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a b s t r a c t

This paper investigates the market persistence and mean reversion properties for corn,
bioethanol and gasoline prices in the US biofuel industry, evaluating long memory effects
with fractional integration techniques from January 1982 to May 2022 with USDA data.
Empirical results show evidence of no mean reversion properties for the prices in the
three series though some support of it is found when the differences of bioethanol and
gasoline are taken with respect to corn. Thus, external shocks in the original series are
expected to remain persistent and would require additional policy measures to recover
the original trend. Furthermore, the impact of Covid on the time series has been analyzed
by comparing the scenarios pre and post pandemic, finding evidence of no major changes
in the integration orders in all the series under analysis.

© 2023 Economic Society of Australia, Queensland. Published by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The use of biofuels as a vehicle fuel has significantly reduced the amount of greenhouse gas emissions in recent times
Bouri et al., 2021). Further points to consider regarding biofuel usage is the decrease in crude oil prices and the level of
ependency large biofuel producer countries have on it. However, the possibility of price increases in biofuel feedstocks
uch as sugar, corn or soybeans is a potential impediment for the rest of the economy. In this paper we check mean
eversion and market persistence properties of bioethanol and gasoline, and their impact on the feedstocks in the US, the
argest biofuel producer.

By way of a brief introduction, the most common biofuels are bioethanol, synthesized from carbohydrates (normally
oarse grain or sugarcane); and biodiesel, usually generated from fats and oils, typically vegetable oil such as oil from
oybeans. Biodiesel is the dominant biofuel produced in Europe and Asia Pacific, while bioethanol is the main one in
orth America and South and Central America. The BP Statistical Review of World Energy (2021) identified that global
iofuel production fell by 6% worldwide in 2020. As for the previous 10 years, it had been undergoing a 6% compound
verage growth and the industry is questioning if production levels had reached saturation point. With regards to the
iofuel and gasoline relationship, Barros et al. (2014) investigated this market in Brazil (2000–2012) with two interesting
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Fig. 1. U.S. Corn Production and Portion Used for Fuel Ethanol.
Source: Taken from AFDC, US department of energy https://afdc.
energy.gov/data/.

findings: First, that ethanol/gasoline prices tend to grow steadily over time while consumption does not; and second,
they found that individually ethanol and gasoline prices were time series with integration orders smaller than 1, while
the joint ratio ethanol/gasoline had orders of integration clearly above 1. Thus, shocks for individual series were expected
to disappear in the long run, but the joint relationship leads to shocks having a permanent effect that might affect other
parts of the economy.

In terms of the global size of the biofuel market, the United States is today the largest producer of biofuel, as it is for
crude oil. In 2020, total production was about 1653 thousand barrels of oil equivalent per day (beq/day), of which the US
production represents about 602 thousand beq/day (Sönnichsen, 2022), and only 3.65% of the total crude oil produced in
the US (BP, 2021). Brazil and Indonesia ranked second and third, with production in thousand beq/day of 395 and 126
respectively. Before 2007, the US was not the global leader in either market, but after this financial crisis, the US followed
an energy strategy of developing local technologies (such as fracking) to extract more crude oil and to develop internal
oil alternatives to reduce the external dependency on crude oil fuel. In fact, the US bioethanol production increased from
91 million gallons in 2005 to reach between 1500 and 1800 million gallons per year after 2016. However, from this year
onwards the production tends to remain stable with a production capacity amounting to about 17 billion gallons per year,
with over 200 bio-refineries across the US (Sönnichsen, 2022).

The work of Dutta (2019) focuses specifically on the modelization of US ethanol pricing, claiming that this issue has
not received great attention in the biofuel literature. They proposed a corn price implied volatility (CIV) index, with a
GARCH approach to explain the variation in the ethanol price from corn grain, this being its main feedstock. Sometime
before, Abbott (2013) investigated the role of biofuels in determining rises in corn and other agricultural commodity
prices, concluding that the contribution of biofuels to high corn prices remained debatable. In fact, the USDA1 reported a
very stable corn price at $3/bushel in the 2015–2019 period, but after year 2020 and the COVID pandemic, it rose sharply
to $6/bushel questioning again if there was a capacity problem and if biofuel corn feeding could cause problems for the US
corn market. After the rise of US corn production to produce ethanol (2005 to 2010), the distribution of US biofuel-corn
usage (see, Fig. 1) appears to remain constant at 5 bill. bushels, with a more volatile non-biofuel corn at around 10 bill.
bushels and this large and it is unclear if this persistent new demand for corn has definitively changed the US corn and
biofuel market price dynamics.

The objective of this paper is to complement these previous studies by determining the impact of the biofuel industry
on corn and gasoline pricing in the US, this being the largest current biofuel producer. The proposed approach of the paper
is to study the market persistence and mean reversion properties for the corn, bioethanol and gasoline prices, evaluating
the long memory effects with fractional integration techniques. This methodology is very appropriate for the analysis of
persistence and to evaluate the nature of the shocks, being more flexible and general than the traditional methods that
focus exclusively on integer degrees of differentiation.

The rest of the paper is structured as follows: Section 2 includes a short literature review on biofuel, persistence, and
mean reversion properties; Section 3 explains the methodology; Section 4 describes the datasheet and sources, while
Section 5 displays the main results. Section 6 develops the main conclusions of the paper and outlines further lines of
research.

1 https://www.ers.usda.gov/topics/farm-economy/bioenergy/data/.
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2. Literature review

The analysis of the bioethanol price persistence literature is a very specific topic that has not been particularly popular
n recent times. For the specific case of the US, prior studies to Serra et al. (2011), were mainly theoretical studies with
ome empirical simulations. This study was the first to use empirical analysis such as VECM (vector error correction model)
o assess the price relationships within the US ethanol industry with monthly prices (1990 to 2008), finding evidence of
ong-run relationships among the prices analyzed and strong links between energy and food prices. More focused on food
ustainability, To and Grafton (2015) estimated autoregressive models of global food prices in terms of US oil prices, GDP
er capita and biofuel production, finding evidence of a significant effect of biofuel production on US food prices. Chiu
t al. (2016) explored the relationship between the prices of crude oil, corn, and ethanol (1986–2015) using a VAR, VECM
nd autoregressive distributed lag to explore the connections between crude oil, corn, and ethanol markets in the context
f the US, finding evidence that corn prices were driven by ethanol prices, however corn prices did not influence ethanol
rices until 2005 and structural breaks were endogenously determined. Pal and Mitra (2017) analyzed US diesel and
oybean prices (2004–2014) with quantile autoregressive distributed lag models with monthly samples, finding evidence
f strong links between diesel and soybean prices over the long run. Morris et al. (2017) studied the US retail gasoline
ricing, in terms of crude oil and corn-ethanol with a polynomial distributed lag to a price transmission model, finding
vidence of asymmetry between wholesale and retail gasoline prices but lack of asymmetry between ethanol and gasoline
rices. Saghaian et al. (2018) analyzed if corn-ethanol prices could lead to volatility spillovers between food and energy
rices using a BEKK-multivariate-GARCH approaches with daily, weekly, and monthly futures prices (2007–2015), finding
lso evidence of asymmetric volatility transmission between corn and ethanol prices.
With regards to other markets, Kristoufek et al. (2014) analyzed the biofuel price transmission with price cross-

lasticities combining generalized least squares estimation for EU industry and Germany markets, with evidence that both
thanol and biodiesel prices were responsive to their production factors (ethanol to corn, and biodiesel to German diesel).
or the Brazilian case, Du and Carriquiry (2013) analyzed biofuel and sugar dynamics in the context of Brazilian flex-fuel
ehicles (FFVs), with evidence that price dynamics were largely determined by market factors and prices exhibited strong
ean-reversion, in line with the previously mentioned work of Barros et al. (2014) that concluded that when considered

ndividually ethanol pricing was mean reverting. Finally, David et al. (2018) studied the fractional dynamic behavior of the
thanol prices on the Brazilian spot price market, with the application of fractional integration tools (ARIMA and ARFIMA
odels, and the Hurst and Lyapunov exponents), concluding that ethanol prices series were anti-persistent, and with
rice shocks expected to dissipate in the long run.
Finally, regarding recent specific biofuel feedstocks studies, Etienne et al. (2016) proposed an investigation concerning

he price and volatility transmission between natural gas, fertilizers, and corn markets (1994–2014), using multivariate
ARCH models with evidence of a mild linkage between prices and volatility between corn markets and natural gas in
he long term (1994–2014) although no linkage in the most recent period (2006–2014) was observed. Musunuru (2016)
sed GARCH models with its variations EGARCH, TGARCH and APARCH to examine the presence of volatility persistence in
oybean futures data and concluded that soybean return series exhibit volatility characteristics typical of a financial time
eries. Oláh et al. (2017) investigated the impact of biofuel production on the increased volatility of food prices, finding
vidence of correlations between cereal, sugar and vegetable oil price indexes and crude oil prices from 2003 to 2016,
owever their findings show that the main driver for food price fluctuation was mainly the oil price shock. Barros et al.
2018) studied the dynamics of sugarcane production in the context of biofuel production in Brazil, with evidence that
he total production is highly persistent, with an integration order smaller than 1 but close to it, with shocks expecting
o have a permanent nature and requiring policy measures to recover the level from exogenous shocks.

. Data description

To obtain ethanol pricing data, we follow the traditional approach of Serra et al. (2011), following the U.S. ethanol spot
rice taken from USDA. Thus, we select monthly data (1982–2022) from Corn, Ethanol and Gasoline from Feed Grains Data
Yearbook Tables) USDA, ERS Feed Grains Database page https://www.ers.usda.gov/data-products/feed-grains-database/.
n particular Corn prices ($/bushel) were chosen as the ones received by farmers; Ethanol ($/gallon) and gasoline ($/gallon)
ere rack prices for wholesale truckload transport FOB (free on board). Fig. 2 summarizes this data comparing the price
f the Corn and the Ethanol commodities, and Table 1 shows the main statistical descriptors of these values over the
hole period examined.
Moreover, as global markets quote these commodities, in order to evaluate the frequency impact weekly prices have

een taken from the Bloomberg Commodities database for Corn commodity (C1 COMB Comdty 1972–2022); Ethanol
CUA1 COMB Comdty 2005–2022) and Gasoline (XB1 COMB Comdty 2005–2022). In comparison with previous USDA data,
hese indexes did not use the same units; however, data has been useful for analytical purposes in terms of persistence
nd mean reversion properties. Table 1 summarizes the main statistics of both sources of monthly (USDA) and weekly
Bloomberg) data with evidence of a smaller volatility coefficient (standard deviation/average) on the weekly data starting
fter 2005.
For the USDA datasheet, a market correlation coefficient between ethanol and gasoline measured as

Covariance (Ethanol,Gasoline) has been taken for the whole period, with a value of 0.793. This value, positive and less than
Desvstd (ethanol)Desvstd (gasoline)
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a

Fig. 2. Corn and Ethanol/Gasoline price comparison. Monthly data taken from USDA.

Table 1
Main statistic descriptors of the datasheet.

Monthly data (USDA)
1982–2022

Weekly data (Bloomberg)
(2005–2022)

Corn
($/Bushel)

Ethanol
($/Gall)

Gasoline
($/Gall)

Corn
(CUCOMB)

Ethanol
(CUA1 COMB)

Gasoline
(XB1 COMB)

MIN 1,40 0,59 0,36 189,75 0,84 57,37
MAX 7,63 3,58 3,37 824,50 3,45 401,58
AVERAGE 3,11 1,58 1,34 448,40 1,90 209,15
STDEV 1,29 0,54 0,81 143,98 0,48 62,79
STDEV/AVERAGE 0,415 0,339 0,607 0,32 0,25 0,30

1 could mean that Ethanol prices should rise when Gasoline tends to rise, but not as fast. However, by measuring a time
series beta with monthly samples and different time spans, it can be seen that this positive contribution is not constant.
Fig. 3a shows this monthly beta for different time spans (1 yr, 2 yr and 3 yr) for monthly data and where positive values
are mostly typical, however there is evidence of negative periods, especially in recent times (2017–2019) where Gasoline
price tends to rise but the Ethanol prices drop. Fig. 3b uses a higher frequency with weekly data, with evidence of more
fluctuations especially with smaller window spans.

4. Methodology

The methodology used in the paper is based on the concept of long memory that implies that the infinite sum of the
utocovariances of a stationary process is infinite. That is, defining γu = E [(x (t) − Ex (t)) (x (t + u) − Ex (t))], then, x(t)

displays the property of long memory if:
∞∑

u=−∞

γu = ∞. (1)

Within the long memory class of models, fractional integration is a special category, that is characterized because the
number of differences required in a series to render it stationary I(0) may be a fractional value. In other words, x(t) is
integrated of order d, and denoted as I(d) if:

1 − B d x = u , t = 1, 2, . . . , (2)
( ) t t

651
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Fig. 3a. Correlation coefficient
(

Covar(eth;gas)
DesvestethDesvestgasoline

)
between Ethanol and Gasoline with different time spans with monthly samples (USDA).

Fig. 3b. Correlation coefficient
(

Covar(eth;gas)
DesvestethDesvestgasoline

)
between Ethanol and Gasoline with different time spans with weekly samples (Bloomberg).
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Table 2
Estimates of d with monthly data.
(i) Original data

Series
(monthly)

No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

1.21
(1.13, 1.30)

1.30
(1.21, 1.40)

1.30
(1.21, 1.40)

Ethanol
($/Gall)

1.01
(0.94, 1.10)

1.00
(0.92, 1.11)

1.00
(0.92, 1.11)

Gasoline
($/Gall)

1.07
(0.97, 1.18)

1.11
(1.00, 1.23)

1.11
(1.00, 1.23)

(ii) Logged data

Series
(monthly)

No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

1.19
(1.11, 1.29)

1.37
(1.27, 1.49)

1.37
(1.27, 1.49)

Ethanol
($/Gall)

1.06
(0.96, 1.18)

1.06
(0.96, 1.18)

1.06
(0.96, 1.18)

Gasoline
($/Gall)

0.98
(0.90, 1.09)

0.98
(0.90, 1.09)

0.98
(0.90, 1.09)

The values reported are the estimated values of the order of integration. In parenthesis, they are 95%
confidence bands, and in bold we mark the selected specifications according to the deterministic terms.

here B is the backshift operator and ut is I(0), which is defined as a process where the infinite sum of its autocovariances
is finite, i.e.,

∞∑
u=−∞

γu < ∞. (3)

The long memory feature is made explicit by mean of the Binomial expansion of the polynomial above in Eq. (2), noting
that, for all real d,

(1 − B)d =

∞∑
j=0

(
d

j

)
(−1)j Bj

= 1 − dB +
d (d − 1)

2
B2

− · · · (4)

and thus, the equation given in (2) can be expressed as

xt = d xt−1 −
d(d − 1)

2
xt−2 + · · · + ut. (5)

In this context, if d is a non-integer value, xt will be a function of all its past history, and higher the value of d is, the
higher the degree of dependence is between the data. The estimation of the differencing parameter is based on a frequency
domain version of the Whittle function as proposed in Dahlhaus (1989) and as in Robinson (1994). In fact, we use the latter
approach which is testing procedure based on the Lagrange Multiplier (LM) principle and that has numerous advantages
in relation with other methods. In particular, it allows us consider values of the differencing parameter, d, which are not
constrained to the stationary region as is the case with other all the other approaches. Moreover, it has a limit standard
N(0,1) distribution, which is unaffected by the inclusions of deterministic terms in the model. Finally, it is also the most
efficient method, in the Pitman sense, against local departures from the null. (See, Gil-Alana and Robinson, 1994, for the
version of Robinson’s (1994) tests used in this application).

5. Empirical results and discussion

Table 2 refers to the estimates of the differencing parameter d, for the original data (panel i) and the logged monthly
values (panel ii) respectively, in a model given by the following equation

yt = α + βt + xt , (1 − B)d xt = ut , ut = ρ ut−12 + εt . (6)

where α and β refer to unknown coefficients corresponding to an intercept and a linear time trend; xt is an I(d) process
and ut follows a seasonal (monthly) AR process.

We display the values of d (and the 95% confidence intervals) for the three well-known cases of (i) no terms,
i.e., α = β = 0 in (6); (ii) with an intercept (β = 0), and (iii) with an intercept and a linear time trend, and we mark in
bold in the tables the selected models according to these deterministic terms.
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Table 3
Estimates of d with monthly data in the differenced series.
Series (in logs) No terms With an

intercept
With an intercept
and a linear trend

Ethanol – Corn 0.66
(0.56, 0.77)

0.56
(0.47, 0.70)

0.56
(0.47, 0.70)

Gasoline – Corn 0.73
(0.66, 0.83)

0.65
(0.57, 0.77)

0.65
(0.57, 0.77)

The values reported are the estimated values of the order of integration. In parenthesis,
they are 95% confidence bands, and in bold we mark the selected specifications according
to the deterministic terms.

Table 4
Estimates of d with monthly data (ending at December 2019).
(i) Original data

Series No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

1.18
(1.10, 1.27)

1.29
(1.20, 1.39)

1.29
(1.20, 1.39)

Ethanol
($/Gall)

0.97
(0.88, 1.09)

0.98
(0.88, 1.11)

0.98
(0.88, 1.11)

Gasoline
($/Gall)

1.05
(0.95, 1.17)

1.08
(0.97, 1.20)

1.08
(0.97, 1.20)

(ii) Logged data

Series No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

1.17
(1.07, 1.27)

1.36
(1.26, 1.48)

1.36
(1.26, 1.48)

Ethanol
($/Gall)

1.09
(0.98, 1.22)

1.09
(0.98, 1.23)

1.09
(0.98, 1.23)

Gasoline
($/Gall)

0.98
(0.89, 1.09)

0.98
(0.89, 1.09)

0.98
(0.89, 1.09)

The values reported are the estimated values of the order of integration. In parenthesis, they are 95%
confidence bands, and in bold we mark the selected specifications according to the deterministic terms.

Starting with the original data we observe that the time trend coefficient is insignificant in the three series, the
intercept being sufficient to describe the deterministic part of the model. We see that for two of the series (Ethanol and
Gasoline) the unit root null hypothesis cannot be rejected, while this hypothesis is rejected in favor of d > 1 for Corn.
Looking at the logged transformed data (in the lower panel) though there are some quantitative differences, qualitatively
the results are very similar, and the unit root null cannot be rejected for Ethanol and Gasoline, being rejected in favor of
higher degrees of integration for corn.

In Table 3, we look at the log-series and focus on the differences between Gasoline and Ethanol with respect to Corn.
In both cases we observe a substantial reduction in the degree of integration, the estimated values of d being 0.56 (for
Ethanol-Corn difference) and 0.65 for Gasoline-Corn. More importantly, in the two series we observe that the highest value
in the intervals is smaller than 1 supporting thus the hypothesis of convergence and mean reversion in the differences.

In order to check if the Covid-pandemic has had any effect on the degree of persistence in the data, we also make the
computation with data ending at December 2019. The results for the unlogged and logged data are reported in Table 4.
We observe that broadly speaking, the same conclusions hold, finding evidence of unit roots for both ethanol and gasoline
but higher orders of integration for corn. Thus, in any single case we support the hypothesis of mean reversion even with
the pre-Covid data. Similarly, for the differenced series, (Table 5) the values are very similar to those obtained when using
the whole sample size, providing support of mean reversion in the differenced series.

In comparison with other previous studies as Barros et al. (2014) that measured the integration coefficient for the
Brazilian ethanol in times of financial crisis, here a similar behavior can be seen in the pre and post shock results. In
that paper, time series come from 1983 with yearly samples and results ending in the financial crisis revealed a temporal
increase in the Ethanol integration parameter evolving from 1.06 (2007) and 1.11 (2010) to 0.97 (2013) and 0.93 (2016).
In our study for the US-based ethanol with monthly samples, pre-covid value is 0.98 (ending in 2019), and post-covid is
1.00 (ending February 2022, before the Ukrainian war). Thus, both studies measuring the ethanol pricing but produced in
different countries reveal both long memory and almost no evidence of mean reversion. The smaller sampling frequency
of Barros et al. (2014) might explain the greater changes in the integration factor parameter. On the other hand, looking at
Serra et al. (2011), conclusions regarding Ethanol and Corn also appear to show a similar behavior. In the case of Ethanol,

weak mean reversion properties are in line with the ethanol market equilibrium pointed by Serra et al. (2011) between
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Table 5
Estimates of d with monthly data in the differenced series (with data ending at December 2019).
Series (in logs) No terms With an

intercept
With an intercept
and a linear trend

Ethanol – Corn 0.66
(0.56, 0.75)

0.57
(0.48, 0.70)

0.57
(0.48, 0.70)

Gasoline – Corn 0.79
(0.69, 0.90)

0.70
(0.60, 0.82)

0.70
(0.60, 0.82)

The values reported are the estimated values of the order of integration. In parenthesis, they are 95%
confidence bands, and in bold we mark the selected specifications according to the deterministic terms.

Table 6
Estimates of d with weekly data and white noise errors.
(i) Original data

Series (weekly) No terms With an
intercept

With an
intercept and a
linear trend

Corn
($/Bushel)

1.03
(0.98, 1.08)

1.03
(0.98, 1.09)

1.03
(0.98, 1.09)

Ethanol
($/Gall)

0.99
(0.94, 1.05)

1.00
(0.95, 1.07)

1.00
(0.95, 1.07)

Gasoline
($/Gall)

1.05
(1.01, 1.10)

1.04
(0.99, 1.09)

1.04
(0.99, 1.09)

(ii) Logged data

Series No terms With an
intercept

With an
intercept and a
linear trend

Corn
($/Bushel)

1.00
(0.95, 1.05)

1.02
(0.98, 1.08)

1.02
(0.98, 1.08)

Ethanol
($/Gall)

1.00
(0.95, 1.07)

1.02
(0.96, 1.08)

1.02
(0.96, 1.08)

Gasoline
($/Gall)

1.01
(0.96, 1.06)

1.06
(1.01, 1.11)

1.06
(1.01, 1.11)

The values reported are the estimated values of the order of integration. In parenthesis,
they are 95% confidence bands, and in bold we mark the selected specifications according
to the deterministic terms.

ethanol market oil producers and the crude oil industry. In the case of Corn, where there is no mean reversion behavior (d
= 1.29), the corn price responds to crude oil price increases, but only when the ethanol market is far from its equilibrium
leading this shock to a permanent behavior.

To corroborate this hypothesis, we also conducted the analysis on a weekly basis, and the results are reported across
Tables 6–11. Starting with a model where the residuals are uncorrelated (in Table 6) we see that all the estimates of d are
around 1.00, supporting thus the unit root null hypothesis in all except one single case (Gasoline, logs). If autocorrelation
is permitted throughout the model of Bloomfield (1973), (Table 7), the results are similar though now Gasoline (original)
also displays an integration order significantly higher than 1.

Table 8 focuses on the differences and the values are now higher than with the monthly data, and the evidence of
mean reversion is weak with the estimates of the differencing parameter being close to 1.

Finally, we repeat the computation using data ending at December 2019. (Tables 9–11) and the same qualitative results
hold as in previous tables. Evidence of d = 1 in most of the individual series (with the exception of gasoline in the two
cases (original and logged) with autocorrelation), and values of d slightly below 1 for the differenced series, finding thus
very weak evidence of mean reversion.

As a robustness method, and in relation with the results reported so far, we also conducted the analysis with other
fractionally integrated approaches, including the maximum likelihood estimation in the time domain of Sowell (1992)
along with various semiparametric methods (Geweke and Porter-Hudak, 1986; Shimotsu and Phillips, 2005) and the
results, though not reported, were almost identical to those reported in the paper. In addition, we also investigated
the potential presence of nonlinear trends in the data, and for this purpose, we replaced the first equality in (6) by the
Chebyshev polynomials in time, such that the new model becomes

yt =

m∑
θiPiT(t) + xt, (1 − L)dxt = ut, t = 1, 2, . . . , (7)
i=0
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Table 7
Estimates of d with weekly data and autocorrelated errors.
(i) Original data

Series
(weekly)

No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

0.98
(0.91, 1.06)

0.98
(0.90, 1.05)

0.98
(0.90, 1.05)

Ethanol
($/Gall)

0.92
(0.85, 1.03)

0.92
(0.82, 1.04)

0.91
(0.82, 1.04)

Gasoline
($/Gall)

1.11
(1.04, 1.21)

1.13
(1.05, 1.24)

1.13
(1.05, 1.24)

(ii) Logged data

Series No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

0.97
(0.91, 1.05)

1.02
(0.94, 1.10)

1.02
(0.95, 1.10)

Ethanol
($/Gall)

0.99
(0.86, 1.04)

0.94
(0.86, 1.08)

0.94
(0.86, 1.08)

Gasoline
($/Gall)

1.00
(0.94, 1.08)

1.10
(1.00, 1.20)

1.10
(1.00, 1.20)

The values reported are the estimated values of the order of integration. In parenthesis, they are 95% confidence bands,
and in bold we mark the selected specifications according to the deterministic terms.

Table 8
Estimates of d with weekly data in the differenced series.
(i) White noise errors

Series (in logs) No terms With an
intercept

With an intercept
and a linear trend

Ethanol – Corn 1.00
(0.96, 1.05)

0.93
(0.88, 0.99)

0.93
(0.88, 0.99)

Gasoline – Corn 0.99
(0.94, 1.04)

0.96
(0.90, 1.00)

0.96
(0.90, 1.00)

(ii) Autocorrelated errors

Series (in logs) No terms With an
intercept

With an intercept
and a linear trend

Ethanol – Corn 1.02
(0.95, 1.11)

0.87
(0.79, 0.99)

0.88
(0.80, 0.99)

Gasoline – Corn 0.99
(0.92, 1.09)

0.93
(0.82, 1.01)

0.93
(0.82, 1.01)

The values reported are the estimated values of the order of integration. In parenthesis, they are 95% confidence bands,
and in bold we mark the selected specifications according to the deterministic terms.

where m refers to the orthogonal Chebyshev polynomials order in time, expressed as:

P0,T (t) = 1, (8)

Pi,T (t) =
√
2 cos(iπ (t − 0.5)/T ), t = 1, 2, . . . , T ; i = 1, 2, . . . (9)

The results, based on Cuestas and Gil-Alana (2016) and reported in the Appendix, clearly show no evidence of non-linear
trends in any of the series under investigation.

6. Conclusions

In this paper, we have studied the market persistence and mean reversion properties for the corn, bioethanol, and
gasoline prices, evaluating the long memory effects with fractional integration techniques for the case of the US market,
currently the largest bioethanol and crude oil producer. To this end, we have employed monthly data from January 1982
to February 2022 from USDA and weekly data from October 2005 to May 2022; and used fractional integration techniques
for the analysis. If mean reversion properties apply, the time-series under study is forecasted to recover to its mean value
with no additional policies. Thus, investors can profit this property and expect corrections to this value when volatility
applies to the time series.

Empirical results show evidence of no mean reversion for the prices of the three series (ethanol, gasoline and corn
prices) though some evidence is found in the differences of ethanol and gasoline with respect to corn. In particular, the
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Table 9
Estimates of d with weekly data and white noise errors (ending 2019).
(i) Original data

Series
(weekly)

No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

1.03
(0.97, 1.09)

1.03
(0.97, 1.09)

1.03
(0.97, 1.09)

Ethanol
($/Gall)

0.98
(0.92, 1.05)

1.02
(0.95, 1.09)

1.02
(0.95, 1.09)

Gasoline
($/Gall)

1.03
(0.98, 1.09)

1.04
(1.00, 1.10)

1.04
(1.00, 1.10)

(ii) Logged data

Series No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

1.00
(0.95, 1.06)

1.02
(0.97, 1.08)

1.02
(0.97, 1.08)

Ethanol
($/Gall)

0.99
(0.92, 1.06)

1.03
(0.96, 1.10)

1.03
(0.96, 1.10)

Gasoline
($/Gall)

1.00
(0.95, 1.06)

1.04
(0.99, 1.09)

1.04
(0.99, 1.09)

The values reported are the estimated values of the order of integration. In parenthesis, they are 95% confidence bands,
and in bold we mark the selected specifications according to the deterministic terms.

Table 10
Estimates of d with weekly data and autocorrelated errors (ending 2019).
(i) Original data

Series
(weekly)

No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

0.97
(0.89, 1.06)

0.97
(0.88, 1.05)

0.97
(0.88, 1.05)

Ethanol
($/Gall)

0.89
(0.81, 0.98)

0.90
(0.80, 1.02)

0.90
(0.80, 1.02)

Gasoline
($/Gall)

1.12
(1.01, 1.19)

1.14
(1.05, 1.24)

1.14
(1.05, 1.24)

(ii) Logged data

Series No terms With an
intercept

With an intercept
and a linear trend

Corn
($/Bushel)

1.00
(0.92, 1.08)

1.02
(0.94, 1.10)

1.01
(0.94, 1.10)

Ethanol
($/Gall)

0.87
(0.77, 0.99)

0.91
(0.80, 1.02)

0.91
(0.81, 1.02)

Gasoline
($/Gall)

0.99
(0.92, 1.10)

1.14
(1.04, 1.23)

1.14
(1.04, 1.23)

The values reported are the estimated values of the order of integration. In parenthesis, they are 95% confidence bands,
and in bold we mark the selected specifications according to the deterministic terms.

value 1 is in all cases within the confidence interval showing this lack of mean reversion properties. Thus, it appears
that external shocks in the individual series are expected to remain persistent and additional policy measures would be
required to recover the original trends, in line with other studies such as Barros et al. (2014) for the Brazilian industry.

Furthermore, the possible Covid impact in the time series has been analyzed by comparing the results ending in 2019
with those ending in 2022, finding evidence of no major changes in the integration orders in the series. Following other
studies with yearly data, a temporal increase would be expected in this integration factor; however, this issue does not
hold in our empirical results with weekly and monthly samples and can be associated with the smaller sampling frequency
used.

This article can be extended in various directions. First, from a methodological viewpoint, other structures incorporat-
ing, for example, structural breaks can be taken into account. In addition, non-linear models based on Fourier function in
times (Gil-Alana and Yaya, 2021) or neural networks (Yaya et al., 2021) can also be considered. Nevertheless, the results
reported in the Appendix seems to reject the hypothesis of non-linear structures. On the other hand, issues such as the
Russia-Ukraine war and its effects on the series examined is something that will be investigated in future papers.
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Table 11
Estimates of d with weekly data in the differenced series (ending 2019).
(i) White noise errors

Series (in logs) No terms With an
intercept

With an intercept
and a linear trend

Ethanol – Corn 1.01
(0.96, 1.07)

0.95
(0.89, 0.99)

0.95
(0.89, 1.00)

Gasoline – Corn 0.99
(0.94, 1.05)

0.96
(0.90, 1.00)

0.96
(0.90, 1.00)

(ii) Autocorrelated errors

Series (in logs) No terms With an
intercept

With an intercept
and a linear trend

Ethanol – Corn 1.04
(0.97, 1.13)

0.86
(0.75, 0.97)

0.87
(0.75, 0.97)

Gasoline – Corn 0.98
(0.91, 1.08)

0.98
(0.85, 1.10)

0.98
(0.85, 1.10)

The values reported are the estimated values of the order of integration. In parenthesis, they are 95% confidence bands,
and in bold we mark the selected specifications according to the deterministic terms.
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ppendix

(a) Monthly data
Original data
Corn
($/Bushel)

1.30
(1.21, 1.40)

0.560
(0.04)

0.984
(0.14)

−0.110
(−0.04)

0.538
(0.37)

Ethanol
($/Gall)

0.99
(0.88, 1.11)

1.280
(0.70)

−0.434
(−0.39)

0.101
(0.18)

0.240
(0.65)

Gasoline
($/Gall)

1.10
(0.99, 1.23)

1.226
(0.42)

−0.526
(−0.29)

0.063
(0.07)

0.334
(0.65)

Logged data
Corn
($/Bushel)

1.37
(1.27, 1.49)

0.349
(0.14)

0.300
(0.11)

−0.024
(−0.02)

0.142
(0.27)

Ethanol
($/Gall)

1.05
(0.95, 1.18)

0.212
(0.10)

−0.354
(−028)

0.087
(0.14)

0.217
(0.57)

Gasoline
($/Gall)

0.97
(0.87, 1.08)

0.267
(0.25)

−0.500
(−0.80)

0.094
(0.29)

0.243
(1.11)

(b) Weekly data
Original data
Corn
($/Bushel)

1.02
(0.97, 1.08)

389.919
(1.06)

0.536
(0.02)

−36.494
(−0.33)

−96.587
(−1.34)

Ethanol
($/Gall)

1.00
(0.94, 1.07)

2.661
(1.59)

0.205
(0.22)

0.032
(0.07)

−0.227
(−0.76)

Gasoline
($/Gall)

1.04
(0.99, 1.08)

202.834
(0.97)

24.466
(0.19)

−19.502
(−0.32)

−25.192
(−0.63)

Logged data
Corn
($/Bushel)

1.02
(0.97, 1.07)

5.751
(7.79)

−0.014
(−0.03)

−0.087
(−0.40)

−0.209
(−1.44)

Ethanol
($/Gall)

1.02
(0.96, 1.08)

0.973
(1.20)

0.119
(0.24)

−0.074
(−0.03)

−0.115
(−0.72)

Gasoline
($/Gall)

1.06
(1.01, 1.12)

5.260
(4.18)

0.139
(0.17)

−0.094
(−0.26)

−0.111
(−0.47)
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