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Abstract: Aging is a physiological process accompanied by a decline in cognitive performance. The
cholinergic neurons of the basal forebrain provide projections to the cortex that are directly engaged
in many cognitive processes in mammals. In addition, basal forebrain neurons contribute to the
generation of different rhythms in the EEG along the sleep/wakefulness cycle. The aim of this
review is to provide an overview of recent advances grouped around the changes in basal forebrain
activity during healthy aging. Elucidating the underlying mechanisms of brain function and their
decline is especially relevant in today’s society as an increasingly aged population faces higher
risks of developing neurodegenerative diseases such as Alzheimer’s disease. The profound age-
related cognitive deficits and neurodegenerative diseases associated with basal forebrain dysfunction
highlight the importance of investigating the aging of this brain region.
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1. Introduction

A wide variety of age-dependent physiological and molecular changes have been
described in the mammalian central nervous systems [1,2]. Healthy aging is associated
with functional and structural changes in many brain regions, resulting in an important
and selective decline of executive functions and attention, as well as working and episodic
memories. This decline is associated with alterations in synaptic transmission, structural
synaptic changes, and a loss of synaptic connections [3–5]. One of the most important
changes in aging occurs in cortical activity, and one of the more important areas that control
this activity is the cholinergic inputs from the basal forebrain (BF).

Existing evidence suggests that aging may lead to specific changes in cortical activity.
For example, a reduction of synaptic input in the neocortex [6] and a loss of gray and white
matter with aging has been described in humans [7–9], and a consistent loss of hippocampal
synaptic connections has been also identified in old rodents [3,4]. In addition, numerous
studies in both humans and laboratory animals suggest that wakefulness and sleep show
changes with aging. The activity of the cholinergic neurons of the BF plays an important
role in the control of the electroencephalogram (EEG) pattern that characterizes both awake
state or slow wave and rapid eye movement (REM) sleep states. Thus, a reduction of
cholinergic neuronal activity with aging will induce changes in the EEG. In this review, we
aim to provide an overview of the changes in BF neuronal activity during healthy aging.
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2. Electroencephalographic Changes Provoked by Aging

The EEG is an electrophysiological technique for recording electrical activity arising
from the cortex. The EEG is thought to be primarily generated by cortical pyramidal
neurons in the cerebral cortex that are oriented perpendicularly to the brain’s surface. The
neural activity detectable by the EEG is the summation of the excitatory and inhibitory
postsynaptic potentials of relatively large groups of neurons firing synchronously. EEG
recordings may also be averaged, giving rise to evoked potentials and event-related poten-
tials, which represent neural activity that is temporally related to a specific stimulus. They
are used in clinical practice and research for the analysis of visual, auditory, somatosensory,
and higher cognitive functioning. The importance of the EEG is that it detects the changes
that occur in the cerebral cortex in different states due to the existence of characteristic
waves in each state. For example, during sleep or anesthesia, waves from the delta fre-
quency band (0.5–4 Hz) predominate; theta frequencies (4–8 Hz) mainly occur during
drowsiness and REM sleep; finally, waves of alpha (8–12 Hz), beta (13–30 Hz), and gamma
frequency (>30 Hz) bands predominate during wakefulness. These changes observed in
the EEG represent population changes at the cortical level and are related to the changes
that occur in the firing pattern of cortical and BF neurons [10,11].

In general, large-scale age-related structural changes such as cortical thinning, white
matter degeneration, neurotransmitter dysregulation, and/or receptor distribution that
occur in aging affect the EEG. Power reductions in the aging EEG have been described
by numerous previous studies. In general, they described a reduction of the EEG power
and a slow-down of the frequency bands, mainly in the alpha frequency band [12,13]. In
addition, evoked potentials tend to increase latency and decrease amplitude with increas-
ing age [13,14]. The EEG power reduction during aging could be explained by a number
of factors. One interpretation would be that decreases in EEG power reflect underlying
reductions in cortical current amplitudes due to reduced synaptic density, activity, synchro-
nization, or some combination thereof [15]. On the other hand, significant cortical atrophy
can occur during aging [16–18].

In addition, different pathways are of great importance in the control of cortical activity,
such as cholinergic and GABAergic neurons from the BF or noradrenergic neurons from
the locus coeruleus. In this review, we are going to focus on the BF and the changes that
occur during aging that may explain the deficits in cortical information processing.

3. The Basal Forebrain

One of the most crucial structures controlling cortical activity is the BF. The BF provides
most of the cholinergic projections to cortical and limbic structures [19,20]. Electrophysio-
logical recordings in the BF, combined with EEG recordings, have indicated that cortical
activation depends on BF inputs to the cortex [10,11,21,22]. Most of these effects have been
explained by the release of acetylcholine (ACh) in the cortex during wakefulness or REM
sleep [23–26].

The BF includes the medial septum, horizontal and vertical limbs of the diagonal
band of Broca (HDB and VDB, respectively), the substantia innominata, and the nucleus
basalis magnocellularis (nbM; Meynert basal magnocellular nucleus in humans), which
provide most of the cholinergic innervation to the sensory, motor and prefrontal cortices,
and hippocampus [27–31]. The BF also contains two other parallel projection systems to the
cortex, one releasing GABA and the other glutamate [30,32–34]. Recently, the substantia
innominate has been included in a large structure called the extended amygdala, which
includes different structures involved in the control of behavior and emotions [35].

Cholinergic projection neurons of the BF are organized into overlapping groups of
neurons that share common sets of projection targets. The first anatomical descriptions of
the cholinergic projections were consistent with the notion of a diffuse pathway from the BF
to the cortex that would explain why their activation caused a generalized increase in fast
oscillations in the EEG [36–38]. However, new evidence concerning the BF system indicates
the existence of a highly structured and topographic organization of efferent projections to
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sensory cortices [25,30,31,39–42]. The above-mentioned authors propose that cholinergic
and noncholinergic projections to the neocortex are not diffuse but instead are organized
into segregated or overlapping neuronal groups. For example, most of the neurons located
in the HDB project to the primary somatosensory (S1) cortex AND maintain reciprocal
projections with the prelimbic/infralimbic areas of the medial prefrontal cortex (Figure 1).
However, the nbM has more widespread targets in the sensory-motor cortex and does not
project to the prelimbic/infralimbic areas [28,29]. These findings pointed to the presence of
specific neuronal networks between the BF and the cortex that may play different roles in
the control of cortical activity. Consequently, the activation of small neuronal groups in BF
facilitates responses in specific areas of the cortex and not in the entire structure.
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Figure 1. Diagram displaying the anatomical connections of the BF with the cortex. HDB/SI has
preferential projections to sensory and prefrontal cortices, while the nbM nucleus projects to all
sensory and motor areas in general and does not project to PF cortex. MS/VDB projects mainly to the
hippocampal formation. Abbreviations: A1, primary auditory cortex; Mot, motor cortex; MS, medial
septum; nbM, nucleus basalis magnocellularis; PF, prefrontal cortex; SI, substantia innominate; S1,
primary somatosensory cortex; and V1, primary visual cortex.

The BF cholinergic projection neurons have extensive input to neocortex and hip-
pocampus [37]. Cholinergic afferents are distributed at high density throughout all layers
of the neocortex in rodents, with particularly high densities in cortical layers 1, 5, and
6 [43]. In the human neocortex, the highest density of cholinergic receptors is observed
in superficial layers of most cortical areas [44–46]. Neurons within the medial septum or
the diagonal band of Broca (MS/nDB) provide the major cholinergic innervation of the
hippocampus [47].

Differences between neuronal groups of the BF are also observed in the existence of
bilateral projections from the BF to the cortex [48]. The application of retrograde tracers in
both hemispheres of the S1, auditory or visual, cortical areas showed labeled neurons in the
ipsi- and contralateral areas of the HDB and substantia innominata. In contrast, the nucleus
basalis magnocellularis only showed ipsilateral projections to the cortex. Accordingly,
optogenetic stimulation of the HDB facilitated whisker responses in the S1 cortex of both
hemispheres through activation of muscarinic cholinergic receptors. Thus, these findings
have revealed that specific areas of the BF project bilaterally to sensory cortical areas,
probably to contribute to the coordination of sensory processing in both hemispheres.
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The BF cholinergic neurons participate in several cognitive processes that become
impaired during aging or dementia, including Alzheimer’s disease [49,50]. Impairment
of cortical activity during aging has been explained by reduced BF neuronal activity,
mainly observed in the cholinergic system [49,51–53]. Studies in animals have shown that
pharmacological inhibition or neurotoxic lesions of this region cause dramatic impairments
of cortical activity, increasing EEG slow waves and reducing synaptic responses [54–58].
Thus, a decrease in cholinergic activity could be associated with age-related disorders in
attention, memory storage, and retrieval [49,52,59]. Accordingly, different studies have
demonstrated a decrease in the cholinergic cell number in the MS/nDB during aging that
correlates with cognitive impairment [60,61]. In agreement with these data, treatments
facilitating cholinergic transmission improve memory in impaired old animals [62–64].

Indeed, aging not only affects cholinergic neurons but also other neuronal types. Im-
munohistochemical characterization of the medial septum revealed a significant decrease
in parvalbumin (PV)-positive cell bodies in aged animals [65]. In addition, the number
of cells expressing GAD67 mRNA also decreased in these animals [61]. This decreased
GABAergic inhibitory synaptic transmission in the BF has been associated with age-related
cognitive impairment in rats [66] and could explain why cholinergic neurons showed
higher spontaneous activity in older animals respect to younger ones (see above). However,
the reduction of inhibitory synaptic transmission could be mitigated by an enhancement of
GABAergic postsynaptic responses. The whole-cell current density of GABA-activated chlo-
ride currents was increased with age, consistent with an age-related increase in MS/nDB
neuron response to GABA [67]. Therefore, the contradictory effects that are observed in old
animals (increased spontaneous activity but decreased response to stimuli, or a decrease
in the number of GABAergic neurons but an increase in the inhibitory synaptic response)
could represent compensatory mechanisms to alleviate the cognitive deficits that occur
in aging.

4. Neuronal Changes during Aging

Cholinergic signaling in the CNS provides important control over the dynamic of
neuronal networks’ underlying information and cognitive processing. Even though BF
neurons have been studied for many years, little work has addressed the changes of the
electrophysiological properties of these cells during aging. An early report in MS/nDB
neurons in vivo showed age-related differences in the firing pattern and axon conduc-
tion velocity [68], suggesting functional changes of intrinsic neuronal properties with
age. However, whole-cell current clamp recordings from acutely dissociated neurons of
BF neurons showed no apparent difference in the basic firing properties of young and
aged neurons [66,69–71]. However, AMPA-induced current densities were significantly
increased, whereas NMDA-induced currents were not affected during aging [72]. Therefore,
although the basic electrophysiological properties of BF neurons that control their spike
activity do not seem to change during aging, their synaptic responses are affected.

In addition, BF cholinergic neurons showed altered Ca2+ buffering that was associated
with cognitive impairment [71,73]. MS/nDB neurons of aged rats had an increased current
influx through voltage gated Ca2+ channels relative to those of young rats, suggesting a
change in Ca2+ buffering in BF neurons during aging that may induce cell death. At the
same time, these authors observed an increased rapid buffering capacity in aged neurons
that may also represent a compensatory response to increased Ca2+ influx.

As is indicated above, the BF is one of the most crucial structures controlling cortical
activity. Thus, changes at the cellular level of BF neurons during aging should provoke
changes in the EEG recordings. In fact, power density across all frequency bands showed a
general slowing of the EEG in older subjects. Elderly subjects also showed EEG oscillations
2- to 3-fold smaller in amplitude than younger adults during anesthesia [74]. It is well
documented that alpha frequency (8–13 Hz) also changes with age. From early childhood
up to puberty, alpha frequency increases but then starts to decline with age [75]. Theta
rhythm recorded in the hippocampus arises from interactions between MS/nDB neurons
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and intra-hippocampal circuits [76]. Spectral analysis of EEG recordings also revealed that
aging slows the theta rhythm [77]. Therefore, the changes observed in the EEG (slowing
down of the oscillations and less amplitude) may reflect a decrease in cortical activity that
would explain the decrease in the cognitive level of these people. This effect may be mainly
due to a reduction of BF inputs.

In the hippocampus and neocortex, theta and gamma oscillations are the most promi-
nent rhythms recorded in the awake state or during REM sleep [76,78–82]. Theta and
gamma oscillations have been linked to hippocampal information processing and processes
of learning and memory [83,84]. Both oscillations increase when the cholinergic projections
from the BF are activated and interact (theta-gamma cross-frequency coupling) during the
awake state or REM sleep [80,84].

In rodents, the interplay between theta and gamma oscillations plays a role in hip-
pocampal information processing, which is reduced in old animals [85,86]. It has been
indicated that theta-gamma coupling facilitates transfer of spatial information from the
entorhinal cortex to CA1, facilitating many cognitive processes [82,87–89]. This hypothesis
has been studied in animals and humans, and suggests that the diminution of the theta
rhythm in older subjects [90] and decrements in the temporal precision in which gamma
oscillation is coupled to a specific theta phase underlie the decline of associative memory in
normal cognitive aging [91]. The age-related decline of theta-gamma coupling was reversed
with physostigmine that is a reversible cholinesterase inhibitor, indicating that this process
is facilitated by cholinergic inputs [85,86]. Taken together, these findings indicate that the
reduction of BF neuronal activity with aging, mainly in the cholinergic system, induces an
impairment in cortical activity that has consequences in many brain processes.

5. Insulin-like Growth Factor-I and the Aging Brain

IGF-I is considered a main component in the physiology of all tissues, including the
brain [15,92–97]. It is well known that IGF-I plays a key role in learning and memory
processes as a potent stimulator of neuronal activity. IGF-I increases the spontaneous
firing rate, as well as the response to afferent stimulation in many target neurons [98–103],
and modulates excitatory synaptic transmission in many areas of the brain [104–109].
IGF-I signaling modulates the activity of calcium-calmodulin-dependent kinase 2 alpha
(CaMKIIα) and mitogen activated protein kinase (MAPK/ErK) through multiple signaling
pathways [110–112]. These proteins (CaMKIIα and MAPK) regulate Ca2+ concentration
and consequently, the modulation of synaptic plasticity such as long-term potentiation
(LTP). In addition, it has also been shown that IGF-I modulates cortical inhibitory synaptic
plasticity through activation of astrocytes [113].

Secretion of IGF-I declines over time until only low levels can be detected in individuals
aged ≥60 years [114]. As IGF-I plays an important role in the regulation of cellular functions,
a reduction in serum IGF-I levels in aging should lead to significant alterations in brain
activity. The IGF-I receptor (IGF-IR) expression was dramatically decreased in pyramidal
and granule cells of the hippocampus and in pyramidal cells of the somatosensory cortex in
aged animals [115]. Thus, the activation of the IGF-IR/Akt/GSK3 intracellular pathway was
reduced in old mice [116,117]. Consequently, a reduction of the IGF-I system may contribute
to cognitive deficits, as has been suggested during healthy aging [1,98,99,114,116,118,119].

Findings from our laboratory showed that there was an important change in the
BF activity during aging (Figure 2). We found that cholinergic neurons increased their
spontaneous activity in old animals with respect to young animals. This finding was in
agreement with a larger expression of c-fos in cholinergic neurons of old animals with
respect to young animals [98]. However, the response to local injection of insulin-like
growth factor-I (IGF-I) in the HDB nucleus decreased in old mice. This reduction in the IGF-
I evoked effects in the BF, which had many consequences because IGF-I controls neuronal
activity in this area, and increases neuronal activity and sensory processing in the cortex.
An IGF-I injection in the BF elicited fast oscillatory activity in the electrocorticogram and
facilitated whisker responses in the S1 cortex. These excitatory effects evoked by IGF-I
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decreased in old mice, probably due to a reduction in the number of IGF-I receptors, as was
indicated by the immunohistochemistry studies [98,99].
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Figure 2. IGF-I facilitates neuronal activity in the BF and whisker responses in the S1 cortex. (A) A
schematic diagram of the experimental design. A recording microelectrode was placed in the HDB
nucleus; a cannula to inject IGF-I (10 nM; 0.2 µL) was also placed in the same area. (B) Plot of
the HDB firing rate after IGF-I local injection. The firing rate is expressed as a percentage of basal
responses at time 0 in both experimental groups. Young but not old mice responded to IGF-I in HDB
nucleus (** p = 0.0044; Two-way ANOVA). (C) A schematic diagram of the experimental design. A
recording microelectrode was placed in the S1 cortex and whiskers were stimulated with an air-puff
(20 ms duration); a cannula to inject IGF-I was also placed in the HDB nucleus. (D) The area of the
somatosensory evoked potential increase in young mice after local injection of IGF-I (10 nM; 0.2 µL)
at 5 min after injection (141.9% ± 17.06 respect to control values), while the area was not affected in
old mice (83.9% ± 14.71; * p = 0.0176; Unpaired t-test). Figure modified from Ref. [98].

According to this hypothesis, cholinergic-identified and non-identified neurons in
the HDB nucleus showed a decreased response to IGF-I in old mice that provoked a
reduction of cortical activity. Specifically, optogenetic stimulation of cholinergic neurons
located in the HDB area facilitated whisker responses in the S1 cortex through activation of
muscarinic receptors [30]; this facilitation of sensory cortical responses was decreased in
old mice [98,99].

In addition, we have demonstrated that synaptic plasticity was reduced in old mice. A
stimulation train of whiskers at 8 Hz induced a long-lasting response facilitation in layer
2/3 neurons of the S1 cortex recorded in young animals, but not in neurons recorded in
old animals. Old mice also showed a reduction in the performance of a whisker discrimi-
nation task, when animals must discriminate between different textures in the arms of a
Y-maze [99]. Local application of IGF-I in the S1 cortex improved the response to whisker
stimulation and the long-lasting response facilitation in both young and old animals. These
results suggest that the synaptic plasticity impairment observed in old animals may be due
to a reduction of IGF-I inputs to cortical cells, as occurs in aging, but may be recovered
if IGF-I levels are increased. In agreement with this suggestion, we have published that
administration of IGF-I for 28 days through Alzet mini-pumps in old animals increased
tactile evoked potentials in the S1 cortex [98]. Therefore, the results suggest that reduced
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levels of IGF-I in the BF and in the cortex contribute to reduced information processing in
the cerebral cortex, helping to explain the cognitive deficits observed in aging.

6. Aging and Sleep

Previous animal studies have suggested that cholinergic BF neurons play an important
role in sleep-wake regulation and are also implicated in cortical arousal [120–122]. Sleep
disturbances are so common during aging and could be related to the impairment of BF
activity. Healthy aging is associated with marked effects on sleep. In humans, aging
has been associated with numerous and diverse changes in the EEG and sleep, such as
increased sleep fragmentation, decreased total sleep time, sleep efficiency, and changes in
the frequency bands of the EEG [123–125]. Numerous studies have also provided important
insights into the global age-dependent alterations in sleep-wake and EEG architecture in
rodents [126–129]. Aged mice have reduced wakefulness and did not sustain long periods
of wake during the active phase. Decreased wake with aging was accompanied by an
increase of non-REM sleep. However, there are notable discrepancies between species
concerning the effects of aging. For example, slow-wave sleep is decreased in aged humans,
whereas it is enhanced in aged mice [127,129].

In humans, spectral power analysis shows a reduction of the delta wave activity in
the EEG (<4 Hz) in middle-aged and older compared to young adults [12,125,130]. These
waves reflect a synchronized slow oscillation in cortico-thalamic networks, showing a
depolarization and hyperpolarization oscillation of their membrane potential [131]. The
reduction in slow wave amplitude correlates with neuroimaging studies showing age-
related cortical thinning in frontal regions [17,132]. Non-pathological cortical thinning is
thought to reflect cell body shrinkage and a reduction in the dendritic arborization and
synaptic density of cortical neurons [9]. Rhythmic activity of BF neurons at delta frequency
(<4 Hz) has been described, which correlates with cortical slow waves [14], suggesting
that the activity of BF neurons not only contributes to the generation of fast EEG activities
that are recorded in wakefulness but also to the slow oscillations that are recorded during
anesthesia or the slow wave sleep. Thus, a reduction in the activity of BF neurons could
produce a reduction of both fast and slow EEG activities, as has been described (see above).

7. Neurodegenerative Diseases in Aging

The prevalence of neurodegenerative diseases in the aging population is increasing
due to the higher life expectancy. However, other factors may contribute the appearance of
neurodegenerative diseases. Although aging is not the cause of many neurodegenerative
diseases, it can aggravate them because of cellular senescence. Cellular senescence can
occur at any life stage, from embryo to adulthood, although it is associated with the aging
process [133].

A large body of evidence suggests that BF cholinergic neurons are selectively vul-
nerable to degeneration in Alzheimer’s disease (AD), mainly in the nucleus basalis of
Meynert [134–137], as well as by a decline of cortical choline-acetyl transferase (ChAT)
activity [135,138] and in aging (see below). These changes were also observed in mild
cognitive impairment (MCI) patients [51], suggesting that neuronal damage in the BF
induces cognitive deficits. Dysregulation of the cholinergic system is implicated in the cog-
nitive decline associated with aging and dementia, including Alzheimer’s disease [49,51].
For example, an impaired cholinergic transmission has been associated with age-related
disorders in attention and memory storage and retrieval [49,53,59,139].

Tau (t-tau) is a marker of axonal and neuronal damage [12,13] that increases with
age [140–142]. Pathological tau is a hallmark of several neurodegenerative diseases, most
notably Alzheimer’s disease. Recent findings suggest the view that plasma t-tau may
serve to identify subclinical cerebral and cognitive deficits that occur in normal aging [142].
Misfolded tau deposition typically occurs first in the entorhinal cortex and hippocam-
pus [143–145]. In addition, volume loss of the nucleus basalis of Meynert occurs in asymp-
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tomatic subjects with tauopathy and BF atrophy extends to the medial septum and vertical
limb of the diagonal band Broca (Ch1–Ch2) [146].

Aβ accumulation in familial AD is mostly due to increased Aβ production by neurons,
caused by mutations that potentiate the cleavage of amyloid precursor protein (APP) by β-
secretase, or that alter the cleavage by γ-secretase to produce more Aβ42. Aβ42 is normally
produced [147,148] and it can accumulate in the brain with aging because the clearance of
Aβ is diminished with aging [149–152].

BF neurons are vulnerable to degeneration in the course of aging and in a number of
other neurodegenerative conditions, such as Alzheimer’s disease, Parkinson’s disease, and
Lewy body dementia [153,154]. Specific accumulation of amyloid-β has been observed in
pyramidal neurons of the hippocampus, layer II of entorhinal cortex, and, notably, in BF
neurons [149,155]. The reasons for the selective vulnerability of BF neurons in neurode-
generative disorders are unknown; however, alterations in intracellular Ca2+ homeostasis
have been implicated in neuronal dysfunction (see above). Geula et al. [156] have de-
scribed a decrease in expression of the Ca2+-binding protein calbindin-D28K in most of
BF neurons during aging. BF neurons that lose calbindin are likely to increase phosphory-
lation of tau, increase accumulation of pre-tangles and neurofibrillary tangles, and cause
their degeneration [157]. Therefore, intraneuronal amyloid-β accumulation in adult life
and oligomerization during the aging process may contribute to the degeneration of BF
cholinergic neurons in aging and in other neurodegenerative pathologies.

8. Conclusions and Future Directions

We have described in this review changes that occur in the BF during healthy aging
which may be responsible for the decline in the cognitive level. Numerous and classical
reports have shown that the cholinergic projections from the pons nuclei or from BF
cholinergic neurons are fundamental in the control of cortical excitability and fundamental
processes such as attention, learning, or memory. This type of neuron is very sensitive
to neurodegeneration, such as that which occurs during healthy or pathological aging,
causing progressive cognitive deterioration. Knowledge of the mechanisms by which the
cholinergic system acts and its progressive deterioration with age can help to develop
new therapies that reduce or delay this deterioration. For example, the diminution of
the response to modulatory substances, such as IGF-I, may participate in the decreased
neuronal activity observed in aging. A therapy that increases its levels in the brain would
delay the cognitive deterioration produced by age.
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