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A B S T R A C T   

Background and Objective: Clinical scales used by well-trained clinicians to assess motor symptoms in patients 
with Parkinson’s Disease (PD) allow to establish the patients’ medical therapy and follow-up their response. 
However, these assessments are subjective and their application to patients requires experienced and qualified 
operators. This study analyzes the role of the kinematic patient’s features, captured by a simple computer 
keyboard paradigm, in predicting the scores prescribed by an experienced neurologist. 
Methods: A total of 47 patients in their ON medication state participated in this study. Their motor capacity was 
assessed by an experienced neurologist with several standardized clinical scales. The patients also performed 5 
consecutive trials of 10 s of a computerized finger tapping task by pressing with their index the space bar, first 
with their dominant hand and then with the other hand. 270 tapping-related features were extracted from the 
tapping task data for each participant and linear regression multivariate models for each clinical variable were 
built by using these features. 
Results: The best resulting models were for the motor capacity (Unified Parkisnon Disase Scale Revised – MDS- 
UPDRS Part III), years from disease onset and balance scores (Limit of Stability – LoS), with root mean squared 
errors (RMSE) of 0.268, 0.254 and 0.150, respectively, all bellow their corresponding minimal clinically 
important differences. Those models included variables from both hands and from all trials, mainly regarding 
slow and fast tapping-related variables in different degrees. 
Conclusions: A simple bimanual non-alternating finger tapping task has shown to foresee motor capacity and 
balance scores by using statistical and machine learning methods. This easy and quick task could be performed 
periodically in the medical office or at home helping the clinician to know the patients’ motor state and tem-
porary alterations in that way and to make finer clinical decisions about the proper pharmacological treatment of 
every patient.   

1. Introduction 

Motor symptoms in Parkinson’s Disease (PD) patients is the result of 
the degeneration of dopaminergic neurons in the substantia nigra 
(Foffani and Obeso, 2018). The progress of the disease lies in the 
dysfunctional interactions between this basal ganglion and motor 
cortical areas (Poewe et al., 2017). In addition to bradykinesia (Postuma 
et al., 2015), the clinical characterization of PD can exhibit diverse 
motor signs as impaired gait, postural instability, tremor or a mixed 

manifestation of several of them. These motor phenotypes are highly 
individual and variable, depending on the disease course, response to 
drugs, or age (Herb et al., 2016). 

PD symptoms, especially bradykinesia, impact in several domains of 
action of the patients like activities of daily living and cognitive and 
motor skills. The assessment of motor and physical disabilities includes 
the evaluation of balance and control of posture, gait, and arm and hand 
function (Opara et al., 2017). The standardized clinical evaluation scales 
commonly used include the Hoehn & Yarh (Hoehn and Yahr, 1967), the 
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Modified Bradykinesia Rating Scale (MBRS) (Kishore et al., 2007), the 
Unified Parkinson’s Disease Rating Scale (UPDRS) (Fahn and Elton, 
1987) and its modified version, the Movement Disorder Society (MDS)- 
UPDRS (Goetz et. al, 2008). Parts II and III of UPDRS and MDS-UPDRS 
subjectively assess motor alterations in all domains in PD. Besides, there 
exist well-known tests for evaluating balance and posture like the Timed 
Up&Go test (Podsiadlo and Richardson, 1991), different timed walking 
tests for gait, and the Fugl-Meyer Motor Assessment Scale (Fugl-Meyer 
et al., 1975) and Finger Tapping Test (FTT) (Shimoyama et al., 1990) for 
arm and hand motor skills. 

The success of a medical treatment in handling motor symptoms is 
strongly conditioned by a precise and regular clinical evaluation. Even 
though, once the pharmacological treatment has been established after 
the clinical assessment, the functional state of patients and the severity 
of their symptoms are quite variable as a consequence of the pharma-
cokinetics of the medication, which leads to switch between ON medi-
cation and OFF medication states in an unforeseen manner 
(Kleinholdermann et al., 2021). So, a precise and periodic testing 
(several times a day) of patient’s symptoms could support the clinician 
to fit a personalized and effective therapy. 

One of the earliest motor impairments of the disease is located at the 
hands (Agostino et al., 2003; Lanciego et al., 2012) while performing 
fine motor tasks, that is evidenced at the disease onset in an asymmetric 
way (Hanna-Pladdy et al., 2015). Finger-to-thumb tapping, as a self- 
cued repetitive opposition of thumb and index of each hand, is consid-
ered the most suited task to measure fine motor skills and bradykinesia 
(Williams et al., 2020a). The assessment of this neurophysiological 
motor dysfunction is usually included in the UPDRS and MDS-UPDRS 
Part II and III and also by the dedicated FTT clinical rating scales, 
which are administered by well-trained and experienced neurologists 
(Goetz and Stebbins, 2004). Despite these scales have been extensively 
validated and improved in clinical terms along the past decades they 
need to be applied by trained professionals to be reliable. These tests are 
subjective, not suitable to be applied several times a day and their results 
depend largely on the time the patients took their last medication dose, 
whose absorption and effects are often unpredictable, resulting in a 
suboptimal procedure (Kim et al., 2021). 

The emergence of new technologies has allowed to develop tech-
niques to quantify motor symptoms and disease state in PD (Hasan et al., 
2017; Merola et al., 2018). Regarding bradykinesia, the technology has 
provided approaches for quantitatively assessing finger tapping in pa-
tients by means of sensors like accelerometers, gyroscopes, and mag-
netometers (Li et al., 2020), light-diode finger tappers (Roalf et al., 
2018), kinematic motion analysis systems (Bologna et al., 2018) and 
conventional video devices (Monje et al., 2021). Likewise, mobile smart 
devices endowed with sensors help to capture and store movement data 
in an unobtrusive and wearable fashion (Rovini et al., 2017; Ancona 
et al., 2021), that is welcomed by patients (AlMahadin et al., 2020). 

Although both evaluation approaches, subjective and quantitative, 

can be used to detect typical motor symptoms in PD (Camicioli, 2002), 
objective procedures offer data whose analysis can help to determine 
impaired profiles of motion and/or temporary alterations in the disease 
state and even the effects of the applied therapy in a more precise and 
finer way. But, to what extent these technologies and techniques provide 
with reliable information that can be compared to the outcomes of gold 
standard rating scales? (Ghoraani et al., 2021). Some research works 
have found features that correlate or predict some MDS-UPDRS Part III 
subitem scores (ranging from 0 to 4) and the medication state (OFF/ON) 
from electromyography recordings (Kleinholdermann et al., 2021) with 
a coefficient of determination (R2) of 0.546 between true and predicted 
scale scores, wearable devices (Ancona et al., 2021) with an accuracy in 
the detection of the presence of bradykinesia and tremor between 70 % 
and 88 %, and contactless sensors (Williams et al., 2020b; Sibley et al., 
2021; García-Agundez and Eickhoff, 2021) with R2 between 0.291 and 
0.736 and best Root Mean Standard Error (RMSE) of 4.37 between true 
and predicted scale scores, or just detected early-stage PD based on the 
computer keystroke dynamics while typing (Adams, 2017; Giancardo 
et al., 2016; Lan and Yeo, 2019) with Areas Under Curve (AUC) between 
0.670 and 0.980. Computer keyboard-based assessments offer a simple, 
comfortable, cost-effective, maintenance-free, untethered, remote and 
patient-centered means to assess Parkinson’s symptoms through a hor-
izontal task, with hands on a desktop. 

Previous computer keystroke-based assessment approaches are 
either based on typing (Giancardo et al., 2016; Adams, 2017; Lan and 
Yeo, 2019), an infrequent skill in elder people, which is also affected by 
a learning component, or on bimanual alternation with engineered 
keyboards designed ad hoc (Tavares et al., 2005; Trager et al., 2020). 
However, it has been already evidenced that PD is symptomatically 
asymmetric and simple unimanual tasks yield more representative and 
less confounding results of the motor disorders (Trager et al., 2015). 

Our aim is to predict for the first time several clinically meaningful 
motor-related scores and variables, either from upper or lower limbs, or 
for symptomatic or functional factors, reported by several neurologists 
experienced in the assessment of movement disorders in their medical 
consultation, just from patients’ computer spacebar taps with the index 
fingers. We hypothesise that the scores of different movement- and 
balance-related clinical scores can be foreseen from features obtained 
while patients perform simple unimanual non-alternating index finger 
taps by using statistical analysis and machine learning methods. The 
automatic prediction of these variables through the computer keyboard 
paradigm proposed may be a very valuable asset in clinical assessments 
of motor disability for PD patients both in the medical office and 
remotely at home. It is an objective, unobtrusive, cost-effective, avail-
able and simple paradigm to quantify and assess motor symptoms by the 
neurologist. Besides, it can be dispensed by an easy and quick task in a 
periodic way in order to help to design the tailored pharmacological 
therapy and fasten the achievement of the optimum state of the patients. 

2. Methods 

2.1. Participants 

Forty-seven PD patients were recruited for the study according to the 
next inclusion criteria: over 18 years old, diagnosed with idiopathic PD 
according to the London Brain Bank, Hoehn-Yahr score between I and 
III, no modifications of dopaminergic medication and psychotropic drug 
intake in the previous 30 and 90 days, respectively, and not demented 
(Minimental State Examination -MMSE- score < 25). Demographics and 
clinical characteristics are shown in Table 1. As derived from the data in 
Table 1, the participants were predominantly men and right-handed 
with the most-affected side slightly unbalanced to the right. The dura-
tion of the disease among the participants ranged from recently diag-
nosed to 21 years of development. However, according to the Hoehn and 
Yahr scores the participants suffered from mild to moderate disease 
severity. The average age was 63 years, but the range of age among 

Table 1 
Demographics and clinical variables of the participants included in the study.  

(n = 47) Avg. (std.); min. - max. 
# (%) 

Age (years) 63.30 (8.80); 44.00–––80.00 
Sex  
Female 16 (34.00 %) 
Male 31 (66.00 %) 
Dominance  
Right 45 (95.70 %) 
Left 2 (4.30 %) 
Time from disease onset (years) 6.06 (3.89); 0.00–––21.00 
Side of symptoms onset  
Right 27 (57.40 %) 
Left 20 (42.60 %) 
Levodopa Equivalent Dose (LED) (mg) 587.51 (411.07); 0.00–––1717.00 
Hoehn & Yahr 1.94 (0.67); 1.00–––3.00  
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participants was 36 years, from the youngest 44-year-old participants to 
the oldest 80-year-old participant. 

2.2. Materials 

The participants’ motor capacity was assessed by an experienced 

neurologist (J.P.R.) with the MDS-UPDRS Part III (motor examination) 
(Goetz et al., 2008), the Hoehn & Yahr scale (Hoehn and Yahr, 1967) 
and the timed Up & Go test (Podsiadlo and Richardson, 1991). The 
standing balance control of the participants was also assessed by a 
Balance System SD (Biodex Medical Systems Inc., USA) with the Limit of 
Stability (LoS) test (Azarpaikan,Torbati,and Sohrabi, 2014). The 

Fig. 1. Scheme of the complete methodology of the present study.  
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outcome of the LoS test was the overall score plus the time to complete 
the test in the level 12 totally stable platform, following the default 
manufacturer instructions and settings for the LoS test (Biodex Medical 
Systems, 2021). 

The participants also performed a computerized finger tapping task 
(Strauss et al., 2006). To this end, the participants comfortably sat in 
front of a screen and a keyboard with the wrists resting in the table right 
before the keyboard. Then, they were asked to perform taps with the 
index finger on the space bar as fast as they could during time intervals 
(trials from now on). They perform five consecutive trials of 10 s each 
interleaved with 3-second resting periods (Strauss et al., 2006), first 
with the dominant hand and then with the other hand. The times be-
tween consecutive taps in each 10 s trial were recorded for further 

Fig. 2. RapidMiner Studio complete process model, with all operators and parameters, of the linear model optimization. Exa: Dataset; wei: Weights; per: Perfor-
mance; mod: Model; tra: Training set; tes: Test set: unl: Dataset unlabeled; lab: Dataset labeled; p: Probability. Note that mutation probability (‘p mutation’) of − 1.0 
means 1/number of attributes in the individual. 

Table 2 
Results from the clinical testing of the participants.   

Avg. (std.); min. - max. 

MDS-UPDRS Part III* - In-person assessment 14.70 (7.75); 0.00–––32.00 
MDS-UPDRS Part III* - video-based assessment 1 18.42 (5.12); 8.00 – 30.00 
MDS-UPDRS Part III* - video-based assessment 2 21.77 (7.67); 1.00 – 38.00 
MDS-UPDRS Part III* - Average of all assessments 18.29 (5.17); 6.00 – 29.00 
Limit of Stability (LoS)** 34.58 (16.50); 10.00–––69.00 
Time for Limit of Stability (s) ** 68.39 (20.70); 42.00–––135.00 
Up & Go (s)** 10.36 (2.70); 0.00–––15.59  

* n = 47. 
** n = 44. 
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processing and analysis. 

2.3. Procedure 

Fig. 1 depicts the complete methodology of the present study. Pa-
tients successfully contacted who met the inclusion criteria (>18 years 
old, idiopathic PD, Hoehn & Yahr stage I-III, no modifications in dopa-
minergic medication in the previous 30 days, no modifications in psy-
chotropic drugs medication in the previous 90 days) were appointed for 
testing in the morning, one hour after their usual dopaminergic medi-
cation intake to guarantee that they performed the tests in the ON- 
medication state. They were instructed about all the procedure and 
data management and signed the informed consent. All the procedure 
was carried out according to the Declaration of Helsinki and approved 
by the Ethical Committee Review Board of Hospital Beata María Ana. 

The participants were first assessed by the MDS-UPDRS Part III and 
Hoehn & Yarh examinations. After five minutes of resting, they per-
formed the timed Up & Go test. Then, their limit of stability was assessed 
in the balance system. Finally, they performed the finger tapping task. 
The MDS-UPDRS Part III was recorded in video and two additional 
video-based assessments by two additional neurologists were collected. 

Table 3 
Adjustment parameters and statistics (F-ratio and p-value) of the clinical pre-
dictions of the best multivariate linear regression models composed of tapping 
variables.  

Clinical variable 
predicted 

RMSE GA 10 
executions 
Avg. (std) 

Best from GA 10 runs 

RMSE 
Avg. 
(std.) 

R2 Statistics 

Time from onset 
(years) 

0.801 (0.359) 0.254 
(0.104)  

0.995 F(46) = 1411.938; 
p <.0005 

MDS-UPDRS 
Part III 

1.516 (1.249) 0.268 
(0.128)  

0.997 F(46) = 15806.059; 
p <.0005 

Up & Go (s) 0.442 (0.389) 0.150 
(0.041)  

0.995 F(43) = 816.782; p 
<.0005 

LoS 2.405 (1.107) 1.454 
(0.551)  

0.991 F(43) = 1970.870; 
p <.0005 

Time for LoS (s) 0.692 (0.394) 2.977 
(2.332)  

0.999 F(43) = 8789.274; 
p <.0005 

RMSE: Root Mean Squared Error; R2: Coefficient of determination; GA: Genetic 
Algorithm; LoS: Limit of stability; Avg.: Average; Std: Standard deviation. 

Fig. 3. Scatter plot and linear adjustments for the clinical variables considered and the corresponding prediction from the multivariate linear models composed of 
tapping features. MDS-UPDRS: Modified version of the Movement Disorder Society - Unified Parkinson’s Disease Rating Scale; LoS: Limit of Stability. 
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2.4. Data processing and analysis 

All data was anonymized by identifying each participant with a code 
composed of two random capital letters and two random numbers. Date 
of testing was never recorded. The names of the recorded video files 
were only identified with each participant code. Each participant code 
was associated with the corresponding MDS-UPDRS Part III scores, 
Hoehn & Yarh stage, Up & Go time in seconds, LoS, time in seconds for 
complete the LoS task, and the features extracted from the finger tapping 
task. 

From the times between consecutive taps recorded during each 10 s 
trial for each hand, the next features were extracted for each participant: 
the number of taps, the average time between taps and the uniformity of 
tapping cadence (as the coefficient of variation of the time between taps, 
i.e., the ratio of the standard deviation to the average). In addition, 
features from freezings (abnormally slower) and festination (abnormally 
faster) taps were also extracted: the number, the percentage with respect 
to the total taps in the trial and the average duration. We used two 
different concepts of freezing and festination. The first one is an adap-
tation of the concept used in Delval et al. (2016). According to it, a 
freezing tap is the one that lasts more than 0.5 s. A festination tap is 
defined as the one that lasts less than two standard deviations from the 
average duration of the first five taps of the trial. Since we think these 
definitions are somewhat arbitrary and not very robust, we also 
extracted features of freezing and festination based on the statistical 
outlier concept. In this sense, we also consider a freezing tap the one that 
lasts more than 1.5 times the interquartile range over the 3rd quartile 
(considering all the taps in a trial), i.e. a high outlier. Analogously, we 
consider a festination tap the one that lasts less than 1.5 times the 
interquartile range below the 1st quartile, i.e. a low outlier. Given the 
extracted features mentioned, each trial of tapping will be characterized 
by 15 variables (3 from taps, 3 from each of the two concepts of freezing, 
and 3 from each of the two concepts of festination). Since there are 5 
trials for each hand, it accumulates 150 variables. We also considered 
the same mentioned variables accumulated, i.e., grouping all 5 trials for 
each hand, which adds another 30 variables. Finally, we also considered 

the difference between hands of each variable in each trial and in the 
accumulated trial. This results in a total number of 270 variables 
describing the finger tapping task for each participant. Other typical 
features could have been extracted from the tapping series for each trial 
and side, such as kurtosis, skewness, entropy or Lyapunov exponents. 
However, their meaning and interaction with the other variables would 
be hard to explain in clinical terms, thus undermining the clinical val-
idity of the models. 

Using those 270 tapping-related variables, we attempted to construct 
optimal linear regression models able to predict the corresponding 
clinical variables (years from the disease onset, MDS-UPDRS Part III, 
timed Up & Go, LoS and time of LoS). Other suitable models such as 
Regression Trees (Jiao et al., 2020) or Neural Networks (Specht, 1991) 
are less explainable, more conditioned by hyperparameter tunning and 
could have found complex non-linear relationships clinically hard to 
explain. For that purpose, we first remove the tapping-related variables 
that were highly correlated (Pearson’s rho higher than 0.7). Then, a 
genetic algorithm (GA) was applied to find the subset from the 
remaining tapping-related variables that produce the linear model with 
the lowest RMSE. GAs are the most suitable method when the solution 
space is high-dimensional, such as all subsets from 270 variables. The 
applied core GA algorithm was the one implemented in the Optimize 
Selection (Evolutionary) operator of RapidMiner Studio version 
9.10.011 (RapidMiner GmbH, Dortmund, Germany). The GA parameters 
were set to a population size of 100 individuals and a number of gen-
erations without improvement of 150 (to guarantee convergence), with 
a tournament selection scheme with size 0.25 and dynamic selection 
pressure, and probabilities of initialization, mutation and shuffle- 
crossover of 0.5, 1/number of features and 0.5, respectively, keeping 
the best individual of each generation for the next one. The individuals 
in the population were subsets of size between 20 and 50 variables from 
the remaining tapping-related variables considered, to obtain accurate 
but informative linear models without overfitting. Each individual was 
scored by the average RMSE on the validation parts from a 10-fold cross- 
validation on the entire dataset. Given the random nature of genetic 
algorithms, the GA was run ten times for each clinical variable. Average 

Fig. 4. Distribution of the variance explained by left side, right side and side difference (topleft), festination-related and freezing-related (bottom-left), Delval’s 
festination- and freezing-related, novel festination- and freezing-related (bottom-right), and trials (top-right) among the finger-tapping variables in each multivariate 
linear regression model for each clinical variable. Ft.: Festinations; Fr. Freezings. 

J. Ignacio Serrano et al.                                                                                                                                                                                                                       



Expert Systems With Applications 246 (2024) 123077

7

(and standard deviation) of the best RMSEs from each of the 10 execu-
tions of the GA was reported. The average RMSE and R2 over the 10 
validation parts from the 10-fold cross-validation of the best individual 
from the 10 runs of the GA was also reported as prediction accuracy 
outcomes. Mean Squared Error (MSE) could have also been used, but the 
units of this error are not the same as the modeled variable and, 

consequently, it is harder to explain in clinical terms. Mean Absolute 
Error (MAE) is other feasible metric, but the error here is lineal and large 
individual errors might be somewhat compensated with perfect 
matches, what is not acceptable for clinical use. The whole feature 
subset process was carried out by RapidMiner Studio version 9.10.011 
(RapidMiner GmbH, Dortmund, Germany). Fig. 2 shows the complete 

Fig. 5. Average values (and standard deviations multiplied by 0.5) of the different tapping variables considered along the five trials, together with the corresponding 
linear approximations (dotted lines) for the left and right sides. 
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RapidMiner process model, with all operators and parameters used. 
After that, the best subset of variables from the ten runs of the GA 

was used to build a linear regression model of each clinical variable on 
the whole dataset, in order to study the contribution of each tapping 
variable to the corresponding model (the RapidMiner model as well as 
the raw and processed data are accessible through: https://g-nec.car. 
upm-csic.es/NeuroMOD/data/). Analysis of variance (ANOVA) was 
applied to test for statistical significance of the linear models fitting. In 
addition, for each predictor in the linear models, the corresponding 
explained variance was calculated as the normalized residual sum of 
squares (nRSS) with the predictor removed from the model, that is, how 
much the model deviates from the real data without the removed pre-
dictor. Consequently, the higher the nRSS the more important the pre-
dictor. Also, the statistical significance of each predictor was calculated 
by a t-test checking whether the corresponding coefficient is different 
from 0. These statistical analyses were performed by IBM SPSS Statistics 
v28.0 (IBM Corp., Armonk-NY, USA) with the default parameters. 

3. Results 

3.1. Clinical testing 

Table 2 shows the results of the clinical testing of the participants. 
According to the average MDS-UPDRS Part III scores the participants 
showed a mild-to-moderate motor impairment. However, the balance 
was moderately affected in most participants, where 65 is the bottom 
limit for LoS normality. Gait affection was just mild or inexistent ac-
cording the timed Up & Go results. Data from Up & Go and LoS tests 
(both limit and time) of 3 participants were lost, so the final sample size 
for these tests was 44. It is also noticed that the subjectivity between 
evaluators in MDS-UPDRS Part III scores is explicit, with an intraclass 
correlation coefficient (ICC) with absolute agreement definition of ICC 

Table 4 
Correlations between clinical variables considered in the study.    

MDS- 
UPDRS 
Part III 

Up&Go LoS Time for 
LoS 

Time from 
onset 

Pearson’s ρ 
(p-value) 

0.022 
(0.893) 

0.477* 
(0.001) 

-0.395* 
(0.008) 

0.264 
(0.083) 

R2 0.001 0.228 0.156 0.070 
MDS- 

UPDRS 
Part III 

Pearson’s ρ 
(p-value)  

0.355* 
(0.029) 

0.338* 
(0.038) 

-0.256 
(0.120) 

R2  0.126 0.114 0.066 
Up&Go Pearson’s ρ 

(p-value)   
-0.420* 
(0.007) 

0.370* 
(0.019) 

R2   0.176 0.137 
LoS Pearson’s ρ 

(p-value)    
-0.678* 
(<0.0005) 

R2    0.460 

ρ: Pearson’s rho; R2: Coefficient of determination;* Statistically significant cor-
relations (p <.05). 

Table 5 
Variance of the model in the rows explained by the variables shared with the 
models in the columns.   

Time from 
onset 

MDS-UPDRS 
Part III 

Up&Go LoS Time for 
LoS 

Time from 
onset   

8.50 %  2.70 %  7.20 %  23.10 % 

MDS-UPDRS 
Part III  

4.40 %   1.90 %  15.00 %  27.00 % 

Up&Go  27.10 %  2.50 %   6.80 %  19.00 % 
LoS  20.20 %  14.00 %  29.10 %   18.30 % 
Time for LoS  14.00 %  15.20 %  35.80 %  48.10 %  

LoS: Limit of Stability test. 

Table A1 
Linear model for years from onset.  

Tapping-related 
variable 

Non- 
standarized 
coefficients 

Stdandarized 
coefficients 

t p-value 

(Intercept)  27.992   54.203  <0.0005 
Festinations mean 

time L T1  
0.000  − 0.066  − 7.046  <0.0005 

Festinations mean 
time R T2  

− 0.001  − 0.224  − 24.277  <0.0005 

# Festinations R T1  0.736  0.321  29.120  <0.0005 
% Festinations L-R 

Diff. T4  
− 0.144  − 0.113  − 12.988  <0.0005 

% Festinations L-R 
Diff. T5  

− 0.082  − 0.106  − 11.638  <0.0005 

Freezings mean 
time L T4  

0.000  − 0.101  − 9.366  <0.0005 

Freezings mean 
time R T1  

0.000  0.152  13.542  <0.0005 

Freezings mean 
time R All trials  

0.000  − 0.071  − 5.140  <0.0005 

# Freezings R T2  0.742  0.472  46.854  <0.0005 
# Freezings R T3  − 0.133  − 0.059  − 5.096  <0.0005 
# Freezings R T4  − 0.163  − 0.100  − 7.709  <0.0005 
Mean time R T3  − 0.006  − 1.035  − 42.146  <0.0005 
Delval’s 

Festinations 
mean time R T1  

0.001  0.185  14.610  <0.0005 

Delval’s 
Festinations 
mean time R T2  

− 0.001  − 0.188  − 13.595  <0.0005 

Delval’s 
Festinations 
mean time R All 
trials  

0.000  − 0.054  − 3.298  0.007 

Delval’s 
Festinations 
mean time L-R 
Diff. T2  

− 0.003  − 0.502  − 56.208  <0.0005 

Delval’s 
Festinations 
mean time L-R 
Diff. All trials  

0.000  0.058  4.671  0.001 

# Delval’s 
Festinations L T4  

− 0.057  − 0.063  − 6.808  <0.0005 

# Delval’s 
Festinations L T5  

0.088  0.078  8.267  <0.0005 

# Delval’s 
Festinations R T4  

0.061  0.062  7.752  <0.0005 

% Delval’s 
Festinations L-R 
Diff. All trials  

0.026  0.101  8.738  <0.0005 

Delval’s Freezings 
mean time R T1  

− 0.001  − 0.998  − 66.821  <0.0005 

Delval’s Freezings 
mean time R All 
trials  

0.002  1.515  69.678  <0.0005 

Delval’s Freezings 
mean time L-R 
Diff. T2  

0.000  0.033  2.339  0.039 

# Delval’s 
Freezings L All 
trials  

0.566  0.614  25.261  <0.0005 

# Delval’s 
Freezings R T3  

1.103  0.354  20.337  <0.0005 

# Delval’s 
Freezings R T4  

− 1.201  − 0.312  − 14.742  <0.0005 

% Delval’s 
Freezings L-R 
Diff. T1  

0.206  0.184  11.045  <0.0005 

Uniformity L T1  0.000  − 0.033  − 2.262  0.045 
Uniformity L T2  − 0.002  − 0.304  − 18.276  <0.0005 
Uniformity L T3  0.003  0.287  13.055  <0.0005 
Uniformity L T4  0.000  0.045  2.191  0.051 
# taps L T5  − 0.176  − 0.387  − 31.155  <0.0005 
# taps L-R Diff. T5  − 0.304  − 0.482  − 49.714  <0.0005 
Uniformity L-R Diff. 

T3  
− 0.092  − 0.423  − 40.966  <0.0005 

J. Ignacio Serrano et al.                                                                                                                                                                                                                       
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(2,3) = 0.493 (0.160-0.712). This might be due in part to the hetero-
geneous modalities of assessment (in-person vs video-based). However, 
the intraclass correlation coefficient of only the two video-based eval-
uators, ICC(2,2) = 0.671 (0.298-0.838), although higher, still indicates a 
moderate inter-evaluator variability. Consequently, the average score of 
the three evaluators was taken as the MDS-UPDRS Part III variable to be 
modeled, thus collecting the subjectivity of the test. 

3.2. Clinical prediction from tapping variables 

Table 3 shows the average of the best RMSEs (standard deviation) 
over the 10 runs of the GA. For of the best result from the 10 GA runs, 
Table 3 also reports the average RMSE (standard deviation) from the 10- 
fold cross-validation and the coefficient of determination (R2) of the 
validation parts, and the F-ratio (ANOVA) of the multivariate linear 
regression model for each clinical variable. 

All clinical variables obtained a statistically significant multivariate 
linear regression model (Appendix I). In prediction terms, Fig. 3 shows 
the scatter plots of the relation between the actual values of the clinical 
variables (x-axis) and the predicted values from the multivariate linear 
regression models of tapping features on the validation folds. All vari-
ables were significantly predicted by well-fitted models with a low 
prediction error and a high coefficient of determination. 

Besides, all linear models included variables from both sides and side 
differences, and from all trials, included the accumulated trial. Fig. 4 
shows a summary of the distributions of the variance explained by finger 
tapping variables of all linear models grouped by side, type and trial. 
The data in Fig. 4 suggest that the Time from onset is mainly predicted 
by freezing-related tapping features of the dominant hand (right). The 
MDS-UPDRS Part III and Up&Go variables are also mainly predicted by 
freezing-related features, but from the non-dominant hand (left) or the 
difference between sides. LoS and time for LoS are mainly predicted by 
festination-related variables of the difference between sides and non- 
dominant hand, respectively. Nevertheless, the percentage of the vari-
ance explained by festination- plus freezing-related features of the pre-
diction models was 71.70 %, 86.00 %, 72.10 %, 87.40 % and 97.00 % for 
the clinical variables in the columns of Table 3, respectively. 

With respect to the two concepts of freezing and festination, the 
models contained a higher explained variance by the concepts proposed 
in the present work than from the Delval’s et al. (2016) concepts, except 
for the Time from onset model. With respect to the trials, the variables 
acquired in the first three trials provided more than the 50 % of 
explained variance in all models, except for the Up&Go model, where 
the variables from the rest of the trials and the accumulation variables 
(sum from all trials) explained more than the 50 % of the variance. 

Regarding the repeatability among the different trials, Fig. 5 shows 
the average values along the trials of the different tapping variables for 
the two sides. Although the high variability among participants prevents 
statistically significant differences among the different trials in all var-
iables from appearing, Fig. 5 shows trends over the trials, either positive 
or negative, for many of the variables and sides, pointing to tentative 
effects of fatigue and/or habituation the task. This supports the inclusion 
of the variables from all trials in the analyses. 

Finally, Table 4 reports the statistically significant correlations 
among the clinical variables. 

Although the results in Table 4 shows some highly significant cor-
relations such as LoS with Up&Go and Time for LoS, the Pearson’s co-
efficients indicate just low or low moderate correlations (Mukaka, 
2012). Moreover, the dispersion of the correlated data, given that R2 is a 
normalization of the residuals of the model, is high overall. These 
numbers explain why the variance in the models, explained by the 
predictors shared with the others models of the correlated variables, is 
relatively low, as shown in Table 5. 

L: Left finger; R: Right finger; Ti: Trial i. Diff.: Difference. Table A2 
Linear model for MDS-UPDRS Part III.  

Tapping-related 
variable 

Non- 
standarized 
coefficients 

Stdandarized 
coefficients 

t p-value 

(Intercept)  − 17.236   − 111.109  <0.0005 
Festinations mean 

Time L T1  
0.001  0.116  28.063  <0.0005 

Festinations mean 
time L T2  

− 0.004  − 0.655  − 159.546  <0.0005 

Festinations mean 
time R T5  

− 0.001  − 0.136  − 53.624  <0.0005 

Festinations mean 
time L-R Diff. T1  

0.002  0.229  77.554  <0.0005 

# Festinations L T1  0.855  0.173  41.836  <0.0005 
# Festinations L T4  − 2.782  − 0.521  − 162.582  <0.0005 
# Festinations R 

T2  
0.201  0.074  25.495  <0.0005 

# Festinations R 
T4  

0.392  0.105  44.156  <0.0005 

# Festinations R 
All trials  

− 1.106  − 0.591  − 143.029  <0.0005 

Freezings mean 
time L T1  

0.004  1.233  296.890  <0.0005 

Freezings mean 
time L T3  

0.001  0.314  134.950  <0.0005 

Freezings mean 
time L All trials  

0.004  1.352  233.151  <0.0005 

Freezings mean 
time R T5  

− 0.001  − 0.316  − 69.386  <0.0005 

Freezings mean 
time L-R Diff. T3  

0.002  1.641  294.389  <0.0005 

Freezings mean 
time L-R Diff. T5  

0.000  − 0.139  − 35.160  <0.0005 

# Freezings L T1  − 1.723  − 0.787  − 189.616  <0.0005 
# Freezings R T2  − 2.527  − 1.293  − 176.153  <0.0005 
Mean time L-R 

Diff. T3  
− 0.511  − 1.051  − 164.817  <0.0005 

Delval’s 
Festinations 
mean time R 1  

0.004  0.680  173.714  <0.0005 

Delval’s 
Festinations 
mean time L-R 
Diff. T3  

− 0.001  − 0.094  − 31.726  <0.0005 

Delval’s 
Festinations 
mean time L-R 
Diff. T4  

0.002  0.257  82.460  <0.0005 

# Delval’s 
Festinations L1  

0.023  0.014  4.852  0.008 

# Delval’s 
Festinations R 1  

1.028  0.831  118.340  <0.0005 

Delval’s Freezings 
mean time R 1  

0.000  − 0.018  − 3.894  0.018 

Delval’s Freezings 
mean time R 2  

− 0.004  − 1.805  − 216.133  <0.0005 

Delval’s Freezings 
mean time L-R 
Diff. T3  

− 0.002  − 0.870  − 155.167  <0.0005 

Delval’s Freezings 
mean time L-R 
Diff. All trials  

− 0.001  − 0.650  − 183.647  <0.0005 

# Delval’s 
Freezings R T  

1.981  1.597  191.082  <0.0005 

% Delval’s 
Freezings L-R 
Diff. All trials  

3.098  1.052  151.217  <0.0005 

Uniformity L4  − 0.003  − 0.253  − 79.515  <0.0005 
# taps L1  0.628  1.295  203.179  <0.0005 
# taps L-R Diff. T1  0.056  0.056  15.594  <0.0005 
# taps L-R Diff. T2  − 0.804  − 0.848  − 123.695  <0.0005 
Uniformity L-R 

Diff. T1  
− 0.155  − 0.327  − 105.609  <0.0005 

L: Left finger; R: Right finger; Ti: Trial i. Diff.: Difference. 
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Table A3 
Linear model for LoS.  

Tapping-related 
variable 

Non- 
standarized 
coefficients 

Stdandarized 
coefficients 

t p-value 

# Delval’s 
Freezings L All 
trials  

18.388  0.404  47.453  <0.0005 

Festinations mean 
time L T1  

− 0.002  − 0.095  − 13.847  <0.0005 

Festinations mean 
time R T3  

− 0.004  − 0.209  − 17.248  <0.0005 

Festinations mean 
time L-R Diff. T3  

0.002  0.083  7.187  <0.0005 

# Festinations L T2  6.569  0.369  48.546  <0.0005 
# Festinations L T4  0.585  0.033  3.827  0.005 
# Festinations R T1  − 4.931  − 0.514  − 65.221  <0.0005 
# Festinations R T3  2.536  0.244  21.306  <0.0005 
# Festinations R All 

trials  
0.470  0.076  10.530  <0.0005 

Freezings mean 
time L T4  

0.003  0.449  38.784  <0.0005 

Freezings mean 
time L-R Diff. T5  

0.004  0.440  38.931  <0.0005 

Freezings mean 
time L-R Diff. All 
trials  

− 0.007  − 0.493  − 52.175  <0.0005 

# Freezings L T1  1.776  0.264  40.604  <0.0005 
# Freezings L All 

trials  
− 0.923  − 0.577  − 26.768  <0.0005 

% Freezings L-R 
Diff. T1  

0.398  0.119  11.773  <0.0005 

% Freezings L-R 
Diff. T4  

− 0.486  − 0.176  − 12.974  <0.0005 

Mean time R T2  − 0.012  − 0.381  − 19.557  <0.0005 
Mean time L-R Diff. 

T1  
− 1.488  − 0.870  − 46.813  <0.0005 

Mean time L-R Diff. 
T4  

1.375  1.216  48.053  <0.0005 

Delval’s 
Festinations 
mean time L T2  

0.003  0.113  13.764  <0.0005 

Delval’s 
Festinations 
mean time L-R 
Diff. T1  

− 0.012  − 0.613  − 90.503  <0.0005 

Delval’s 
Festinations 
mean time L-R 
Diff. T4  

− 0.008  − 0.391  − 47.292  <0.0005 

# Delval’s 
Festinations L T3  

− 0.701  − 0.269  − 18.821  <0.0005 

# Delval’s 
Festinations L All 
trials  

0.613  0.456  28.135  <0.0005 

% Delval’s 
Festinations L-R 
Diff. T2  

− 0.256  − 0.109  − 11.556  <0.0005 

Delval’s Freezings 
mean time L-R 
Diff. T3  

0.001  0.135  13.240  <0.0005 

% Delval’s 
Freezings L-R 
Diff. T4  

− 2.990  − 0.796  − 44.926  <0.0005 

Uniformity L T2  − 0.009  − 0.270  − 13.866  <0.0005 
Uniformity L T5  0.033  0.586  35.044  <0.0005 
Uniformity L All 

trials  
− 0.019  − 0.407  − 11.218  <0.0005 

Uniformity R T5  − 0.008  − 0.303  − 25.855  <0.0005 
# taps L T2  − 0.749  − 0.403  − 27.879  <0.0005 
# taps R T1  0.728  0.431  17.927  <0.0005 
# taps R T3  − 1.321  − 0.760  − 34.357  <0.0005 
# taps L-R Diff. All 

trials  
− 0.088  − 0.157  − 4.878  0.001 

L: Left finger; R: Right finger; Ti: Trial i. Diff.: Difference. 

Table A4 
Linear model for the time for LoS.  

Tapping-related 
variable 

Non- 
standarized 
coefficients 

Stdandarized 
coefficients 

t p-value 

(Intercept)  92.968   206.302 <

0.0005 
# Delval’s 

Freezings L All 
trials  

− 29.995  − 0.525  − 139.936 <

0.0005 

Festinations mean 
time L T4  

− 0.017  − 0.587  − 117.744 <

0.0005 
Festinations mean 

time R T2  
0.013  0.491  123.774 <

0.0005 
Festinations mean 

time L-R Diff. T1  
0.001  0.022  5.628 <

0.0005 
Festinations mean 

time L-R Diff. T2  
− 0.009  − 0.309  − 74.619 <

0.0005 
Festinations mean 

time L-R Diff. T5  
− 0.001  − 0.037  − 11.459 <

0.0005 
# Festinations L T1  5.558  0.268  81.065 <

0.0005 
# Festinations L T4  10.945  0.489  98.376 <

0.0005 
# Festinations L T5  − 1.074  − 0.047  − 14.635 <

0.0005 
# Festinations R All 

trials  
− 4.290  − 0.551  − 118.750 <

0.0005 
Freezings mean 

time L T2  
0.009  1.083  143.067 <

0.0005 
Freezings mean 

time L T3  
− 0.004  − 0.334  − 61.595 <

0.0005 
# Freezings L All 

trials  
− 1.008  − 0.501  − 101.210 <

0.0005 
% Freezings L-R 

Diff. All trials  
4.561  1.138  153.953 <

0.0005 
Mean time L-R Diff. 

T2  
− 0.027  − 0.012  − 2.016 0.079 

Mean time L-R Diff. 
T4  

− 0.063  − 0.045  − 7.814 <

0.0005 
Delval’s 

Festinations 
mean time R T4  

0.002  0.100  26.246 <

0.0005 

Delval’s 
Festinations 
mean time R T5  

0.003  0.111  38.473 <

0.0005 

Delval’s 
Festinations 
mean time L-R 
Diff. All trials  

0.003  0.118  33.646 <

0.0005 

# Delval’s 
Festinations L T1  

3.533  0.523  124.042 <

0.0005 
# Delval’s 

Festinations L T3  
2.644  0.809  249.404 <

0.0005 
# Delval’s 

Festinations R T1  
− 1.353  − 0.453  − 106.832 <

0.0005 
% Delval’s 

Festinations L-R 
Diff. T4  

0.509  0.275  80.993 <

0.0005 

Delval’s Freezings 
mean time R All 
trials  

0.000  − 0.061  − 7.409 <

0.0005 

Delval’s Freezings 
mean time L-R 
Diff. T3  

0.001  0.086  11.086 <

0.0005 

Delval’s Freezings 
mean time L-R 
Diff. T5  

0.001  0.094  18.838 <

0.0005 

Delval’s Freezings 
mean time L-R 
Diff. All trials  

− 0.002  − 0.274  − 43.403 <

0.0005 

# Delval’s 
Freezings R T1  

− 15.595  − 0.624  − 90.636 <

0.0005 
Uniformity L T2  0.002  0.045  3.169 0.013 
Uniformity L T5  − 0.010  − 0.146  − 18.711 <

0.0005 

(continued on next page) 
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The only moderately strong correlation found was the one between 
Time for LoS and LoS (Table 4). In this case, the 48.10 % of the variance 
of the Time for LoS models is explained by the predictors shared with the 
LoS model (Table 5). Nevertheless, the correlation between the Pear-
son’s rho and shared explained variance between every pair of models is 
0.451, which indicates that the higher correlated the variables the 
higher explained variance by the shared predictors in the corresponding 
models. 

4. Discussion 

Our results showed for the first time that the linear combination of 
unimanual and bilateral index finger tapping features could characterize 
and predict the MDS-UPDRS-III score with an RMSE of 0.268 (±0.128), 
which is lower than any of the minimal clinically important differences 
(CID) estimated in the literature (Shulman et al., 2010; Horváth et al., 
2015; Sánchez-Ferro et al., 2018). In addition, the coefficient of deter-
mination between the MDS-UPDRS-III model and the scale score was R2 

= 0.997, is higher than the maximum comparable reported in the 
literature of R2 = -0.690 (RMSE of 4.37) with a model of variables ob-
tained from video recordings of classical finger tapping (index to thumb) 
(Williams et al., 2020b). It is also higher than other R2 = 0.546 (Klein-
holdermann et al., 2021) and R2 = 0.736 (García-Agundez and Eickhoff, 
2021) results obtained from models of electromyography (EMG) and 
contactless sensors features, respectively. It is even higher than the AUC 
of 0.980 from just a classifier between healthy and early-stage PD sub-
jects built from keystroke dynamics while typing (Lan and Yeo, 2019). 
Similarly, the Time from disease onset could be also predicted with an 
RMSE of 0.254 (±0.104) years and R2 = 0.995. With respect to the 
balance scales the LoS was predicted with a RMSE of 1.454 (±0.551) and 
R2 = 0.991, and the Time for LoS with a RMSE of 2.977 (±2.332) sec-
onds and the highest R2 of 0.999, both also lower than the corresponding 
minimal CID (Pickerill and Harter, 2011). Finally, the scale mostly 
related with the lower limbs, the Up&Go test, was also accurately pre-
dicted from the finger tapping variables with a RMSE of 0.150 (±0.041) 
and R2 = 0.995 below the minimal detectable change (Huang et al., 
2011). Taken together, the mentioned results constitute the main 
contribution of the present work: the validation of the use of the esti-
mations from index finger tapping features as easily and remotely 
measurable, ecological clinical markers of motor symptoms in PD. 

Most of the tapping features used to characterize the former clinical 
variables were related to either freezings or festinations rather than to 
cadence or velocity. On the one hand, bradykinesia symptoms are ex-
pected to contribute, since they are cardinal motor manifestations of PD. 
Given that the participants were in the ON-medication state, an allevi-
ation and improvement of bradykinetic symptoms would be also 
expectable. However, even though levodopa actually ameliorates bra-
dykinesia it does not make a difference in the sequence effect, i.e. 
decrement in amplitude or speed (or progressive hesitations/halts) as 
movements are continued (Postuma et al., 2015; Bologna et al., 2019). 
On the other hand, symptoms like festinations are plausibly explained by 

Table A4 (continued ) 

Tapping-related 
variable 

Non- 
standarized 
coefficients 

Stdandarized 
coefficients 

t p-value 

Uniformity R T2  − 0.024  − 0.392  − 56.272 <

0.0005 
# taps R T1  − 0.832  − 0.393  − 90.814 <

0.0005 
# taps L-R Diff. T1  0.244  0.067  13.102 <

0.0005 
Uniformity L-R Diff. 

T2  
0.102  0.102  9.293 <

0.0005 
Uniformity L-R Diff. 

T3  
− 0.413  − 0.362  − 41.388 <

0.0005 

L: Left finger; R: Right finger; Ti: Trial i. Diff.: Difference. 

Table A5 
Linear model for the Up & Go test.  

Tapping-related 
variable 

Non- 
standarized 
coefficients 

Stdandarized 
coefficients 

t p-value 

(Intercept)  7.211   41.436  <0.0005 
Festinations mean 

time L T3  
0.001  0.328  23.417  <0.0005 

Festinations mean 
time L T4  

0.000  0.064  7.062  <0.0005 

Festinations mean 
time R T1  

0.000  − 0.059  − 5.534  <0.0005 

# Festinations L T3  − 0.574  − 0.208  − 19.994  <0.0005 
# Festinations R T2  0.104  0.071  5.383  <0.0005 
% Festinations L-R 

Diff. T2  
0.134  0.171  11.998  <0.0005 

Freezings mean 
time R T1  

0.000  0.068  5.227  0.001 

Freezings mean 
time R T2  

0.000  − 0.326  − 20.705  <0.0005 

Freezings mean 
time R All trials  

0.001  0.881  40.170  <0.0005 

Freezings mean 
time L-R Diff. T1  

0.001  0.741  54.748  <0.0005 

Freezings mean 
time L-R Diff. T5  

0.000  − 0.064  − 6.634  <0.0005 

# Freezings L T5  − 0.978  − 0.698  − 80.105  <0.0005 
% Freezings L-R 

Diff. T1  
0.010  0.018  1.151  0.279 

% Freezings L-R 
Diff. T3  

0.163  0.221  18.098  <0.0005 

Delval’s 
Festinations 
mean time L-R 
Diff. T1  

0.000  − 0.097  − 8.606  <0.0005 

Delval’s 
Festinations 
mean time L-R 
Diff. T3  

0.000  − 0.084  − 8.276  <0.0005 

Delval’s 
Festinations 
mean time L-R 
Diff. All trials  

0.000  0.022  1.210  0.257 

# Delval’s 
Festinations L T2  

− 0.121  − 0.094  − 13.217  <0.0005 

# Delval’s 
Festinations L T3  

0.248  0.530  32.659  <0.0005 

# Delval’s 
Festinations L T4  

− 0.416  − 0.585  − 50.906  <0.0005 

# Delval’s 
Festinations R T1  

− 0.108  − 0.159  − 18.811  <0.0005 

% Delval’s 
Festinations L-R 
Diff. T3  

− 0.015  − 0.074  − 4.324  0.002 

% Delval’s 
Festinations L-R 
Diff. T4  

0.093  0.369  44.011  <0.0005 

Delval’s Freezings 
mean time L T3  

0.000  0.151  12.825  <0.0005 

Delval’s Freezings 
mean time L All 
trials  

0.000  − 0.047  − 3.900  0.004 

# Delval’s 
Freezings R T3  

− 1.334  − 0.636  − 41.650  <0.0005 

% Delval’s 
Freezings R T1  

− 0.151  − 0.156  − 7.902  <0.0005 

% Delval’s 
Freezings L-R 
Diff. T4  

0.092  0.153  10.738  <0.0005 

% Delval’s 
Freezings L-R 
Diff. T5  

0.128  0.199  12.135  <0.0005 

Uniformity L T1  0.000  − 0.039  − 2.814  0.020 
# taps L T3  − 0.038  − 0.123  − 10.276  <0.0005 
# taps L-R Diff. T1  0.060  0.122  16.513  <0.0005 
Uniformity L-R Diff. 

T1  
0.032  0.136  10.266  <0.0005 

Uniformity L-R Diff. 
T2  

0.019  0.149  11.866  <0.0005 

J. Ignacio Serrano et al.                                                                                                                                                                                                                       



Expert Systems With Applications 246 (2024) 123077

12

a defective cue production by the basal ganglia that have been described 
mostly in gait but also in upper limbs (Iansek et al., 2006; Freeman and 
Cody, 1993). These results point that most motor symptoms and severity 
in PD come from the pathological central mechanisms causing freezings 
and festinations. This knowledge might contribute to the design of more 
targeted drugs or neuromodulation treatments. 

Regarding lateralisation, the prediction models for MDS-UPDRS Part 
III, Time for LoS and Up&Go are mostly composed of left (non-dominant 
side in our study) and bilateral difference-related tapping features, 
pointing to the lateralised nature of the PD symptom severity. However, 
the Time from onset model was mainly composed of right (dominant 
side in our study) tapping features, indicating an opposite lateralization 
of the disease progression. This knowledge might contribute to a finer 
prescription of the medication depending on the disease duration. 

With respect to the timing, the first three trials are the one with more 
tapping features in all models, suggesting a possible effect of the fatigue 
in finger tapping not strongly related to the clinical scales. The only 
exception to this is Up&Go, where the variables of the corresponding 
linear model belong to all trials (excluding trial 2) in an equally 
distributed manner. Nevertheless, all trials showed informative for the 
linear models. 

Finally, the finger tapping features were also determinants of the 
lower limb motor capacity, as measured with the timed Up&Go test and 
LoS balance tests, which also comprises lower limb function. This is also 
the first time that lower limb and core-related function capacity are 
predicted from just upper limb features in PD, which points to a common 
central cause for most motor symptoms in PD. 

Besides, the parameters and hyperparameters selected for all algo-
rithms and methods were the default ones in the software used, except 
for the number of generations and the number of generations without 
improvement of the GA, since we were concerned about convergence. 
Once we confirmed that the GA converged with this set of parameter 
values and that we obtained a valid performance, different combinations 
were discarded. Other values could have just made the GA converge 
faster or reach better performance, although the margin of improvement 
is marginal given the current results. 

The present study carries some limitations to be considered. The first 
one is related to the sample. The sample size should be larger to better 
generalize the findings to the majority of the pathological population. In 
addition, left-handed participants should be also recruited. Neverthe-
less, the size was enough to yield significant statistical results and avoid 
overfitting. In addition, the results must be interpreted taking into ac-
count that they are derived from mild-to-moderate PD participants in 
the ON state and cannot be extrapolated to participants in an advanced 
stage of the disease or in the absence of the effects of dopaminergic 
therapy. Other limitation of the study is the determination of the MDS- 
UPDRS Part III score by different modalities (in-person and video- 
based), which likely introduces variability not due to the evaluator 
subjectivity. However, the introduced variability is not significative 
since there is evidence supporting a moderate-good agreement between 
the two modalities with ICC between 0.53 and 0.78 (Sibley et al., 2021). 
Moreover, it is also worth considering the video-based modality since it 
is becoming a common practice since the Covid-19 pandemic (Myers 
et al., 2021). 

5. Conclusion 

In this paper, we have shown how the use of a simple computer 
keyboard paradigm can facilitate clinically valid knowledge about the 
motor state of a sample of 47 right-handed idiopathic PD patients in the 
ON-medication state, overcoming the time and periodicity limitations of 
a standardized clinical evaluation for daily assessment. This paradigm 
represents a simple, easy and proper method to capture kinematic 

patients’ features that allows clinicians to quantitatively monitor pa-
tients’ status and progression and assess their motor symptoms and 
fluctuations unobtrusively, rapidly and even remotely. This information 
is especially useful when a pharmacological treatment has been pre-
scribed and may provide a more comprehensive vision of the disease and 
the immediate therapy consequences. Next step involves further vali-
dating the approach with more patients in daily real-life settings. Future 
research will focus on testing the same approach using the touchscreens 
of common devices, such as smartphones and smartwatches. 
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