAL DELIVERY
PLATFORMS: PORTS, PUMPS, AND
CATHETERS

In managing chronic conditions (pain, spasticity,
neurodegenerative pathologies), some drug-targeting
platforms (such as transfection platforms or some antisense
oligonucleotides) may require only a single injection to achieve
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an extended target engagement, while other approaches with
molecules having a limited duration of action may employ
indwelling catheters and IDDS. Although delivery into the
brain and ventricles has been employed, the present discussion
focuses on delivery into the spinal intrathecal space. The
principal components required by such on-going delivery are
the pump or port by which the drug is delivered and the delivery
system itself, which is the implanted catheter. These systems are
placed subcutaneously to avoid an exit wound for the catheter
and enable continuous infusion. In the following section, we
briefly consider the principal classes of systems and point to
future directions.

PUMPS

There currently exist several pump systems. Here, we not
specifically dwell on the specific pumps but the overall defining
characteristics of the pumps that are currently available (159–
161). Pumps are discussed further below.

Construction
They are encased in a biocompatible shell (titanium), containing
the drug reservoir, delivery mechanisms, and the power source,
with the outer hull fitted with securing anchors.

Drug Reservoirs
These reservoirs define the size of the implanted pump and may
range from 20 to 60 ml.

Access
Pumps typically have access ports, which allowmultiple reservoir
refills without leakage and, separately, access to the catheter
downstream from the reservoir.

Delivery System
Delivery of drug is driven by a pressurized portion of the drug
reservoir, which provides a driving pressure, which is replenished
when the pump reservoir is refilled with drug and/or by an
electrically driven pump powered by internal batteries.

Delivery Control
Output of the pump may be fixed or controllable. Controllable
pumpsmay regulate the rate of pumping (e.g., as with a peristaltic
rotor), producing a continuous flow or by sequential valves
that allow filling of a small volume reservoir and then periodic
expulsion of the minimum reservoir content with a rate of
delivery controlled by recycling interval. Currently, the timing of
delivery and the rate can be controlled by external telemetry.

Rate of Delivery
Flow rates on the programmable pumps are, typically, in the
range of 0–1,000 µL /h. Higher rates are typically used in a
periodic delivery mode to achieve a pseudo periodic bolus.

CATHETERS

Most of the implantable systems are provided with their
respective approved catheter as a component of the implantable

systems. There are several typical properties defining these
implantable neuraxial catheter systems.

Construction
Catheters should be inert, lacking irritants that may generate a
local reaction. Important features include resistance to kinking
and breaking. They have an external silicone covering andmay be
constructed from several layers, which include polyurethane and
a radiopaque marker to facilitate identification of the catheter tip
and, occasionally, along its trajectory.

Size
Catheters approved for continuous use are on the order of 1.2–
1.5mm outside diameter, thus requiring a 15–16-G needle for
their intrathecal placement (Figures 6A,B).

Exit Port Configuration
Most implanted catheters display a closed tip and multiple side
ports with the diameter of the side port similar to the internal
catheter diameter (0.5–0.7 mm).

Connectors
Catheters for chronic subcutaneous implant have specialized
fitting that provides a secure leak-free connection at the pump
outflow. Movable anchors are used to secure the catheter near
its exit.

DEVICE-RELATED DISTRIBUTIONAL
PROPERTIES OF NEURAXIAL CSF AND
INJECTED SOLUTES

The previous commentary discusses the currently available
delivery platforms. Let us now consider the issues related to
the accomplishment of a satisfactory neuraxial drug delivery. As
previously discussed in CSF dynamics section, since its initial use
in humans for anesthesia (162) and then with infusion for pain
(163) and, later, for spasticity (117), our understanding of the
principles governing the delivery of drugs to the spinal cord has
grown. In summary of an extensive literature summary overview:

The spinal cerebrospinal fluid space is composed of a closed
cranial and extracranial (spinal) fluid space, displaying significant
compliance (164, 165).

• Cerebral spinal fluid (CSF) is formed in the cerebro-ventricles
and bymovement from along the parenchyma along the spinal
into the intrathecal space (15).

• The movement of spinal CSF is driven by (1) the periodic
pressure gradient established by expression of CSF from the
brain as a result of filling with blood during the systolic
phase of the cardiac cycle, resulting in a limited cranio-
caudal/caudal- cranial CSF movement (as permitted by the
compliance of the spinal dural sac located within the boney
spinal canal and (2) by periodic increases in intrathoracic
pressure with respiration, which increases compressive blood
volumes in the peri-spinal venous sinuses (Batson’s plexus)
(41, 166).
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FIGURE 6 | (A) Subarachnoid catheter. A catheter exiting the introducer needle in the vicinity of the roots of the cauda equina. (B) A catheter in the subarachnoid

space to visualize the size relationship with respect to roots of the cauda equine.

• These local oscillatory movements are greatest in the cervical
spinal region and, progressively, more limited as one proceeds
caudally (167, 168).

• The intrathecal space is a complex environment with
significant physical impediments to free CSF movement flow.
These impediments are the numerous septae, connecting the
dura arachnoid to the pial surface, which may partition to
varying degrees the intrathecal volume into adjacent spaces,
the trabeculae that connect the dura arachnoid to the surface
of the cord, traversing blood vessels and roots (41), and the
symmetric location of the spinal cord in the spinal canal,
resulting in a complex streaming pattern (169).

• Given these properties, two characteristic parameters of
injectate movement are noted. First, at the drug delivery
site, a low rate or volume results in a stagnant pool of
injectate proximal to the catheter tip results in the exposure
of local tissues to the infusate concentrations being delivered.
Second, the rostrocaudal distribution of a dye marker or
drugs delivered into the lumbar space is thus limited with
the local injectate, displaying a declining rostral and caudal
gradient around the intrathecal injection site with the peak
concentration at the injection site and the tails of the
rostrocaudal distribution proportional to the infusate drug
concentration (74, 75). Over time, if the drug is poorly cleared
from the CSF space (as with large molecules or particles), the
local cyclic pressure gradients will lead to gradual dilution of
the infused material and a rostro caudal spread.

• Increased rostrocaudal movement and increased local mixing
of an injectate may be accomplished with higher infusate
volumes or higher rates of infusion (47). However, the
limited volume of the CSF space restricts the volume that
may be delivered by bolus or infusion. For the implanted
human pump with a limited reservoir capacity (20ml),
continuous spinal infusion programmed rates tend to be low,

and total daily volumes typically do not exceed 20 µL/h
to increase the interval between percutaneous refilling of
the pump.

CONSEQUENCE OF RESTRICTED CSF
REDISTRIBUTION

As noted, spinal drug redistribution represents two dimensions:
(i) movement rostrally and caudally from the site of delivery and
(ii) the local dilution of the injectate that exits from the catheter
tip. These two components contribute to two issues of relevance
to the effects of intrathecal drugs.

Spinal Drug Activity: Role of Rostrocaudal
Redistribution
In many cases, the target to be engaged by the intrathecal
drug may extend over several segments. Consider two scenarios:
First, therapeutics to target neurodegenerative changes or central
seeding cancers may require intrathecal drug distributions
that extend from sacral to cervical cord; second, spinal
processing of nociceptive input and/or changes in spinal function
leading to spasticity is not limited to a single spinal segment.
Thus, afferent traffic from a single nerve root may send
collaterals to spinal levels up to 5–10-segment distance (170).
Accordingly, spinal drugs (other than a local anesthetics that
act upon local nerve roots), such as morphine must reach
the terminals of the afferent or distal dorsal root ganglia (as
with an adenovirus transfection) delivered the lower lumbar
may necessitate reaching thoracic or even cervical spinal
segments. Absent a prominent CSF movement after delivery
from a point source delivery leads to a restricted movement
of the infused drug and a rostrocaudal gradient that fails
to engage distal targets relevant to the spinal processing
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required to regulate pain or spasticity state. We argue that
these characteristics result in the need to employ higher
concentrations (to increase the drug exposure at the rostrocaudal
tails of the intrathecal distribution curve and to increase drug-
delivery volumes).

To enhance rostrocaudal spread, larger volumes and/or
rates of infusion are typically considered appropriate. While
intuitively reasonable, using the anesthetic level to assess drug
distribution after intrathecal delivery of local anesthetics reveals
that increases in spinal levels are only modestly increased with
increased intrathecal volumes (50). For bolus delivery, the rate
of infusion does not appear to reliably affect the degree of
rostral distribution as measured by block height (171–173).
This limitation on the effect of volume and bolus delivery
upon rostrocaudal movement reflects upon two properties: (i)
injectable volume is restricted. Studies employing intrathecal
delivery of local anesthetics are typically limited to 10–20ml,
and the estimated spinal CSF volume is 90–120 (24, 173).
So, the ability to force rostral drug exposure with increasing
volumes is usually limited to, perhaps, at most, 20% of the spinal
volume. As regards to the rate of delivery, the compliance of
the dural saccauses the energy imparted by a bolus infusion
to be minimized. Furthermore, the rostral movement of the
fluid stream is hindered by the complex impediments present
in the intrathecal space. Furthermore, low-infusion, low-volume
regimens accentuate the limited rostrocaudal movement of the
drug. One consequence of this lack of active rostrocaudal
redistribution is to increase the required infusate concentration
(given the inability to increase volume to increase the length of
the rostrocaudal gradient).

Spinal Drug Activity: Role of Local
Redistribution
Low volume/low rate infusion in the absence of robust local
CSF movement results in local tissues to be exposed to
highly concentrated injectate. Several examples emphasize that
such local exposure leads to an enhanced likelihood of local
toxicity (25). Two examples are well-understood: First, the
incidence of root and nerve injury yielding a radiculopathy
may occur after intrathecal local anesthetics. The incidence of
this pathology is enhanced with high concentrations formulated
as to resist redistribution (hyperbaric solutions). The lack
of redistribution is accentuated by the use of “microbore”
catheters, which restrict the rate at which the drug can be
infused (174); second, meningeally derived space-occupying
masses composed of meningeal fibroblast and a collagen matrix
may occur in guinea pigs, dogs, sheep, and humans after
the infusion of high (FDA-approved) concentrations of several
opioids (83–85). This phenomenon has been shown to evolve
in a concentration-dependent fashion (83). It has been shown
that the pathology results from the poor redistribution of a
slowly delivered infusate, which minimizes the redistribution
at the catheter tip. Increasing the rate of delivery using
or the use of low concentrations, strategies that increase
redistribution around the catheter infusion site, serves to
diminish the incidence of the intrathecal mass. In recent

work, it has been shown that delivering a fixed volume of
concentrated morphine as a continuous infusion (20 µL/h)
leads to spinal masses. In contrast, delivering the same
total dose/volume in multiple-divided fast boluses resulting
in greater local movement reduces the incidence of such
masses (175).

FUTURE DEVELOPMENT IN NEURAXIAL
DRUG DEVICES AND DELIVERY
STRATEGIES

There are two questions: (1) how to increase local redistribution
around the catheter tip and (2) how to improve the rostrocaudal
distribution of an injectate where permissible volumes are
limited. Future direction in system development suggests two
strategies to address these issues: a drug delivery profile and
catheter configuration.

Increased Local Redistribution Around the
Catheter Tip
i) Drug infusion profiles: As noted, delivery of low volumes
at low rates of infusion results in a poor local redistribution,
promoting potential toxicity. Enhanced redistribution may be
achieved by increasing the exit velocity from the catheter. Exit
velocity is a function of two parameters: (i) the volume that is
expelled per unit time and (ii) the size of the orifice through
which the volume is expelled. Thus, for a given volume/unit time
and modeling the orifice size as resistance to flow, exit velocity
∞ Rexit; the greater the exit velocity, the greater is the directional
spread. The demonstration of the enhanced delivery resulting
from a microbolus vs. a continuous infusion is presented in
Figure 7. This figure shows typical densitometry profiles for a
dye delivered into a planar diffusion cell for a single bolus of
2.6 µL/h after 8min vs. continuous delivery (20 µL/h for 8min
= 2.6 µL). As both pumps have delivered the same volume
(∼2.6 µL), the difference in tip-dye density shows that the
single micro-bolus leads to a greater local redistribution at the
catheter tip than the distribution produced by the continuous
delivery profile. This is consistent with higher exit velocities at
the catheter tip after bolus delivery. Based on our modeling of
exit velocity, 1/2 height diffusion distances and local catheter tip
dye concentrations, we hypothesize that increased distribution,
reduced density, and increased mixing will occur with large
micro-boluses (20 µL/bolus) > cumulative microboluses (1–5
µL/bolus) > continuous infusion.

ii) Catheter design: Orifice size: As exit velocity ∞ Rexit, then
it is apparent that, for a given flow gradient, the higher the
resistance to exit, the greater will be the exit velocity. As noted
above, the typical human catheter employs large exit orifices
and, with a low-rate infusion, the majority of the infused solute
exits from the first orifice and even with the bolus delivery, the
exit, although enhanced, is still limited to the first pair of ports.
In contrast with the same delivery through smaller ports, the
exit velocity is markedly enhanced, as is the distribution. The
limitation of small orifice is that the ability to withdraw may
be restricted.
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FIGURE 7 | [(A,B) Left] A photograph of the 2D diffusion chamber, showing movement of blue dye from the catheter (Model 8709SC) connected to a SynchroMed II

pump. The most proximal (to the pump) pair of ports is located at 180◦ from each other, and the catheter is arranged so that the axis of these first two ports is parallel

with bottom of the chamber. An image taken at 10min after the start of a continuous infusion of 2% methylene blue dye at 20 µL/h, delivering 3.3 µL. (Right): 10min

following the bolus delivery of 3.3 µL at 1,000 µL/h. b. Mean ± SEM (N = 5 replications) densitometry measurements (arbitrary units) across a line perpendicular to

the catheter at the point of dye exit from the first port proximal to the pump as shown in the left and bolus as shown in the right [reprinted by permission from

Hildebrand et al. (175), Wiley].

Improve Rostrocaudal Distribution of an
Injectate
i) Multiple orifices: If the total injectate could be delivered over
a length of catheter, the total volume would be divided over
the length of tubing (instead of a single point source). This
would achieve the aim of distributing a given volume of injectate
over a larger rostrocaudal length of cord and resulting diluting
smaller volume of injectate in larger local volumes of CSF
(thereby achieving the aim of reducing local drug concentration).
To achieve that distribution, as demonstrated in Figure 8, the
pressure head at each port would have to be the same along
the length of the catheter. Large ports would result in the total
loss of resistance at that proximal site, and all of the injectate
would exit there. By using very small ports, the cumulative cross-
sectional area being small compared to the catheter diameter, all
micro ports would see the same pressure head, and the amount
of injectate delivered through each port would be the same. This

is emphasized in Figure 9, showing an even distribution of a
very small volume (2.6 µL) over a 6-cm length of delivery. The
principle, as described, applies to catheters of longer length and
permits the even distribution of a small volume over an extended
interval and reduces the need to employ large volumes of a high
concentration to reach distal sites from the site of delivery.

ii) Multiple lumens: The catheter employed to day for
neuraxial drug delivery typically employs a single lumen. Given
available mono reservoir drug-delivery devices, the present
practice consists of pre-mixing multiple drugs for simultaneous
spinal delivery. However, such concurrent delivery faces issues
of different pharmacokinetics and side effect profiles of the
components of the admixtures and presents concerns.

Alternatively, it is appreciated that many pathology states
may be time variant, e.g., an ongoing pain state and brief
intervals of “incident” pain. Here, the aim is to use a long-
lasting ongoing infusion as a background medication with an
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FIGURE 8 | (A,B) A photograph of the 2D diffusion chamber, assessing movement of a small volume of blue dye (2.6 µL) delivered as a bolus through A: a small

orifice (0.011” dia) vs. a large (0.34” dia) orifice. As indicated in (C,D), the delivery through a small orifice resulted a high exit velocity with a reduced peak concentration

and the shift of the peak concentration away from the catheter lumen as compared to the bolus delivery of the same volume of dye through a large lumen (T.L. Yaksh).

alternate fast onset and brief acting agents for control of the
incident conditions. Such combinations might include morphine
and fentanyl. However, mixing the two products obviates the
slow and fast time courses required from controlling ongoing and
incident pain. The implementation of such a dual lumen catheter,
however, requires alternate catheter designs, notably the use of
a dual lumen catheter. Figure 10 shows a 0.025” double lumen
catheter suitable for preclinical placement.

As a summary of this section, the current neuraxial delivery
systems permit addressing the need to deliver therapeutics over
long periods of time. However, it is clear that the standard
components, although increasingly sophisticated, have changed
little in principle over the past 50 years. Given our understanding
of neuraxial injectate distribution, it is clear that further advances
may benefit from a rational consideration of the role played
by catheter orifice configuration and the role of exit velocity in

enhancing local distribution and enabling the even distribution

of infusate over extended intervals of the spinal axis.

DELIVERY PROGRAMMING AND
OUTCOME

As reviewed in the previous section, the development of

systems, which can deliver programmed infusion as boluses
and/or continuous delivery at different rates, suggest the

potential impact that programming can have on neuraxial

drug distribution. An important question is whether these

programming choices, indeed, lead to changes in a clinical
outcome. The influence of the injection rate on drug distribution

is well-known by anesthesiologists performing spinal anesthesia.

To allow a wider sensitive block, local anesthetic has to be
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FIGURE 9 | Two-dimensional diffusion chamber with a catheter having 20 microports. Images taken at 15 s (top, left) and 240 s (bottom, left), following bolus delivery

of 2.6 µl as a bolus at time 0. The image on the right of the T = 15 s image shows an enlargement of the high velocity stream exiting the catheter at two of the exit

valves, with the characteristic mushroom head where dye laden solute encounters the local dye-free fluid phase. Note the even distribution of dye from proximal

(pump) to distal over the 6-cm catheter distance (T. L. Yaksh).

injected faster, with injection withdrawal of small volumes
(barbotage). Compared to the classical injection of 2–3ml over
30 s during a spinal anesthesia, the kinetic energy contained in an
injectate during a typical 20 µl/h continuous flow rate is about
85,000,000 times lower for chronic intrathecal administration.
Therefore, increasing the amount of kinetic energy, with a
faster injection rate from the catheter, will improve local drug
distribution in the cerebrospinal fluid (CSF). In preclinical large
animal studies, Bernards and colleagues compared three different
rates of administration of Bupivacaine, Baclofen, and Methylene
blue: continuous, 20 µl/h; continuous, 1,000 µl/h; and bolus,
1,000 µl over 5min every hour (46). After 8 h of administration,
drug infusion at 20 µl/h was very limited. The faster infusion
rates in the 1,000 µl/h group and, mainly, in the bolus group did
impart moderate but observable, forward motion to the injectate,
and differences among the groups in drug distribution might be,

in part, the result of differences in kinetic energy associated with
the different infusion rates. However, a 1,000 µl/h injection rate
is not conceivable in clinical practice since it would lead to very
short refill intervals, <2 days for a pump of 40 ml.

In humans, several studies failed to show any improvement in
pain relief by only increasing the continuous flow rate without
modifying the daily dose. In a study by Perruchoud et al.,
twenty patients on stable intrathecal treatment were included
in a double-blind three-period crossover study where the same
daily dose was administered at single, double, and quadruple flow
rates in a randomized sequence (176). Visual analog scale scores
remained unchanged with all flow rates. The quadruple flow rate
even worsened the quality of life of the patients compared to the
single flow rate. Increasing the flow rate without changing the
daily dose may have resulted in local dilution of the drug at the
site of action without increasing the distribution along the spinal
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FIGURE 10 | A double lumen catheter (Polyurethane) for intrathecal placement.

cord. In a similar double-blind design study, van der Plas and
colleagues evaluated the effect of varying the injection rate at a
fixed daily dose on the efficacy and safety of intrathecal baclofen
in patients with CRPS-related dystonia (123). The patients were
randomized to either slower infusion rate delivery or four-times
faster infusion rate delivery for 2 weeks and were then crossed
over after a 1-week washout period. The authors found no
significant differences between the injection rate regimens in
terms of dystonia or pain and secondary outcomes, except for
the frequency of adverse events, which was significantly higher
during a faster infusion rate.

The first device allowing the patient to self-administer bolus
in advance of expected increases in pain or in response to
sudden breakthrough attacks was launched in 2004. Since then,
several studies have evaluated the effectiveness of a patient’s
control of the intrathecal analgesia (PCIA) or a personal
therapy manager (PTM). Buchser and colleagues described
the improved pain control and clear thermoanalgesia obtained
by the addition of small, presumably negligible, bolus doses
in two patients with cancer who failed to get relieved by a
seemingly significant daily dose of bupivacaine administered
as a continuous intrathecal infusion (177). A multi-center
study, which included 168 patients with chronic cancer and
non-cancer pain treated by intrathecal drug application by

means of programmable pumps and the above-mentioned
PTMs, showed very good acceptance of the device after a
12-month period (178). The patients were able to manage
unpredictable pain fluctuations very actively, easily, and safely,
and also learned to use the device to control expected pain
fluctuations by prophylactic recall of boluses. Overall satisfaction
and acceptance of the PTM by patients were >80%. In
a retrospective study in refractory cancer pain population,
Brogan and colleagues reported that 50% of the patients
had discontinued all non-intrathecal opioids at follow-up, and
46% of the patients on breakthrough medications no longer
required their use after initiation of intrathecal administration
with PCIA (179). The same author conducted a prospective
study, including 58 patients with refractory cancer pain (180).
PCIA was associated with improved pain control (superior
analgesia and a 3-fold faster onset of action), improved
cancer-related symptoms, and high satisfaction compared
with conventional breakthrough pain regimens. In another
retrospective study comparing the need for oral analgesic opioids
to manage unpredictable breakthrough pain in patients treated
with intrathecal pump for non-malignant pain, 11% of the
patients using the PTM continued to require oral opiates to
manage breakthrough pain compared to 57% without the bolus
option (181).
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As discussed above, periodic bolusing administration
thus might be an interesting alternative in terms of higher
kinetic energy input, better drug distribution, and improved
therapeutic effects. Superiority of bolus compared to continuous
administration in terms of drug distribution has been
demonstrated in other anatomical compartments, such as
epidural (182), or paravertebral spaces (183). In a separate small
pilot study, 10 patients with chronic pain were randomized
to two periods of continuous administration of intrathecal
opioid or bolus regime (40% of daily dose split into four equal
boli applied every 6 h, with the remaining 60% as background
continuous infusion), in a crossover fashion (184). Overall,
bolus periods were associated with a small but significant
reduction of numeric pain rating scores (mean −0.56; p <

0.0001). Preferential bolus administration, with only a minimal
continuous flow rate, has been evaluated in a small case series (n
= 4) published by Heetla (185). Spastic patients who developed
tolerance with continuous intrathecal administration of baclofen
were switched to bolus administration of the same daily dose
divided in 6 boluses. Bolus administration resulted in the
stabilization or decreasing of the daily intrathecal baclofen dose
in all four patients during the follow-up period of 12 months,
whereas the spasticity scores remained stable or even improved
during the same period. Among the hypotheses put forward to
explain these results is a better distribution of the drug in the
CSF as well as the resensitization of GABA-B receptors made
possible by the intermittent fluctuations of CSF concentration
of baclofen between boluses, acting as “drug mini-holidays.”
This observation was, however, not replicated by a prospective
randomized cross-over study, evaluating the switch from
continuous to intermittent bolus administration of the same
daily dose in patients with chronic pain (186). The mean patient
global impression of change (PGIC) and proportion of positive
responders were not substantially different after intermittent
bolus vs. continuous administration.

The influence of different administration patterns had also
been evaluated for intrathecal trialing prior to the placement of
an implanted device. In a prospective/randomized study, Hamza
compared intermittent boluses to continuous infusion prior to
the pump implantation for the treatment of severe intractable
chronic non-malignant pain (187). The results failed to show any
clinical significant difference between the two methods in terms
of predicting trial success or long-term outcomes.

The incidence of granuloma has been reported to be
significantly less frequent with bolus administration compared
to a continuous flow rate, meaning that bolusing increases local
pericatheter dilution (but not rostral distribution of drugs) (175).

As reviewed in the preceding sections, the two commercially
available programmable pumps employ a peristaltic driver or a
valve-gated device (160). With the peristaltic pump, the roller
assembly, which, with its rotation, provides a continuous outflow
of the medication. The valve-gated pump incorporates a positive
pressure design, consisting of two microvalves, a dosing chamber
and a flow-activated valve. In this system, drug delivery is
achieved via positive pressure, propagating the drug through
the open inlet and into the dosing chamber. The inlet valve
then closes, and the outlet valve subsequently opens, allowing

for drug delivery in a small and fast bolus (typically on the
order of 2.5 µL/pulse). The effects of these two delivery profiles
on efficacy and distribution remain to be determined (see the
previous section).

SELECTION AND INDICATIONS FOR
INTRATHECAL THERAPY IN CHRONIC
PAIN

Selection of appropriate patients for IDD is critical to successful
outcomes. Many patients may be referred for or desire IDD for
their refractory pain, but only a select few may be appropriate
for treatment with IDD. Patients are often considered for IDD
when they have objective pathology to treat, have failed other
conservative measures to manage their pain, or are unable
to tolerate other forms of opioids. Patients typically undergo
psychological testing with a mental health provider and must
exhibit a favorable psychological profile (188, 189). While the
aforementioned factors are important, newer literature has
revealed that other factors, including patient demographics,
medical history, use of opioids, and pain characteristics, should
be taken into account.

When it comes to patient demographics and medical history,
a number of factors, including age, gender, certain comorbid
conditions, and concurrent medications, should be considered.
It has been shown that oral opioid doses escalate, and tolerance
develops quicker in younger subjects vs. older (190, 191). Hayek
et al. found that dose escalation with IDD occurred much
faster in patients younger than 50 years old. Older patients in
the study by Hayek et al. had less dose escalation with IDD
and showed a significant decrease in concurrent oral opioid
requirements (133).

Gender has shown mixed results in terms of being a
determinant for IDD outcomes. One retrospective study of 86
patients revealed that escalation of IT opioids occurred at a lower
rate in women vs. men (132).Womenmore specifically had lower
total daily IT dosing at 18 and 24 months (130). Other studies
have not reproduced the same gender-related differences in IT
opioid dose escalation (89, 133, 192).

While, often, the focus is on treating pain, when considering
an implantable device, attention must be directed to the
patients’ co-morbid conditions and how they may impact
IDD. Patient factors that may impact care include glycemic
control, smoking, immunosuppressants, chemotherapy agents,
anticoagulation, and concurrent infection or colonization. Poor
glycemic control has been associated with increased risk of
surgical site infections (SSI). In the spine literature, a high
HgbA1c was found to correlate with an increased risk of infection
in patients undergoing spinal instrumentation (193). Hikata et al.
found that patients with diabetes had a 16.7% chance of SSI,
and those without diabetes had a 3.2% chance. Based on their
findings, Hikata et al. recommend anHgbA1c of 7% or less before
surgery (193). Smoking is associated with increased risk of SSI
and delayed healing. One study by Sorensen et al. showed that
SSI rates in smokers were 12 vs. 2% in non-smokers. The authors
showed that, if smokers stopped smoking for 4 weeks before
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surgery, the SSI rates became equal to non-smokers (194). Opioid
dose when initiating IDD has been shown to be an important
factor as it relates to escalation of opioid dose after implant of
an IDDS. Utilizing low opioid dosing may allow for limiting
overall opioid dose, curbing opioid dose escalation, and achieving
analgesia (88, 89). Type of pain may be taken into account when
initiating treatment with IDD. While the 2017 PACC guidelines
take note of type of pain (nociceptive and neuropathic), the
authors did not specifically make recommendations for one type
of pain vs. the other. Prior iterations of the PACC guidelines did
break out treatment algorithms for nociceptive vs. neuropathic
pain (195). At present, there is paucity of evidence to make
specific recommendations for a particular IT medication in the
treatment of neuropathic pain. There is no enough supportive
evidence that IT opioids are, more or less, effective in treating
neuropathic or nociceptive pain (107, 192, 195, 196).

The patient with cancer deserves a separate comment. With
an ever-increasing survival rate, the prevalence of cancer pain is
also increasing (197, 198). Although the vast majority of chronic
cancer pain can be controlled with pharmacological therapies,
many patients do not achieve adequate analgesia despite the
availability of many regimens (199). Intrathecal drug delivery
may provide an alternative route of administration for analgesics,
which may improve pain relief and control of side effects (147,
199–204). The PACC recommendations (72) confirmed the role
of intrathecal analgesia in the treatment of cancer pain with a
high level of evidence (I) and a strong recommendation (Rank
A). Likewise, the European Society of Medical Oncology (ESMO)
(202), as the first time, recommends intrathecal analgesia
for patients with cancer presenting with refractory pain and,
especially, in those experiencing pain in multiple locations: head
and neck, upper and lower extremities, and trunk, although it is
more likely to be useful for pain below the diaphragm. Despite the
accumulated evidence, the controversy and conflicting opinions
continue, and it seems an indication that, unfortunately, still
requires greater dissemination and general knowledge for the
benefit of patients with cancer (204).

Pre-operative optimization and consideration of any patient
condition that may impact outcomes is important. A potential
delay upfront to optimize the patient may be necessary and avoid
a potential loss of therapy down the line due to complication.

COMPLICATIONS AND THEIR AVOIDANCE

Complications of IDD can be technical (e.g., IDDS malfunction)
biological (e.g., infection) or other (e.g., granuloma).
Complications can arise intra-operatively but most commonly
occur post-operatively.

Technical Complications
Intraoperative
Proper care begins in the pre-operative phase with appropriate
patient selection, recognition, and management of pre-operative
medication, optimization of the patient’s medical status, and
planning surgical placement, including a catheter entry site
and pump placement location. Intra-operatively, meticulous
adherence to proper surgical technique minimizes complications

(205). Care must be taken to minimize risk of damage to
the cord or conus with needle or catheter advancement being
a good practice, according to the authors’ own experience,
to do it with the patient awake and communicative during
the insertion of the needle and the catheter. The preferred
positioning is in the lateral decubitus position for placement
of the pump within the abdominal wall—although some
use the prone position with placement of the pump in the
buttock region. Proper intraoperative prep, drape, pre-operative
antibiotics, double gloving, minimizing operating room traffic,
and gentle manipulation of surgical tissues are important means
for reducing the risk of perioperative surgical site infection.
Proper hemostasis and creating a pocket just large enough to
accommodate the pump are effective means of reducing the
risk of hematoma and seroma formation, respectively. Placing a
non-absorbable purse string suture around the catheter site may
minimize the risk of CSF leak/hygroma. Adherence to published
guidelines for perioperative use of anticoagulants is important for
reducing the risk of bleeding (64, 206).

Post-Operative Complications
Maintenance of IDDS and troubleshooting complications are
essential to managing implanted patients. The most common
complications are catheter related, including catheter migration,
occlusion, leak or fracture (207–209). Much less common are
motor stalls in peristaltic pumps (207, 210, 211). Evaluation
of suspected device malfunction begins with history, physical
examination and device interrogation. If interrogation reveals
pump malfunction, urgent replacement is indicated. If history,
physical examination or device interrogation suggests system
dysfunction, further action is needed, ranging from further
investigation to urgent device revision/replacement, depending
on the clinical scenario. Clinical investigation may include
imaging, such as X-ray, CT scan, radionuclide scans, and catheter
dye studies (208, 212). Skin erosion over the implant site
often necessitates device removal, with special precautions for
withdrawal, depending on intrathecal agents (213).

Surgical site infections (SSI) represent the most common
biological complication of IDD. IDDS-related SSI can occur at
either the catheter incision site or the pump site, with the latter
being more common (214). As reviewed by the PACC guidelines,
a number of factors are associated with a higher risk of SSI,
including poorly controlled diabetes, anemia, smoking, immune
suppression, cancer, cardiac disease, obesity, malnutrition, and
active alcohol and drug abuse (64). Optimization of pre-operative
status, including glycemic control with hemoglobin A1C <

8% and smoking cessation for around 2 months prior to
surgery, may curb the risk of infection. Screening by nasal
swab for staphylococcus colonization has been recommended,
and, if positive, appropriate treatment with topical mupirocin is
indicated. Intraoperatively, washing the pump pocket with 20-
ml vancomycin, 1 mg/ml along with pre-operative chlorhexidine
prep, has been reportedly to markedly reduce SSI in pump
exchange surgeries for intrathecal baclofen delivery (215).
Placing an occlusive dressing has been recommended (64), and
applying topical antibiotic may help reduce SSI (216). A detailed
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discussion of risk mitigations has been entertained by the PACC
guidelines (64).

NEURAXIAL DRUG SAFETY

The direct application of therapeutics to the intrathecal space
is potentially fraught for several reasons: (i) The therapeutics
are often delivered in exceedingly high concentrations (e.g.,
morphine, 20 mg/ml; Lidocaine: 50 mg/ml); (ii) the local tissues
are directly exposed to these concentrations: (iii) Given the
relatively poor local redistribution secondary to the modest local
flow, the local tissues may be exposed for an extended period,
particularly if this delivery is by local infusion. All of these events
are considered to potentially contribute to the adverse effects
seen after intrathecal delivery. This section limits themselves to
brief commentaries regarding pathologies, which have largely
been identified secondary to neuraxial delivery of agents targeting
analgesic processing.

INTRATHECAL CATHETER TIP
GRANULOMAS

In 1991, North and colleagues reported a case of paraplegia
induced by a dorsal spinal mass at T10-11 adjacent to an
implanted intrathecal catheter (217). The patient had a history
of intractable chronic low back pain, culminating in an implant
of an intrathecal drug delivery device 14 months prior to
presentation. The patient was titrated up to receiving 100-mg
intrathecal morphine and felt better initially. However, 2 months
after the implant, the patient developed progressive paraparesis
and, within a month later, was paraplegic. Upon presentation,
the patient had flaccid paraplegia, was insensate to touch and
areflexic below T10, and had developed decubitus ulcers. CT
myelography revealed a soft tissue mass at the catheter tip.
Surgical excision revealed a large sterile inflammatory mass. The
formation of a sterile fibrotic mass at the catheter tip (granuloma)
is usually associated with high dose and concentration of
IT opiates; and most is commonly seen with morphine and
hydromorphone (see below) (218–224). The incidence of masses
with IT fentanyl appeared to be minimal (225). Preclinical
work characterized these intrathecal granuloma masses as being
a proliferation of fibroblasts embedded in a collagen matrix,
arising from the adjacent dura-arachnoid mater (226). In this
series of studies, the intrathecal pericatheter mass was shown
to have several defining properties. (i) Infusion of opioids, such
as morphine or hydromorphone resulted in intrathecal catheter
tip granuloma (ICTG) formation. On the other hand, an ICTG
was not observed with intrathecal infusion of saline or synthetic
opioids fentanyl, alfentanil, and several opioid peptides [D-Ala2,
N-MePhe4, Gly-ol]-enkephalin (DAMGO) (83). (ii) The masses
were dependent upon high infused concentrations (e.g., vs. total
dose delivered) and developed proximal tothe catheter tip where
the solute concentrations to which the tissue was exposed were,
indeed, highest (84). (iii) The lack of a conventional opioid
structure activity relationship (e.g., effects produced bymorphine
but not fentanyl) along with failure to reverse or prevent the

onset of the effect with an opiate antagonist suggested that the
effects were not mediated by an opiate receptor. (iv) It had
been noted that the opiates causing mast cell degranulation
(e.g., morphine) led to mass formation, whereas those that
did not (e.g., fentanyl) degranulate meningeal mast cells (227)
did not lead to such masses (83). Support for this mast cell
linkage was suggested by the observation that administration
of subcutaneous or intrathecal cromolyn, a mast cell stabilizer,
prevented granuloma formation (226). This suggested that the
mechanism for ICTG formationwasmediated bymeningealmast
cell degranulation in response to the opiate. (v) It was shown
that these opioid agonists acted to degranulate mast cells by
their activation of Mas receptor G protein-coupled receptors
(e.g., MrgprB2-mouse and MrgprX2-human) (86). Work with
the mu opioid agonists that did not activate MRGs was found not
to produce mast cell degranulation, fibroblast proliferation, and
did not produce masses (85, 228). Subsequent work with MRG
mutantmice confirmed these findings (219). Future development
of such non-MRG-activating molecules, given their absence of a
risk of mass formation, may hold promise for future analgesics.

Clinically, multiple case reports and series described
ICTG formation predominantly in response to morphine and
hydromorphone with an incidence approaching 9% in larger
case series (220, 229, 230). Outside of two case reports with
extremely high daily doses of fentanyl (2.7 and 8.9 mg/day), there
have been no reports of pericatherer masses with intrathecal
fentanyl. Overall, ICTG’s have been reported with a number
of intrathecal agents and may reflect an interaction between
high concentrations of the intrathecal agent and limited local
cerebrospinal fluid flow, resulting in sensitization of dural
mast cells to release histamine and trigger a cascade leading to
mass formation. The diagnostic modality of choice is magnetic
resonance imaging with and without the use of gadolinium, with
special care to acknowledge the catheter tip artifact. Management
is typically conservative with expeditious wean of intrathecal
opioids and replacement with saline, followed by revision of
the intrathecal catheter to a different location and the use of
non-granuloma, inducing medication if the patient desires to
continue to use IDD. Surgical management is reserved to limited
cases with larger lesions and progressive acute neurological
deterioration (175). Recent experimental data have suggested
that multiple daily bolus dosing results in lesser granuloma
formation compared to continuous intrathecal infusion (175).
The use of multiple small boluses vs. continuous low rates of
infusion is believed to lower the mass formation incidence
as the bolus results in increased dilution of the high solute
concentration. This is discussed further below.

NMDA ANTAGONISTS

Intrathecal delivery of agents, such as ketamine, has been
employed in the management of severe pain states in humans
(231, 232). Intrathecal infusions of several NMDA antagonists in
large animal models have revealed a general parenchymal
pathology. It should be noted that the concentrations
required for analgesia were typically not identified, and,
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thus, it is not known if the doses markedly exceed those
which were required for a therapeutic effect in these animal
models (233). In a single human neuropathic pain case,
examination of spinal cord and nerve roots after neuraxial
administration of S (+)-ketamine (and numerous other
products) revealed histological abnormalities, including
central chromatolysis, nerve cell shrinkage, neuronophagia,
microglial upregulation, and gliosis (234). In a second finding,
studies with exposure to ketamine in the neonatal rat were
shown to produce a concentration-dependent analgesia, but,
at comparable doses, an increase in dorsal horn apoptosis
was identified (235). The origins of this pathology have not
been identified.

LOCAL ANESTHETICS

The early studies with intrathecal local anesthetics in the
1900s up through today have emphasized that delivery of
molecules with a local anesthetic profile led to an increased
incidence of radiculopathies, a finding in concert with preclinical
studies of drugs placed near nerves (236, 237). Several
local anesthetics (lidocaine, bupivacaine, 2 Chloroprocaine)
induce demyelination and radiculopathy in several species,
including rats, rabbits, dogs, and humans. Extensive work has
emphasized that these effects were concentration dependent
(237–240). The mechanism of this toxicity is controversial. This
neurotoxicity is expressed in the sensory neuron and results
from an action secondary to an anesthetic-induced increase in
intracellular Ca++ (241). An additional mechanism has been
proposed, including upregulation of CaMKIIβ along with an
increase in Cav3.2 and Cav3.3, and activation of apoptotic
signaling (242).

ADENOVIRUS TRANSFECTION

Observations of vector-treated animals (mice, primate) have
shown moderate asymptomatic degeneration of dorsal root
ganglia neurons (a “ganglionitis”) and associated axons (154,
243), but not in cats and dogs (244, 245). In primates, a
mononuclear pleocytosis in the cerebrospinal fluid has been
observed (243, 246). Where examined, these effects appear to
be titer dependent, but independent of an immune response.
Pertinent study variables aside from the viral vector itself are titer
and route of delivery.

ORGANIZING PRINCIPLES OF NEURAXIAL
PATHOLOGY

i) Our experience is that the safety of a product that has been
well-studied by different systemic routes should not be taken
as an indication of intrinsic neuraxial safety. The result with
intrathecal opiates, local anesthetics, and NMDA antagonists
speaks directly to the refutation of that assertion. This emphasizes
the importance of systematic preclinical evaluation of the safety
in validated animal models that address the limits of the
concentrations and exposure profile to be employed in humans.

Changes in concentration or formulation must be considered as
non-trivial. To paraphrase Paracelsus: There are no safe drugs –
only safe doses (concentrations). This also applies to biologics
where the designation of two products as equivalent raises the
issues of how to define the equivalency of two “biosimilars”
(247). The pathology defined for one cannot, out of hand, be
considered as evidence for the safety of a similarly targeted but
differently constructed therapeutic. (ii) It is worthwhile noting
that the single common factor linking the diverse pathology
phenotypes is that they reflect the role of local concentration
in the evolution of the various pathologies. This has practical
implications. Here, we note that, for a given concentration, an
increase in the injected volume (increasing dose) leads to a
greater spread of the solute, but the maximum concentration
at the site of delivery is essentially the same, although that
concentrations spread over a greater distance. So, while total
volume increases the total system exposure, it does not alter
the local concentration proximal to the catheter. On the other
hand, keeping the volume of delivery constant and increasing
concentration, indeed, increases dos, but, more importantly, the
exposure of the local tissue is increased. So, to the degree that
local pathology is the concern, the assessment of that risk is
related to the concentrations applied and not the total dose (25).

SUMMARY

Intrathecal therapy is an important strategy to treat patients
with chronic pain and has its own entity to define the specific
indications that allow the selection of the ideal patient for
therapy. With the new imaging technologies and, especially,
computerized simulation, we can know the best interaction of
the anatomy and physiology of the CNS with IDD therapy.
Cerebrospinal fluid (CSF) dynamics, CSF elimination pathways,
and the location and volume of the injected bolus can predict
regional exposure of CNS tissue to molecules with variable
chemical properties and thus achieve the best therapy outcome.
From basic research, very active, we conclude that therapy
evolves, providing a perspective that provides new strategies
and innovations. Although complications can occur, as in other
therapies, the main problems do not arise from the device
itself, but mainly with inadequate patient control, inflammatory
mass (e.g., high doses and concentrations of opioids), wound
healing, dosing errors (e.g., drug concentration and pump
programming), pump refills or refills (e.g., pocket refills), and
interaction with concomitant systemic medications (e.g., opioids
and benzodiazepines). Therefore, they can be prevented through
proper training of the doctor, the implementation of best
practices and experience, resulting in best practice and results for
the management of patients with severe chronic pain.
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