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ABSTRACT  

Data are the main headache for machine learning, both because of their varied nature and their limited 

availability. The medical field brings together both situations: tables, images, text, or signals that are difficult 

to acquire due to the number of patients, the complexity and time of acquisition, or ethical constraints. The 

existence of open datasets is the best option for researchers in this field. Electroencephalograms are a good 

example of this situation. This paper identifies the primary open datasets of electroencephalography tests and 

how they are used in deep learning models. The aim is to provide structured information that can be consulted 

by researchers in the field (both physicians and computer scientists) in order to know which datasets are 

available, which characteristics they have, or which deep learning models could be applied to them. The 

process followed the PRISMA methodology for systematic reviews applying different inclusion and 

exclusion criteria to obtain a set of high-quality papers on which the data sets used were analyzed. The 

databases included in the searches were Scopus, PubMed, Web of Science (WOS), Science Direct, IEEE 

Explorer, and SpringerLink. In total, 37 papers were selected which included 30 datasets that have been 

considered. Then, the DL models used in the papers and the different characteristics of the datasets have been 

statistically analyzed by obtaining different measures and graphs. The most relevant conclusions are the 

widespread use of convolutional neural networks (the less innovative among the different models) as the main 

tool for EEG data analysis. Against this position, we found the use of hybrid models and the family of RNNs 

as techniques to use in cases of brain stimuli, classification of levels of fatigue, and diagnosis of diseases. 

Related to the datasets’ features, we demonstrate the difficulty in compiling this data due to the number of 

tests and that should be studied the minimum of channels or sampling frequency recommended to obtain 

good accuracies in the model. 

INDEX TERMS Systematic review, Deep learning, Open datasets, Electroencephalograms.  

I. INTRODUCTION 

Most people are connected every day through their mobile 

phones or computers. This entails the creation of vast 

amounts of data through organizations or private 

companies every day. According to (Völske et al. 2021), in 

2020, 44 zettabytes were produced, and by 2025 is 

estimated to be between 163 and 175 zettabytes. The trend 

remains the same in the medical field due to new 

applications and the wide range of data from demographic 

information to images resulting in medical tests like 

radiographs or 3D scanners passing through those that 

collect the biomedical signal. 

(Chang and Moura 2010) define biosignal processing as 

extracting relevant information from biomedical signals. 

These are also described as physiological activities from 

organisms that can comprise neural, cardiac rhythms, or 

others. Among all the medical tests related to signals, 

electroencephalograms (EEGs) are considered the most 

beneficial for compiling brain signals. 

EEGs are a type of data called time series, defined in 

(Velicer and Molenaar 2013) as sets of repeated 

observations of a single unit or individual at regular 

intervals over many instances. The case of EEGs 
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corresponds to a test used to diagnose neurological diseases 

based on a set of electrodes placed around the scalp. EEGs 

compile a lot of data being very complex to analyze. They 

need professionals with high skills acquired through years 

of training. The problem with EEGs is that they are studied 

by eye, and due to their complexity, the professionals miss 

a lot of information. 

There is a trend toward integrating and leveraging these 

enormous amounts of data to make medicine more 

personalized, efficient and focused on the patient. 

Nevertheless, classical methods like statistics are not 

powerful enough to manage that large number of variables 

and data. At this point, using more modern techniques, such 

as Artificial Intelligence (AI), is a great benefit. They allow 

us to find new patterns and predict how different variables 

behave or identify new ones not considered in complex 

medical problems, (Normandeau 2013) 

AI is a computer science field aiming to analyze and 

decipher human mechanisms related to intelligent 

behaviours that are, later, reproduced in machines, (Russell 

and Norvig 2016). Among all the AI techniques, Machine 

Learning (ML) has stood out from the rest in recent years. 

ML is defined by (Samuel 1959) as a discipline that studies 

and develops algorithms that create systems that learn by 

finding patterns in datasets. ML comprises a wide range of 

techniques, with Artificial Neural Networks (ANN) 

obtaining the best results recently. (Hecht-Nielsen 1988) 

defines ANN as a computational model formed by several 

simple units that are strongly connected and can process 

information by responding to external stimuli. The benefits 

of ANN remained not very useful until deeper 

architectures, called Deep Learning (DL) models, arose. 

DL consists of ANN models with several layers that can 

learn data representation using more abstraction levels, 

(LeCun, Bengio, and Hinton 2015). Figure 1 depicts the 

hierarchy of the fields in AI described previously. 

 

 

FIGURE 1. The hierarchical situation of the deep learning models 
among different artificial intelligence disciplines. 

 

(Roy et al. 2019), a review of deep learning models with 

EEGs, states that there are a large number of works that 

cannot be reproduced as data is unavailable. It also points 

out that more than half of the studies use publicly available 

datasets. Considering also the difficulty of obtaining EEGs 

and the computational cost of developing deep neural 

models, it seems clear that there is a need to have a 

reference resource that can be consulted by researchers in 

this field (both physicians and computer scientists) to know 

which datasets are available or which models perform 

better.  

This paper also presents an innovative character because, 

to the best of our knowledge, it is the only one that has 

studied what open EEG datasets can be found in the 

scientific community. 

The main contribution of this paper is to present a 

systematic review of open EEG datasets used in works 

using DL techniques. The paper follows a methodology to 

obtain scientific papers utilizing this kind of dataset. Papers 

have been searched in the best-known scientific sources 

using a set of keywords to focus the searches. However, as 

EEGS datasets are scarce, not many open datasets are 

available, so there are not many papers that meet the 

selection criteria. After discarding some of them that either 

did not use an open EEG dataset with a DL model, did not 

provide model performance metrics, or did not include a 

description of the dataset and a link to download it, we 

remained with 37 works. 

In the process, we provide a set of statistical metrics 

alongside some graphics that let to understand the 

information. This is useful in the following cases. The 

content will let researchers know which are the most used 

deep learning techniques and which accuracies they get 

depending on the dataset. It also could help scientists 

choose which models perform well with their specific data 

or use case. Another provided information is which datasets 

are available and how they perform, this is useful when 

researchers want to develop a new model/method and test 

it or know which models are not applied a lot. Another 

interesting usage is also to know which type of use cases 

does not have an open dataset that could be used by the 

scientific community, so people could create a new one. 

Finally, compiling the information of which are the most 

common values for the main features of the datasets 

(number of channels, sample rate, etc.) could help us to 

build a golden standard of the dataset. 

This work has the following sections: Section 2 describes 

the DL techniques used in the papers. Section 3 details the 

method followed in compiling the documents. Section 4 

compiles all the studied features. Section 5 contains an in-

depth discussion of the datasets and their use. Finally, 

Section 6 presents some conclusions about the research. 

 
II. STATE OF THE ART 

By considering the creation of AlexNet as the main milestone 

in deep learning (Krizhevsky, Sutskever, and Hinton 2012), 

the number of papers in medical bibliographic databases has 

been growing exponentially yearly. Figure 2 shows the 

number of publications from 2012 to 2023 containing the 
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word deep learning. We can see that, in some cases, the 

number of publications doubled from one year to another. 

Then, considering the period from 2018 to 2023, we can see 

that most of the scientific production in this field is during 

those years. Even during this year, more than 4000 papers 

have been published in about 2 months and a half which means 

that at the end of the year, the number of papers will be greater 

than in 2022. 

 

 

FIGURE 2. Distribution by the publication year of the deep learning 
papers indexed in PubMed from 2012 to 2023 (n=4524). 

 

DL techniques are based on multiple models and 

architectures, although their effectiveness is directly related 

to the nature and quality of the data used in the training 

stage. This section describes the architectures and models 

that can use EEGs. 

DL models can be classified depending on how they learn 

from the data. This case has three main classes: supervised, 

unsupervised, and semi-supervised. 

Supervised models need labelled data to perform the 

training. In this case, the model knows the relation between 

input data and the expected output and uses the following 

classification. 

Multilayer perceptron (MLP) is the simplest case of a DL 

model. The architecture comprises an input layer, several 

hidden layers, and an output layer. (Lin et al. 2007) use an 

MLP to classify EEG signals depending on the music some 

subjects are listening to.  

Convolutional neural networks (CNNs) are the most used 

models with several applications in computer vision. Its 

primary ability is to detect patterns in a delocalized way. 

This characteristic lets to learn a particular pattern in an 

image that can later be seen in another part of another 

image. Recently, a specific type of CNN that manages 

graphs called Graph Convolutional Neural Networks 

(GCNN) has arisen. (Kipf and Welling 2016) presents this 

model as a method that encodes a graph's structure and its 

nodes' features using a special type of CNNs. CNNs are 

used by (M. Zhou et al. 2018) to classify epileptic seizures. 

GCNN recognizes emotions by analyzing EEGs, (Song et 

al. 2018). 

Recurrent neural networks (RNNs) are defined by (Elman 

1990) as a model that uses an input vector of arbitrary 

length and applies a transition function recursively to its 

internal hidden state vector ht. It uses data structures that 

are time series, for example, EEGs. Within RNNs, a 

particular type is called Long Short-Term Memory 

networks (LSTM) or Gated Recurrent Unit (GRU). LSTMs 

were proposed to work with noisy or incomprehensible 

input data without information loss (Hochreiter and 

Schmidhuber 1997). In the case of RNNs, (Ruffini et al. 

2016) applies them to the prognosis in patients with 

neurodegeneration. Then, LSTMs have applications in 

emotion recognition (Alhagry et al., 2017). Finally, GRU 

has been applied in emotion classification, (Chen, Jiang, 

and Zhang 2019) 

The other leading group of models belongs to the category 

of unsupervised models. In this case, data is unlabeled, and 

there is no a priori knowledge about the final results 

(Sathya, Abraham, and others 2013).  

Deep Autoencoders (DAE) use unsupervised learning. 

Defined in (Ballard 1987), its particular characteristic is 

that both the input and output layers have the same or 

similar size and two processing structures. The first one is 

the decoder which starts from the input data and reduces its 

size to a small piece that contains its main characteristics. 

The second part is the decoder which aims to upsample the 

previous small piece of data by upsampling it until reaches 

the input data size. In (Qiu et al. 2018), autoencoders 

classify ictal EEG. We consider Restricted Boltzmann 

Machines (RBM) as a particular type of Autoencoder 

introduced by (Smolensky 1985) that can learn a 

probability distribution. In DL, RBMs were used to 

implement Deep Boltzmann Machines (DBMs), 

(Salakhutdinov and Hinton 2009). The field of EEGs has 

applications like (Lu et al. 2016) that applies it to motor 

imagery. 

The previous learning types generate a new one by mixing 

them and are called semi-supervised. Generative 

adversarial networks (GAN) are under this class. GANs 

need neural models, the generator, and the discriminator. 

Both work in a training type called adversarial process, 

(Goodfellow et al. 2014). This architecture aims to learn 

and imitate a data distribution. The generative model is 

responsible for creating synthetic instances of the input 

data. Then, the discriminator evaluates these data and 

decides if it is similar enough to the input data or not. This 

task gives a probability of being authentic (input data) or 

synthetic (created by the generator). By repeating this 

process, the generator learns how to create data more like 

the input one. In this case, GANs are applied to perform 

data augmentation strategies with EEGs (Luo and Lu 

2018). 

It is noteworthy that in recent years a trend in the creation 

of hybrid models has been detected. These types of models 

are seen as an important area of development within the DL 
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in the near future, (Kurz et al. 2022). These architectures 

join two or more models generating a CNN-LSTM or an 

Autoencoder-LSTM. 

To summarize all the information above, Figure 3 shows a 

taxonomy with all the deep learning models. 

 

 

FIGURE 3. Taxonomy of the different deep learning models considering 
the different approaches to train the models. 

 

Metrics are an important aspect when evaluating a DL 

model. Four are the most important in this type of analysis: 

accuracy, specificity, sensitivity, and F-1 score. Accuracy 

is defined as the ratio between successful predictions and 

the total number of predictions. This metric is used as a way 

to measure the performance of a model in the first moment. 

Specificity measures the ratio between the number of true 

negatives (healthy people diagnosed correctly) and the total 

of those predicted as true negatives and false positives 

(healthy people diagnosed as sick). Sensitivity is similar to 

specificity but considers true positives instead true 

negatives and false negatives instead of false positives. F1-

score considers true positives, false positives, and false 

negatives as described in the following Equation. 

 

2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
 (1) 

 
III. METHODOLOGY 

The method used to determine which research works are 

framed in a particular field or respond to the needs of certain 

research questions is called Systematic Literature Review 

(SLR) or just systematic review. There are different guidelines 
for conducting an SLR. For example (Keele and others 2007) 

includes: necessity of the review, research questions, 

development of the protocol, identifying the research works, 

establishing some inclusion and exclusion criteria, analyzing 

some features of the papers and creating the review as a paper. 

As the phases of the review process can differ, we have used 

(Barua, Ahmed, and Begum 2023), (Thongchotchat et al. 

2023), (Marican et al. 2022) and (Bujang et al. 2022) as 

references to design our process which is described in Figure 

4. First, we formulate a set of research questions. Then, we 

start the process of finding and selecting the research works, 

from where we collect the datasets. Following, we analyze 

them, and the papers where they are used. Finally, we describe 

all this information in the presented paper. 

 

 

FIGURE 4. The review process starts with the research questions 
conducted by the researchers and ends with the written present work. 

A. FORMULATED RESEARCH QUESTIONS 

As the main aim of this systematic review is compiling open 

datasets of EEGs that have been used with DL models, some 

information could be analyzed like the characteristics of the 

datasets or the deep learning models. In this way, the following 

research questions are proposed as a way to understand the 

purpose of the review and its utility. 

 

Question 1: Which EEG datasets are freely available to 

researchers so they can perform their studies in deep learning? 

Motivation 1: As EEGs are difficult to compile due to the time 

needed to do the test or the number of patients and controls, 

this data is scarce. This information source can be consulted 

by them to find data for their research. 

 

Question 2: Which values have the main characteristics of the 

datasets? The number of channels, frequency, etc. 

Motivation 2: This is key for researchers when establishing a 

protocol to compile their own data. This decision must be 

taken by both profiles: physicians and computer scientists. 

This assures that the data accomplishes with a minimum 

quality so the deep learning models could be appropriate and 

cover a wide range of use cases. 

 

Question 3: Which deep learning models perform better with 

electroencephalograms and their use cases? 

Motivation 3: Given the metrics compiled in this work and the 

deep learning models that have been obtained, researchers can 

know which deep learning models best fit the different 

datasets depending on the characteristics and the use cases: 

diagnosis, motor imagery, etc. It also lets researchers know if 

the datasets are good enough to apply DL techniques. 

B. SEARCH STRATEGY FOR IDENTIFYING THE 
STUDIES 

To obtain the papers, we have set the following keywords to 

be used in every scientific source: (("open dataset") OR ("free 

dataset") OR ("freely available dataset") OR ("open data") OR 
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("free data") OR ("freely available data")) AND (("EEG") OR 

("electroencephalogram")) AND (("deep learning") OR 

("neural network") OR ("neural networks")). The search and 

collection of papers include everything published until March 

15, 2023. The following sources were used to make the 

searches: Scopus1, PubMed2, Web of Science (WOS)3, 

Science Direct4, IEEE Explorer5, and SpringerLink6. After 

discarding repeated items, conference papers surveys, or arxiv 

papers, the final selection of works has been made to apply 

more restrictive criteria. 

C. CRITERIA FOR SELECTING PAPERS 

A group of computer scientists has set out the following 

criteria to obtain the final set of papers. 

The first selection of works consisted of a single screening 

where titles and abstracts are read to check if they meet the 

minimum inclusion criterion of "a paper that uses an EEG 

open dataset to train a deep learning model". Searches in 

scientific resources were made. Then titles and abstracts were 

read, and those that did meet the criteria of including an open 

EEG dataset used with DL models to solve a particular use 

case were included for the following step. 

As there is no way to automatize a more exhaustive process of 

selecting the papers, several quality requirements have been 

set out. This is a set of exclusion criteria that discard papers 

accomplishing the following: 

1. The paper does not describe the DL model which is 

trained with a dataset of EEGs. 

2. Metrics about the performance of the models are not 

included in the evaluation. 

3. The paper does not include a detailed description of 

the dataset and a link to download it. Datasets 

available upon request are not considered. The EEGs 

are obtained from humans. 

D. PRISMA FLOW DIAGRAM 

This systematic review compiles a set of papers by using the 

following methodology. Figure 5 contains a Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) flow diagram (Moher et al. 2009), which 

summarizes how we achieved the selection of papers used to 

compile the datasets reported in the paper. 

 

                                                
1 https://www.scopus.com/ 
2 https://pubmed.ncbi.nlm.nih.gov/ 
3 https://www.webofscience.com/ 

 

 

FIGURE 5. PRISMA diagram of the bibliographic review conducted 
starting with the findings in each scientific resource and finishing with 
the number of reviewed papers. 

 

From the first search, a total of 331 works has been obtained 

which are distributed as follows: Scopus (30), PubMed (5), 

WOS (13), Science Direct (132), IEEE Explorer (1), and 

SpringerLink (150). After eliminating duplicates and papers 

not published in journals (conferences, arxiv, etc.), it 

remained a total of 219 papers were. The next step was to 

analyze their titles and abstracts to check if the paper 

applies deep learning models in an open dataset of EEGs. 

If yes, we must check if they accomplish the three exclusion 

criteria. The previous decisions eliminated different papers, 

including one whose dataset was unavailable for download, 

MERTI-Apps (Maeng et al., 2020). After this process, the 

final set had 38 papers from which we are analyzing some 

features related to the used deep learning models and 

obtaining the report of the open EEG datasets. 

E. THREATS TO VALIDITY 

A systematic review can be put at risk due to a potential 

biasness and the imprecise application of the extraction 

method. To evaluate this, four dimensions are considered: 

internal validity, external validity, construct validity, and 

conclusion validity.  

Internal validity: depending on the search process a validity 
threat can impact the representativeness of the selected 

scientific works. To avoid that, we have used  (Barua, 

Ahmed, and Begum 2023), (Thongchotchat et al. 2023), 

(Marican et al. 2022), and (Bujang et al. 2022) as guidelines 

to adjust our process. The research questions have been a 

guide to constructing the searches and thinking about the 

inclusion and exclusion criteria that best fit them. The 

selection of keywords and scientific resources could be a 

4 https://www.sciencedirect.com/ 
5 https://ieeexplore.ieee.org/ 
6 https://link.springer.com/ 
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limitation, but we have tried to avoid it by using very clear 

terminology and using official resources like WOS, PubMed, 

etc. 
External validity: We have limited the papers to works 

published in scientific journals discarding preprints, books, 

conferences, etc. This allows for obtaining strong 

conclusions that could be useful for scientists in related 

fields.  

Construct validity: Research questions are one of the main 

pieces to guide the review and think about its utility. For this 

purpose, these research questions have been discussed 

among the authors and other researchers in the field.  

Conclusion validity: To address the potential subjectivity of 

our study, the authors read the title and abstract for reviewing 

the first screening studies. The aim of this approach was to 
minimize bias in the extraction of data. In the event of 

disagreements between them, a consensus was reached 

through discussions. This approach ensured that the data 

collected was both reliable and objective. 

F. DATA EXTRACTION AND CLASSIFICATION OF 
THE STUDIES 

The paper comprises two types of studies on this set of papers. 

The first is on the deep learning models used with the datasets, 

the metrics to measure performance, the use case solved in the 

paper, and the paper's year of publication. The second 

compiles some characteristics related to the dataset: number of 

channels, number of individuals, distribution system, 

sampling frequency, or the format of the file.  

 
IV. RESULTS 

Some statistics have been obtained based on the previous 

characteristics used in the papers and datasets. This 

information was compiled by developing some Python scripts 

and using Matplolib, which provides a graphic set of charts, 

(Barrett et al. 2005). Apart from that, we have developed a 

VOSviewer7 with the keywords in the selected paper to 

confirm their relation to the keywords used in the original 

searches. Figure 6 shows a VOSviewer with this information. 

 

                                                
7 https://www.vosviewer.com/ 

 

FIGURE 6. VOSviewer network visualization describing the relationship 
between keywords in the encelography and deep learning fields. 

 

In the Figure above, we can see that the biggest nodes 

correspond to “deep learning” and “eeg” which makes sense 

as are key terms in our searches. Then, there are other 

keywords similar to the latter like “electroencephalogram” or 

“electroencephalography”. Related to DL, there are keywords 

that describe the different models: “convolutional neural 

network”, “autoencoders” or “cnn-lstm”. There are also some 

keywords that define the use cases: “emotion recognition”, 

“motor imagery” or “epileptic seizure detection” which, as we 

will see later, are important in the study of datasets. 

For the analysis of papers and datasets, the following graphs 

have been provided. Looking at the papers: bar diagrams with 

the publication year, percentages of the deep learning models 

used, DL metrics, the use case that has been solved, and the 

relation between the deep learning models and the use cases. 

By taking into account the datasets' characteristics: number of 

individuals and tests, length of the tests, number of channels, 

distribution of the electrodes systems that have been used, 

frequency in hertz during the test, and the file format provided 

to work with the data. 

A. SUMMARY OF PAPERS 

Table 1, attached at the end of the paper shows the selected set 

of papers with the following information: the paper's 

reference, the deep learning model used, the metrics applied 

during the experimentation, the tasks performed by the 

individuals while compiling the data, and the year of 

publication of the work. Apart from that, we have added a 

matrix of evaluation by using the Composite Quality Indicator 

(CQI) index of the i-th paper is determined by combining the 

normalized indicator values of the other indexes within the 

range of 0 to 1. 
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TABLE I 

SUMMARY OF SELECTED PAPERS 

B. STATISTICS AND ANALYSIS OF THE INCLUDED 
STUDIES 

This section provides graphs and statistics from analyzing the 

selected papers related to the use of open datasets. Figure 7 

shows a bar chart distributing the 38 papers by year of 

publication. 

 

 

FIGURE 7. Distribution by number of selected papers published each 
year (n=38). 

 

As you can see a total amount of 38 papers have been 

selected, each of them covering different use cases, 

applying different deep-learning models with their own 

experiments. Following, we briefly described each paper: 

1. (Cui et al. 2021) presents easily interpretable CNN 

designed to identify shared EEG features among 

various subjects for the detection of driver 

drowsiness. The model incorporates the Global 

Average Pooling (GAP) layer within its structure, 

which enables to leverage of the Class Activation 

Map (CAM) method. This utilization of CAM 

allows to localize of the regions in the input signal 

that contributes the most to the classification 

process. 

2. (Abdelhameed and Bayoumi 2021) describes a 

novel approach that exploits the automatic feature 

learning capabilities of a two-dimensional deep 

convolution autoencoder (2D-DCAE), which is 

coupled with a neural network-based classifier. 

This unified system is trained to optimize 

classification accuracy between the ictal and 

interictal brain state signals. 

3. (Shalash 2021) introduces a method to estimate 

driver fatigue state using a single EEG channel 

signal. The process involved pre-processing the 

EEG signals, transforming them into color images 

using spectrogram analysis, and then classifying 

them as fatigue or normal fatigue using CNNs. 

4. (Juárez-Guerra et al. 2020) introduces a model 

named Multidimensional RadialWavelons Feed-

Forward Wavelet Neural Network (MRW-

FFWNN), for classifying epileptic seizures based 

on EEG signals. The network differentiates 

between three brain states associated with 

epilepsy: ictal, interictal, and healthy. 

5. (G. Xu et al. 2019) proposes a framework that 

combines a pre-trained VGG-16 model with a 

target CNN model for MI EEG signal 

classification. 

6. (Wu et al. 2019) introduces a parallel multiscale 

filter bank convolutional neural network 

(MSFBCNN) for MI classification. The proposed 

network consists of a layered end-to-end structure, 

where a feature-extraction network is employed to 

extract both temporal and spatial features. This 

approach enables effective feature representation 

for accurate MI classification. 

7. (Korkalainen et al. 2019) develops a deep learning 

method for automatically classifying sleep stages. 

Additionally, the study aims to study the impact of 

obstructive sleep apnea (OSA) severity on the 

classification. 

8. (Eldele et al. 2021) presents AttnSleep a novel 

attention-based deep learning architecture 

proposed for sleep stage classification using 

single-channel EEG signals. It consists of a feature 

extraction module utilizing a multi-resolution 

convolutional neural network (MRCNN) with 

adaptive feature recalibration (AFR), and a 

temporal context encoder (TCE) with multi-head 

attention. 

9. (Baser et al. 2022) creates a real-time algorithm 

for the non-invasive detection of spike-and-wave 

discharges (SWDs) in EEG recordings of 

individuals with absence epilepsy. The proposed 

approach involves utilizing CNNs and Thomson's 

multitaper power spectral density estimation 

analysis to represent the power of EEG signals as 

a function of frequency and time. 

10. (Yan et al. 2021) utilizes 2D-CNN to extract 

features from polysomnographic signals. The 

model incorporates a "squeeze and excitation" 

block to recalibrate channel-wise features and 

includes an LSTM module to capture long-range 

contextual relationships. The learned features are 

then passed to the decision layer to generate sleep 

stage predictions. 

11. (San-Segundo et al. 2019) describes a model that 

consists of two convolutional layers for feature 
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extraction and three fully connected layers for 

classification. Multiple EEG signal transforms, 

including Fourier, wavelet, and empirical mode 

decomposition were used as inputs of the model. 

12.  (Alhussein et al. 2018) uses deep learning to 

develop a cognitive Internet of Things (IoT) 

framework using CNN and Autoencoders. In this 

approach, smart EEG sensors are utilized 

specifically for recording and transmitting EEG 

signals from epileptic patients. 

13. (L. Xu et al. 2020) validates deep learning models 

for MI and addresses the issue of cross-dataset 

variability. To mitigate this problem, an online 

pre-alignment strategy is proposed to align the 

EEG distributions. Experiments are performed 

with EEGNet and ShallowNet. 

14. (Schirrmeister et al. 2017) investigates various 

deep CNNs for decoding imagined or executed 

movements from raw EEG signals. The results 

demonstrate that incorporating as batch 

normalization and exponential linear units, along 

with a cropped training strategy, significantly 

improved the decoding performance of the deep 

learning models. 

15. (Maeng, Kang, and Kim 2020) develops an 

annotation labeling program for emotions by 

arousal and valence. During the learning phase, a 

Genetic Algorithm (GA) was employed to select 

optimal parameters for an LSTM model and 

determine the active feature group from EEGs in 

the time, frequency, and time-frequency domains. 

16. (J. Zhang, Xu, and Yin 2023) implements a tool 

for depression screening by using EEG signals 

from 128 channels. The experiments consist of a 

2D-CNN-LSTM classifier, support vector 

machine, K-nearest neighbor, and decision tree 

were employed. 

17. (Y. Li, Zhang, and Ming 2023) examines the 

integration of EEG and fNIRS data through a bi-

modal fusion approach. A Y-shaped neural 

network was developed to combine the bimodal 

information at different stages of the network. 

18. (Dar et al. 2022) combines 1D-CRNN with an 

Extreme Learning Machine (ELM). The proposed 

architecture is robust for emotion detection in 

Parkinson's disease (PD) patients and can handle 

cross-dataset learning with different emotions and 

experimental settings. 

19. (Islam et al. 2021) introduces a CNN for emotion 

recognition. The EEG data were transformed into 

images representing Pearson's Correlation 

Coefficient (PCC). These images were then fed 

into the CNN model to classify emotions. Two 

protocols were conducted, protocol-1 for two-

level emotion identification and protocol-2 for 

three-level recognition of valence and arousal. 

20. (J. Liu et al. 2020) introduces a model for emotion 

classification using EEGs. The proposed approach 

combines CNN, Sparse Autoencoder (SAE), and 

Deep Neural Network to enhance feature 

extraction and classification. The CNN extracts 

features, which are then encoded and decoded by 

the SAE to reduce redundancy. The resulting 

features are fed into the DNN for the classification 

task. 

21. (Zhu et al. 2021) aims to re-implement a compact 

CNN called EEGNet and evaluated its feasibility 

for decoding SSVEP in ear-EEG signals. To 

further improve classification accuracy different 

kernel numbers were used. 

22. (Kwon, Shin, and Kim 2018) uses a CNN for 

emotion recognition. Classification performance 

was improved by combining EEG and galvanic 

skin response (GSR) signals. The GSR signals 

were preprocessed using the zero-crossing rate. 

23. (Topic and Russo 2021) employs Deep learning as 

a feature extraction method, where feature maps 

are utilized to extract relevant features. These 

extracted features are then fused together to enable 

the classification of various types of emotions. 

24. (F. Li et al. 2021) implements a 34-layer deep 

residual CNN model for sleep staging 

classification. The network takes raw single-

channel electroencephalogram (Fpz-Cz) signal as 

input and yields hypnogram annotations for each 

30s segment as output. 

25. (Bairagi et al. 2021) creates a patient-specific 

computer-aided model that can detect epileptic 

seizures. This model incorporates an FIR filter, 

DWT (Discrete Wavelet Transform), ANN, and a 

newly proposed sequential window algorithm 

(SWA).  

26. (Salehzadeh, Calitz, and Greyling 2020) presents 

a deep learning-based framework for accurately 

classifying EEG artifacts based on a person's 

physiological activity. The framework utilizes a 

processing pipeline that combines CNN and 

LSTM. 

27. (Y. Liu et al. 2020) introduces methods for EEG-

based mental fatigue recognition that utilize inter-

subject transfer learning, eliminating the need for 

calibration. To identify the most informative 

features, it employs different machine learning 

techniques such as deep learning. 

28. (D. Wang and Shang 2013) propose a system 

based on Deep Belief Networks (DBNs) for 

automatic feature extraction from raw 

physiological data. The extracted features are then 
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used to build classifiers for predicting arousal, 

valence, and liking levels. 

29. (von Atzingen et al. 2022) uses CNN to analyze 

the brain signals of 11 healthy subjects during the 

tasting of drinks with different sweeteners. The 

study aimed to gain insights into the neural 

responses associated with them. 

30. (Podmore et al. 2019) studies how a CNN can 

classify frequency and phase-encoded SSVEP 

signals. 

31. (Sarmiento et al. 2021) develops a novel algorithm 

called CNNeeg1-1 using DL techniques to 

recognize EEG signals associated with imagined 

vowel tasks. 

32. (Ma et al. 2021) proposes a model for the 

automatic diagnosis of epilepsy. It replaces the 

traditional CNN with a one-dimensional CNN. 

Additionally, the model combines an independent 

recurrent neural network (indRNN) with CNN. 

33. (Guillot and Thorey 2021) presents 

RobustSleepNet as a deep learning model 

designed for automatic sleep stage classification. 

The model is trained and evaluated using a diverse 

set of 8 sleep staging datasets. This approach aims 

to ensure the model's robustness to demographic 

variations and improve its generalizability across 

different populations. 

34. (Huang et al. 2020) introduce an approach based 

on timestamp-based segmentation (TSS) and 

multichannel analysis for sleep stage 

classification. TSS utilizes a CNN to predict sleep 

stage labels at each timestamp. Then incorporates 

multiple channels of PSG recordings, including 

EEG, EOG, EMG, and leg electromyogram. 

35. (Miao et al. 2020) proposes a novel deep learning 

methodology for spatial-frequency feature 

learning and classification of motor imagery 

EEGs. The approach involves a CNN model 

specifically designed to capture the spatial-

frequency characteristics. 

36. (Pedoeem et al. 2020) presents a tool to support 

neurologists to expedite the analysis of EEG data, 

enabling doctors to assess more patients and 

allocate additional time to treatment. The model 

adopts a transformer-based neural network 

architecture for seizure detection. 

37. (Bassi, Rampazzo, and Attux 2021) employs 

CNNs to classify EEG signals in a single-channel 

BCI based on SSVEP. Notably, the approach 

eliminates the need for calibration with the user, 

enhancing the usability of the system. 

38. (Banville et al. 2021)  

explores self-supervised learning (SSL) 

techniques for EEG analysis, specifically temporal 

context prediction and contrastive predictive 

coding. Applying SSL to EEG-based sleep staging 

and pathology detection, the model us able to 

discover meaningful patterns in unlabeled data. 

 

Another relevant piece of information that can be obtained 

from this preliminary analysis is related to the first research 

question; the type of DL model used. This knowledge is 

helpful for researchers to determine which are the most 

powerful models for processing EEGs. The usage 

percentages are collected in the following pie chart, Figure 

8. As more than one model can be used in a paper, the 

number of instances is bigger than 38. 

 

 

 

FIGURE 8. Pie chart with the percentages of the deep learning models 
applied in the selected papers (n=40). 

 

Another quality criterion for selecting a paper is the use of 

metrics to evaluate the performance of the models. 

Following, we compile a pair of aspects related to them. 

Again, it should be highlighted that a paper can use more 

than one metric. Figure 9 represents a diagram of bars that 

counts the times each DL metric appears in the set of 

selected papers which is interesting to know which of them 

researchers should apply in their works. 
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FIGURE 9. Distribution of the machine learning metrics applied in the 
selected papers (n=48). 

 

Another graphic related to metrics is the following boxplot, 

where we represent the distribution of the values obtained 

in the different papers after training the different DL 

models, Figure 10. 

 

 

 

FIGURE 10. Boxplots describing the distribution of the precise 

values of each metric in the experiments performed in selected papers 
(n=99). 

 

EEGs can solve several use cases. This information helps 

us know which application fields are less exploited, so there 

is scope for further research. Figure 11 uses a pie chart to 

describe this information which we have classified the 

datasets into 8 general categories: 

 Motor imagery (MI) classification. This 

application aims to recognize a subject's 

intention, (Lu et al. 2016). 

 Seizure management. EEGs of patients with 

epilepsy, a brain disorder that consists of 

abnormal cerebral activities. 

 Estimation of sleep stages. Datasets collect the 

five possible stages a human can experiment 

with while sleeping. 

 Recognize emotions. This task consists of 

classifying human emotional states as the 

domains of arousal and valence. 
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 Classify levels of fatigue. Mental fatigue 

happens when a subject has paid attention to a 

task for a long time. These datasets can measure 

different levels of fatigue, in some cases while 

driving. 

 Disease diagnosis. In the medical field, we 

typically find datasets of epilepsy, but others 

can diagnose diseases such as Attention Deficit 

and Hyperactivity Disorder (ADHD). 

 Brain stimuli. It measures how the brain 

responds to different perception tasks. For 

example, the response to images or the 

consumption of sweetened drinks. 

 Human activity recognition. This is a way to 

detect artifacts while performing tasks such as 

reading, watching, and speaking. 

 Depression screening. the process of assessing 

individuals for symptoms and indicators of 

depression in order to identify those who may 

be at risk or currently experiencing depression. 

 

 

FIGURE 11. Pie chart with the percentages of the different use 
cases conducted in the reviewed datasets (n=38). 

 

Figure 12 combines the results of both previous analyses in 

a bubble diagram where the X-axis represents the deep 

learning model and the Y-axis the possible use cases. This 

information is interesting when a scientist needs to decide 

what DL models could be used depending on the use case 

                                                
8 https://www.bbci.de/competition/iv/#dataset2a 
9 https://www.bbci.de/competition/iv/#dataset2b 
10 https://www.eecs.qmul.ac.uk/mmv/datasets/deap/ 
11https://figshare.com/articles/dataset/Multi-

channel_EEG_recordings_during_a_sustained-

attention_driving_task/6427334/5 

they are working on. The bubble size and colour depend on 

the number of instances.  

 

   

 

FIGURE 12. Relationship between the deep learning models 
used in the selected papers and use cases carried out in the reviewed 

datasets. 

C. SUMMARY OF DATASETS 

As we have said before, we have applied the PRISMA 

method to obtain a set of papers from which we are 

analyzing the datasets used in them. The following is a brief 

description of them. 

1. BCI competition IV 2a8: the imagination of 

movement of the left hand, right hand, both feet 

and tongue, (Ang et al. 2012) 

2. BCI competition IV 2b9: motor imagery of left 

hand and right hand, (Brunner et al. 2008) 

3. DEAP and video signals10: emotion recognition 

of low arousal and low valence (LALV), high 

arousal and low valence (HALV), low arousal 

and high valence (LAHV,) and high arousal and 

high valence (HAHV), (Koelstra et al. 2011) 

4. Multichannel EEG sustained attention driving 

task11: fatigue and non-fatigued during driving, 

(Zhao et al. 2019) 

5. Temple University EEG Corpus12: a compilation 

of different neural diseases, (Obeid and Picone 

2016) 

6. CHB-MIT Scalp EEG Database13: seizure and 

non-seizure states in epileptic patients, (Shoeb 

2009) 

7. MAHNOB-HCI14: a scale of valence and 

arousal, (Lichtenauer et al. 2011) 

12 https://isip.piconepress.com/projects/tuh_eeg/ 
13 https://physionet.org/content/chbmit/1.0.0/ 
14

 https://mahnob-db.eu/hci-tagging/ 
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8. Sleep EDF15: sleep stages after temazepam 

intake and after placebo intake, (Goldberger et 

al. 2000) 

9. Motor Imagery dataset from Weibo et al. 201416: 

simple MI (left hand, right hand, and feet) and 

compound MI (both hands, left hand combined 
with the right foot, right hand combined with the 

left foot), (Yi et al. 2014) 

10. PhysioNet/CinC Challenge 201817: wakefulness, 

stage 1, stage 2, stage 3, rapid eye movement 

(REM), and undefined, (Ghassemi et al. 2018) 

11. Open source SSVEP dataset18: healthy subjects 

focused on 40 characters flickering at different 

frequencies, (Y. Wang et al. 2016) 

12. BCI Competition III IVa19: MI of the left hand, 

right hand, and right foot, (Blankertz et al. 2004) 

13. EEG data for driver fatigue detection20: drivers 

suffering fatigue or not, (Min, Wang, and Hu 

2017). 

14. University of Bonn21: seizure and non-seizure 

states, (Andrzejak et al. 2001). 

15. Motor Imagery dataset from Zhou et al. 201622: 

MI of the left hand, right hand, and feet, (B. 

Zhou et al. 2016) 

16. Sleep Heart Health Study23: sleep scores, (Quan 

et al. 1997) 

17. EEG datasets for motor imagery brain-

computer interface24: data for non-task-related 

and task-related states, (Cho et al. 2017) 

18. DOD-O25: scored apnea patients, (Guillot et al. 

2020). 

19. DOD-H26: scored sleep stages, (Guillot et al. 

2020). 

20. CAP sleep database27: activity during NREM 

sleep, (Terzano et al. 2002) 

21. Bern-Barcelona EEG database28: patients have 

pharmacoresistant focal-onset epilepsy, 

(Andrzejak, Schindler, and Rummel 2012) 

22. MrOS Sleep29: sleep study, (G.-Q. Zhang et al. 

2018) 

                                                
15 https://www.physionet.org/content/sleep-edfx/1.0.0/ 
16 

http://moabb.neurotechx.com/docs/generated/moabb.datasets.Weibo2014.

html 
17 https://archive.physionet.org/physiobank/database/challenge/2018/ 
18 http://bci.med.tsinghua.edu.cn/download.html 
19 https://www.bbci.de/competition/iii/desc_IVa.html 
20 

https://figshare.com/articles/dataset/The_original_EEG_data_for_driver_fa

tigue_detection 
21 https://ebrary.net/59044/education/details_public_databases 
22 

http://moabb.neurotechx.com/docs/generated/moabb.datasets.Zhou2016.ht

ml 
23 https://sleepdata.org/datasets/shhs 
24 https://academic.oup.com/gigascience/article/6/7/gix034/3796323 
25 https://dreem-dod-o.s3.eu-west-3.amazonaws.com/index.html 

23. Database-Imaged-Vowels-130: pronounce the 

five main vowels "a", "e", "i", "o", and "u" and 

six Spanish words, (Coretto, Gareis, and 

Rufiner 2017) 

24. EEG+NIRS Single-Trial Classification31: it 

conducts two BCI experiments: left versus 

right-hand motor imagery; mental arithmetic 

versus resting state, (Shin et al. 2016). 

25. MODMA32: this is a dataset for mental-disorder 

analysis which includes clinically depressed 

patients and controls, (Cai et al. 2020) 

26. BehaveNET33: human task recognition of 

reading, speaking and watching TV.  

27. EEG Sweeteners AI34: this study evaluated 

brain signals from 11 healthy subjects when 

they tasted passion fruit juice equivalently 

sweetened with sucrose, sucralose, and 

aspartame, (von Atzingen et al. 2022)  

28. MESA35: sleep study to understand how 

variations in sleep and sleep disorders vary across 

gender and ethnic groups and relate to measures 

of subclinical atherosclerosis, (G.-Q. Zhang et al. 

2018) 

29. CBICIC201936: it comprises two subsets of MI 

with left and right-hand tasks. 

30. Deep BCI37: classification of steady-state visual 

evoked potentials (SSVEPs) based BCI from 

earEEG, (Kwak and Lee 2019). 

31. AMIGOS38: valence, arousal, dominance, 

familiarity, and liking, and selected basic 

emotions. 

32. SEED39: report of emotional reactions. 

 

All the information in the datasets has been collected in the 

following table attached at the end of the paper. The most 

used datasets are Sleep EDF and DEAP. 

 
TABLE II 

SUMMARY OF SELECTED DATASETS 

26 https://dreem-dod-h.s3.eu-west-3.amazonaws.com/index.html 
27 https://archive.physionet.org/physiobank/database/capslpdb 
28 https://www.upf.edu/web/mdm-dtic/-/1st-test-

dataset#.YfgOG1jMIUo 
29 https://sleepdata.org/datasets/mros 
30 

http://www.ifp.illinois.edu/speech/speech_web_lg/data/mri/index.html 
31 http://doc.ml.tu-berlin.de/hBCI. 
32 http://modma.lzu.edu.cn/data/index/ 
33 https://zenodo.org/record/2552600#.ZBdONuzMJ 
34 https://github.com/Atzingen/EEG_Sweetners_AI 
35 https://sleepdata.org/datasets/mesa 
36 https://www.datafoundation.cn/competitions/342/datasets 
37 http://deepbci.korea.ac.kr/ 
38 http://www.eecs.qmul.ac.uk/mmv/datasets/amigos/ 
39 https://bcmi.sjtu.edu.cn/home/seed/ 
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D. STATISTICS AND ANALYSIS OF THE OPEN 
EEGS'DATASETS 

The first important feature in a dataset is the number of 

individuals which is directly related to the model behavior. 

(Roy et al. 2019) show that models increase their 

performance when the number of subjects exceeds 15. The 

number of tests is logically related to this feature. The 

values of both characteristics are compiled in Figure 13 

which shows a double diagram bar with their distribution 

per dataset. 

 

 

FIGURE 13. Distribution of the number of individuals and test 
collected in each reviewed dataset (n=32). 

 

The number of channels is also a critical decision 

depending on the use case. (Jasper 1958) tells that a 

minimum of 21 channels should be used to examine an 

adult brain. This information is collected in Table II. 

Another particular feature of EEGs is that of the electrodes 

system which indicates how electrodes are placed around 

the scalp. Figure 14 shows a pie chart with the percentage 

of datasets according to the system. 

 

 

FIGURE 14. Pie chart with the percentages of the electrodes’ 
systems used in the reviewed datasets (n=32).   

 

Another interesting measure that will determine the 

performance of the model is sample frequency. The 

following bar diagram (Figure 15) represents the 

distribution of studies according to the frequency used to 

represent the data. This measure is directly related to the 

machine used to collect the data. In this case, different 

frequencies can be used in the same dataset. 

 

 

FIGURE 15. Distribution of the sampling frequency used in the 
reviewed datasets (n=37). 

 

Finally, we have a pie chart that compiles the file format 

used, Figure 16. This depends on the different software 

used when doing the test. 

 

 

FIGURE 16. Pie chart with the percentages of the file formats 
used in the reviewed datasets (n=32). 

 
V. DISCUSSION 

This work provides a compilation of open EEG datasets 

analyzed using DL models in a set of papers selected by 

applying the PRISMA method in a systematic review. The 

results of the previous section are discussed below from a 

double perspective: on the one hand, the papers and the DL 
models used, and on the other, the datasets. 
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The first part of the statistical analysis starts with the year of 

publication of the papers. Figure 7 verifies, in part, the trend 

of papers in deep learning, mentioned in Figure 2. The 
number of articles published between 2018 and 2021 shows 

a significant increase. However, the total number is still 

small, and we can conclude that there is room for creating 

new open datasets available to the community. It is 

foreseeable that more papers on EEG and deep learning will 

be published in the coming years. 

As can be seen in Figure 8, the most commonly used DL 

model, by a wide margin, is the CNN, which appears in 

65% of the cases either as a 1-dimensional CNN (EEGs are 

processed channel by channel) or 2-dimensional CNNs, 

(EEGs are processed as a whole). Then there is a set of 

papers that use a hybrid model of CNN with LSTM, 10%. 

This is followed by hybrid models of Autoencoder and 

MLP (7%), RNNs (5%) and finally LSTMs or Autoencoder 

plus LSTM (3%). These numbers give us several ideas. 

First, using CNNs is successful but less innovative. This 

makes sense as EEGs can be managed as an image with 

convolutional filters. Second, using hybrid models seems 

an opportunity to make new contributions to the field. 

Finally, GAN and GCNN models are not used which is 

shocking. The first one has many applications in the 

creation of synthetic data (very useful considering the 

shortage of EEGs) or artifact removal (a typical task after 

collecting this data). The other can be used to model EEGs 

as graphs and study brain connectivity. 

By analyzing the results in Figure 9, we can see that 

accuracy is the most used metric. This is meaningful as 

accuracy is the baseline metric to know if a deep learning 

model performs correctly. Otherwise, the fact of only 

working with accuracy leads to incomplete experiments as 

this metric only measures the number of hits. Accuracy has 

problems in models that use imbalanced datasets and does 

not give more interpretation of the performance of the 

model as it does not consider false positives and false 

negatives like sensitivity, specificity, and F1-score, 

(Mortaz 2020). Another conclusion obtained from the 

metrics is that none of the metrics measures the loss of the 

models which means that all the datasets are considered 

classification problems. 

More information about the metrics is compiled in Figure 

10. As we can see, all the metrics obtain values around 90% 

except specificity which performs near 100%, but with a 

small set of values. We can also see that the F1-score and 

sensitivity are more stable with the exception of an outlier 

in the latter with a poor performance near 10%. We confirm 

that accuracy is the most used but with a wider range of 

values which indicates is not as precise as the others. 

Regarding Figure 11, the most frequent use case is MI EEG 

classification, with more than 27% of the cases. This fact is 

related to BCI competition IV40, a famous data resource in 

                                                
40 https://www.bbci.de/competition/iv/ 

the field comprising a set of datasets for signal processing 

and BCI classification. Then, we can highlight three use 

cases among the rest: seizure management, sleep stage 

classification, and emotion recognition. The rest of the use 

cases only occur once, twice, or three times: disease 

diagnostic, human activity recognition, brain stimuli, and 

classification in levels of fatigue. We can conclude with 

this analysis that if we want to publish a dataset that brings 

value to the field, the last four use cases are not exploited a 

lot. 

The features of DL models and use cases are represented in 

Figure 12. The biggest bubble representing MI EEG 

classification with CNN makes sense because the DL 

model is the most popular in its category and there are 

several MI datasets. For example, those that are part of the 

BCI Competition. Regarding this use case, we can see that 

only models with CNN are used, so there is room to 

experiment with other models. In the second position, we 

have papers using CNN in stages of fatigue, sleep 

classification, and seizure management. The latter has been 

studied with several DL models, so it seems there are not 

many opportunities to work with this data. The information 

on the chart can be used to identify what models can be 

used with our own dataset. Also, to find combinations that 

have not been applied before to do new contributions to 

science. The rest of the combinations have few instances or 

none, so they can be considered niches to research. For 

example, using models that are not CNN in cases like levels 

of fatigue, brain stimuli, classification sleep stages or 

diagnostic of diseases. 

The second part of the statistical analysis comprises the 

datasets’ features. We first find the number of subjects 

which ranges from 4 to 16,986. This is directly related to 

the number of tests going from 4 to 10,874, the mismatch 

with the previous values is because the dataset with the 

most individuals has not recorded a test for each of them, 

Figure 13. In fact, this a strange situation as most of the 

time the number of tests is greater than the number of 

individuals. As we can see most of the datasets are in the 

low range which confirms that compiling EEGs is not an 

easy task. 

 Test duration ranges from seconds to hours (usually, these 

are sleep studies or patients with epilepsy). The length of 

the tests in seconds occurred 6 times ranging from 4 to 30 

with an average of 16.93 seconds. In the case of minutes, 

we found 14 experiments with lengths from 4 to 51 and an 

average value of about 14 minutes. Finally, there are 12 

examples with tests lasting at least 1 hour ranging to 9 with 

an average of almost 6 hours. This is directly related to the 

use case as epileptic seizures only need seconds to be 

analyzed but sleep stages need hours. 

The number of channels used in the datasets has different 

values. In our case, the different options are well distributed 
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with works using only 1 channel and others using 128 

channels. However, configurations of 64, 32, 16, and 8 

channels, (Montoya-Martinez, Bertrand, and Francart 

2019), which are recommended do not outstand. There is 

no analysis that supports this recommendation for deep 

learning studies, so it could be a future work to be 

developed. 

Other features that have not been studied under a minimum 

standard to be met are the electrodes system and the 

sampling frequency. As can be seen in Figure 15, 10-20 is 

the most used electrode system by far, which makes sense 

due to the following aspects. It is an international 

recommendation, (Yang and Deravi 2017). (Association 

and others 2013) highlights that it is also one of the most 

used. Other datasets do not provide this information or do 

not use one due to the number of channels. Figure 16 

describes the use of sample frequency. In the first position, 

we can find 8 times a sampling frequency of 250 Hz. Then, 

datasets using 256, 512, and 1000 Hz are also noteworthy. 

Regarding the minimum Hz to obtain good performances 

in DL models, (Wen et al. 2021) demonstrate that a higher 

frequency does not provide better results. Nevertheless, 

there are no scientific papers that measure the minimum to 

obtain DL models that perform well, so it could be a future 

approach. 

Finally, Figure 17 gives information about the file formats 

that have been used. In the first position, we find a format 

related to EEGLAB41, a well-known MATLAB tool for 

brain signal processing. The second position is for 

European Data Format (EDF) a standard for storing 

multichannel biological and physiological signals, (Kemp 

and Olivan 2003). The rest of the formats are widely 

distributed.  
 
VI. CONCLUSIONS AND FUTURE WORKS 

This work provides a compilation of open EEG datasets 

from papers that apply deep learning models. We have used 

PRISMA to define a workflow for selecting a set of papers 

that uses these kinds of datasets. Our initial search returned 

331 works which, after screening based on the 

inclusion/exclusion criteria, were reduced to 37. In these 

papers, 30 datasets were found. Some clear conclusions 

related to DL techniques are obtained: convolutional neural 

networks are widely used due to their link with the nature 

of the data, MI classification is the most common use case 

and accuracy is the most used metric, but others are more 

stable. By combining the first and second conclusions, we 

know that most of the papers apply CNNs to MI use cases. 

The conclusions related to the datasets comprise: EGGs are 

difficult to compile due to the low number of instances in 

general, the number of channels is not relevant so it should 

be studied, the most used electrode system is the 10-20 

system, most relevant sample frequency should also be 

                                                
41 https://sccn.ucsd.edu/eeglab/index.php 

analyzed and EDF and MAT file formats stand out from the 

rest. 

The further analysis concludes that the number of published 

papers per year is remarkable, but it is still worth working 

in the field. From 2018 to 2021, the amount has increased. 

But in the last 2 years have decreased a little. So, publishing 

open datasets is relevant for the scientific community. 

Related to the DL models, we can see that CNNs are a good 

solution which is why they have been widely applied. The 

graphics of the use cases are helpful to find application 

fields that have not been covered a lot or knowing which 

kind of datasets can obtain good results. The bubble 

diagram can be used by researchers to know which DL 

models should be involved in their datasets depending on 

the use case. In this way, there are several use cases not 

very exploited, but the use of CNN is not innovative in any 

case. The analysis of the dataset's characteristics leads us to 

conclude that the 10-20 system is the most widely used 

when collecting the data. No work supports the idea that 

this is the most efficient one. The sample rate of the datasets 

is very diverse; therefore, none is a priori better than the 

other. In the case of the number of channels and sample 

frequency, values are very distributed and again there are 

no works supporting which values should be recommended. 

The main limitation of the study is the amount of selected 

works because there are not several papers accomplishing 

the criteria. As EEGs are medical data, people are reluctant 

to make them freely available, and researchers who compile 

the EEGs do not want to share them since they prefer to 

exploit them themselves. Another reason is the difficulty of 

collecting a good quality bank of EEGs as it is costly in 

terms of time. Another limitation of the work is that the 

authors of the papers using the datasets are not the same as 

those who have published them. This condition supposes a 

decoupling between the medical and computer science 

perspectives, not considering that both profiles are 

necessary. Finally, we have found some papers that do not 

specify that they are using an open dataset, so this criteria 

for selecting papers could not have affect in some cases. 

Some niches to consider are the following. The use of 

Natural Language Processing (NLP) techniques such as 

Transformers and GCNN for not being so exploited. NLP 

models are one of the most advanced nowadays. If we make 

a parallelism between texts and EEGs, a sentence can be 

considered a channel, and a word in the sentence is a 

particular measure of the channel. This approach could be 

a starting point for applying these powerful models with 

EEGs. Another exciting application is studying the network 

connectivity that can be modeled by representing the EEGs 

as graphs. In this case, GCNNs are very useful and seem to 

be a niche.  

As future work, the review shows that there is room for 

finding a gold standard of the characteristics of an EEG 
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dataset to be used in multidisciplinary teams of physicians 

and computer scientists because sometimes the needs of 

some do not match those of others. Only one work has been 

found that studies a single characteristic of the datasets, the 

number of subjects, (Roy et al., 2019). Thus, we propose to 

carry out different studies in the future to discover how the 

electrode system, the number of channels, or the sample 

rate influence obtaining good results when using DL 

models. 
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Paper Preprocessing 
techniques 

Deep 

learning  
model 

Metrics Aim Year CI SJR 

(2021) 
SNIP 

(2022) 
CQI 

(G. Xu et al. 2019)  CNN 74.2% Accuracy Motor imagery (MI) electroencephalogram 
(EEG) signal classification 

2019 98 0.927 1.33 0.891345 

(Wu et al. 2019)  CNN 75.8 and 84.3 Accuracy MI classification 2019 74 1.275 1.32 0.992178 

(Schirrmeister et al. 2017)  CNN 91.15% Sensitivity Classification of imagined or executed 
movements 

2018 1157 1.719 1.55 2.169724 

(Kwon, Shin, and Kim 2018)  CNN 73.4% Accuracy Classify emotion based on multimodal data 2018 110 0.803 1.42 0.889157 

(D. Wang and Shang 2013)  MLP 60.9%, 51.2%, and 68.4% 
Accuracy 

Predict the levels of arousal, valance, and 
liking based on the learned features 

2013 190 1.257 1.64 1.199843 

(Maeng, Kang, and Kim 
2020) 

Frequency filtering 
and normalization 

RNN 91.3% and 94.8% Accuracy Recognize emotions 2020 8 0.59 1.01 0.578499 

(Podmore et al. 2019)  CNN 86% and 77% Accuracy Extract stimulus pattern features 2019 34 1.257 1.64 1.065012 

(Pedoeem et al. 2020)  AU 12.37% Sensitivity Predict seizures 2020 5 0.243 0.00 0.091700 

(Cui et al. 2021) FIR filters and 
artifact removal 

CNN 73.22 Accuracy Detect drivers' drowsy states 2021 12 1.392 0.89 0.827637 

(L. Xu et al. 2020)  CNN 71%, 72%, 70% and 72% 
Accuracy 

MI classification 2020 48 0.859 1.25 0.795208 

(Miao et al. 2020)  CNN 90% Accuracy Classification of motor imagery EEG 2020 24 0.522 0.96 0.550083 

(Abdelhameed and Bayoumi 
2021) 

STFT AU+LSTM 98.79 Accuracy, 98.72 
Sensitivity, 98.86 Specificity 

Detecting seizures in pediatric patients 2021 27 0.797 1.11 0.704942 

(Y. Liu et al. 2020)  CNN 73.01% Accuracy and 68% 
Accuracy 

Mental fatigue recognition 2020 31 1.601 2.20 1.385404 

(Shalash 2021)  Bandpass filtering CNN 94.33%, 92.57 and 93% 
Accuracy 

Detect drivers' fatigue 2021 2 0.195 0.39 0.210637 

(Korkalainen et al. 2019)  CNN+LSTM 83.9 and 83.7 Accuracy Estimation of the sleep stages 2019 60 1.799 2.27 1.506577 

(Sarmiento et al. 2021)  CNN 65.62% and 85.66% 
Accuracy 

Recognize EEG signals in imagined vowel 
tasks 

2021 4 0.803 1.42 0.797540 

(Bassi, Rampazzo, and Attux 
2021) 

 CNN 82.2% Accuracy and 82.5% 
F1-Score 

BCI Classification 2021 9 1.211 1.86 1.105155 

(Guillot and Thorey 2021)  AU 97% F1-Score Sleep stage classification 2021 25 1.257 1.64 1.057233 

(F. Li et al. 2021)  CNN 66.5% Sensitivity, 97.9% 
Specificity and 67.9% 

Sensitivity, 97.0% Specificity 

Classify sleep staging 2019 20 1.211 1.86 1.114663 

(Banville et al. 2021)  CNN 72.3% and 79.4% Accuracy EEG-based sleep staging and pathology 
detection 

2020 35 1.504 1.66 1.161811 

(Yan et al. 2021)  CNN+LSTM 87%, 86% and 86% Accuracy Automatic Sleep Scoring 2020 9 0.754 0.88 0.592071 

(Eldele et al. 2021)  CNN 84.4%, 81.3% and 86.7% 
Accuracy 

Sleep stage classification 2021 89 1.257 1.64 1.112549 

(Huang et al. 2020)  CNN 90.89% Accuracy Sleep Stage Classification 2020 11 1.497 2.24 1.344956 

(J. Liu et al. 2020)  AU 89.49%, 92.86% and 96.77% 
Accuracy 

EEG-Based Emotion Classification 2020 74 1.223 1.02 0.866718 

(San-Segundo et al. 2019)  CNN 99.5%, 96.5% and 95.7% 
Accuracy 

Classification of epileptic EEG recordings 2019 90 1.309 1.94 1.238873 

(Islam et al. 2021)  CNN 78.22% and 
74.92% Accuracy 

 Emotion Recognition  2021 39 1.309 1.94 1.194793 

(Y. Zhang et al. 2021)  CNN 70.15% Accuracy, 70.18 F1-
Score and 77.07% Accuracy, 

and 75.48% F1-Score 

Detection Attention Deficit and 
Hyperactivity Disorder (ADHD) 

2021 11 2.781 2.81 2.009507 

(Baser et al. 2022)  CNN 99.42%, 95.83% Accuracy. 
99.55%, 96.29% Specificity. 
97.55%, 89.57% Sensitivity 

96.39%, 81.86%  f1-score 

Seizure Management 2022 1 2.781 2.81 2.000864 

(J. Zhang, Xu, and Yin 2023)  MLP 93.33% Accuracy and 95.0% 
Accuracy 

 

Seizure Management 2019 11 2.781 2.81 2.009507 

(Alhussein et al. 2018)  CNN, 
CNN+AU 

99.2% Accuracy and 93.5% 
Sensitivity 

Seizure Management 2018 95 0.871 1.37 0.882850 
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 TABLE II 

                                SUMMARY OF SELECTED DATASETS 

 

Dataset Number  

of subjects 

Total 

tests 

Length 

per-test 

Electrodes'  

system 

Nº channels Sampling 

frequency 

Format Papers 

BCI Competition IV 2a 9 2,591 5 minutes 10-20 system 22 channels 250 Hz GDF 3 

BCI Competition IV 2b 9 45 5 minutes No system 3 channels 250 Hz GDF 3 

DEAP and video signals 32 32 40 minutes 10-20 system 45 channels 512 Hz BDF 5 

Multi-channel EEG sustained attention 

driving task 

27 62 90 minutes 10-20 system 32 channels 500 Hz SET 2 

Temple University EEG Corpus 16,986 10,874 20 minutes 10-20 system 31 channels 250 Hz (87%) 

256 Hz (8.3%) 

400 Hz (3.8%) 

512 Hz (1%). 

EDF 3 

CHB-MIT Scalp EEG Database 22 664 1 to 4 hours 10-20 system 23 channels 256 Hz EDF 3 

MAHNOB-HCI 30 120 30 seconds 10-20 system 32 channels 256 Hz BDF 1 

Sleep EDF 78 197 9 hours No system 2 channels 100 Hz EDF 6 

Weibo et al., 2014 10 320 8 seconds 10-20 system 60 channels 100 Hz TXT 1 

PhysioNet/CinC Challenge 2018 1,985 1,985 7.7 hours average 10-20 system 6 channels 200 Hz MAT 2 

Open source SSVEP dataset 35 35 4 minutes 10-20 system 64 channels 1000 Hz MAT 2 

BCI Competition III IVa 5 10 980 seconds 10-20 system 118 channels 1000 Hz MAT 1 

Driver fatigue detection 12 12 5 minutes 10-20 system 40 channels 1000 Hz CNT 1 

University of Bonn 5 500 23.6 seconds 10-20 system Single-channel 173.61 Hz TXT 2 

Zhou et al., 2016 4 12 750 seconds 10-20 system 14 channels 250 Hz CNT 1 

Sleep Heart Health Study 3,295 2,651 About 8 hours No system 2 channels 125 Hz EDF 4 

DOD-O 55 55 387 minutes No system 8 channels 250 Hz H5 1 

DOD-H  25 25 427 minutes No system 8 channels 250 Hz H5 1 

CAP Sleep Database 108 108 410 minutes 10-20 system 3 channels From 128 to 512 Hz EDF 1 

Bern-Barcelona EEG database 5 3,740 20 seconds 10-20 system 64 channels 512 or 1024 Hz TXT 1 

MrOS Sleep 1,026 586 341 minutes 10-20 system 5 channels 256 Hz EDF 1 

Database-Imaged-Vowels 15 15 110 seconds 10-20 system 18 channels 1024 Hz MAT 1 

CBCI2019 18 and 6 60 and 40 4 seconds No system 59 channels 250 and 1000 Hz MAT 2 

Deep BCI 11 33 1200 Seconds 10-20 system 8 channels 500 Hz MAT 1 

EEG Sweetners AI 11 33 16 seconds 10-20 system 2 channels 512 Hz EDF 1 

BehaveNET 8 8 300-380 seconds No system 4 channels 220 Hz CSV 1 

EEG+NIRS Single-Trial 29 174 147 seconds 10-5 system 30 channels 128 Hz MAT 2 

MODMA Dataset 48 48 5 minutes 10-20 system 128 channels 250 Hz MFF 1 

AMIGOS 77 77 Variable 10-20 system 62 channels 200 Hz MAT 1 
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SEED 15 15 4575 seconds 10-20 system 17 channels 256 Hz MAT 2 

MESA 6814 6814 6-8 hours No system 5 channels 256 Hz CSV 1 

EEG datasets for motor imagery brain 

computer interface 

52 52 51 minutes 10-10 system 64 channels 512 Hz MAT 1 
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