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Abstract
This paper proposes a nonlinear fractional unit root approach which is known as
the autoregressive neural network–fractional integration (ARNN–FI) test. This new
fractional integration test is based on a new multilayer perceptron of a neural network
process, proposed in Yaya et al. (Oxf Bull Econ Stat 83(4):960–981, 2021). The
asymptotic theory and the properties of the proposed test are given. By setting up a
Monte Carlo simulation experiment, the simulation results reveal that as the number
of observations increases, size and power distortions would disappear in the test. The
empirical application based on this new test reveals that the unemployment rates of
three European countries are neither stationary nor mean-reverting in line with the
hysteresis hypothesis.
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1 Introduction

A unique characteristic of the European labour market was pointed out by Olivier
Blanchard and Lawrence Summers in 1986. According to them, a standard macroe-
conomic theory predicates that demand and supply shocks may unexpectedly cause
some deviations of the actual unemployment rate from its equilibrium level. However,
the actual unemployment rate would eventually return to its equilibrium level in the
long run (Blanchard and Summers 1986a, 1986b). This hypothesis is known as the
natural rate hypothesis, which is one of the central ideas of theoretical macroeco-
nomics (Song and Wu 1998). On the other hand, shocks are more persistent than the
standard theory could predicate, and high unemployment does not seem to return to
its equilibrium level in the European labour market. Blanchard and Summers theo-
rised this interesting empirical regularity of European unemployment as the hysteresis
hypothesis (Blanchard and Summers 1986a; Blanchard and Summers 1986b; Mitchell
1993; León–Ledesma 2002; Camarero and Tamarit 2004).

To test empirically the hysteresis hypothesis, researchers used various types of unit
root tests. The summary of major empirical findings is reported in Table 1. As the table
indicates, there are four different periods of empirical analysis which are separated
by dominant methods for the analysis of unemployment hysteresis. During the first
period, that is, from 1986 to 1996, researchers used the standard unit root tests, such
as the augmented Dickey-Fuller (ADF) test (Dickey and Fuller 1979, 1981) or the
Phillips-Perron (PP) test (Phillips and Perron 1988). They observed the presence of
hysteresis in the time-series data (Blanchard and Summers 1986b; Neudorfer et al.
1990; Brunello 1990; Mitchell 1993; Røed 1996).

In the second period (1998–2004), the dominant method for empirical analysis of
unemployment hysteresis changed from individual time series-based unit root tests
in the previous period to the panel data-based unit root tests. Researchers used some
major panel unit root tests, such as the Levin-Lin-Chu (LLC) test (Levin et al. 2002),
the Im-Pesaran-Shin (IPS) test (Im et al. 2003) and the multivariate ADF test (MADF)
test (Sarno and Taylor 1998). They generally concluded that there was no hysteresis
in the panel data on unemployment rates (Song and Wu 1998; León–Ledesma 2002;
Smyth 2003; Camarero and Tamarit 2004).

Furthermore, during the third period from 2004 to 2010, a popular method for
empirical analysis of unemployment hysteresis was the unit root test with structural
breaks. Researchers used several different types of structural break unit root tests, such
as the ADF test with structural breaks (Lumsdaine and Papell 1997), the panel KPSS
test with structural breaks (Carrion-i-Silvestre et al. 2005) and the panel LM test with
structural breaks (Im et al. 2005). They concluded that there was no hysteresis in the
unemployment rate (Camarero et al. 2005, 2006; Lee et al. 2009, 2010).

During the fourth and most recent period from 2011 to the present, researchers
started to use the nonlinear unit root test to take account of unknown nonlinearity and
they producedmixed results (Chang 2011; Bolat et al. 2014; Furuoka 2017; Akay et al.
2020). Some researchers detected the presence of hysteresis in unemployment rates
(Chang 2011; Akay et al. 2020) while other researchers denied the presence of unem-
ployment hysteresis (Bolat et al. 2014; Furuoka 2017; Yaya et al. 2019; Awolaja et al.
2021; Cheng 2022). For example, Chang (2011) examined unemployment hysteresis
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Table 1 Summary of major empirical findings on unemployment hysteresis

Authors (Year) Countries Data Methods Findings

Blanchard and
Summers
(1986b)

France,
Germany,
the UK, the
US

Annual data 1953–1984 DF test Hysteresis
(except in the
US)

Neudorfer et al.
(1990)

Austria Quarterly data
1951Q1-1986Q4

DF test Hysteresis

Brunello (1990) Japan Annual, quarterly
monthly data
1955–1987

DF test Hysteresis

Mitchell (1993) 15 OECD
countries

Quarter data
1960Q1-1991Q3

DF test and PP
test

Hysteresis
(except Italy)

Røed (1996) 16 OECD
countries

Quarter data
1970Q1-1994Q3

DF test Hysteresis
(except in the
US)

Song and Wu
(1998)

15 OECD
countries

Quarter data
1972Q1-1992Q2

LL test No hysteresis

León–Ledesma
(2002)

51 states in
the US
states and
12 countries
in the EU

Quarter data
1985Q1-1999Q4

IPS test No hysteresis
in US
Hysteresis in
the EU

Smyth (2003) 6 states and 2
territories in
Australia

Quarter data
1982Q2-2002Q1

LL and IPS test No hysteresis

Camarero and
Tamarit (2004)

19 OECD
countries

Annual data 1955–2001 MADF test No hysteresis

Camarero et al.
(2005)

9 EU
countries

Monthly data
1998M12-2003M11

ADF test with
structural
breaks

No hysteresis

Camarero et al.
(2006)

19 OECD
countries

Annual data 1956–2001 Panel KPPS test
with structural
breaks

No hysteresis

Lee et al. (2009) 19 OECD
countries

Annual data 1956–2001 Panel LM test
with structural
breaks

No hysteresis

Lee et al. (2010) 9 Asian
countries

Annual data 1976–2004 Panel LM test
with structural
breaks

No hysteresis

Chang (2011) 19 OECD
countries

Annual data 1956–2001 Nonlinear KPSS
test

Hysteresis

Bolat et al. (2014) 17 countries
in Eurozone

Annual data 2000–2013 Panel nonlinear
KSS test

No hysteresis
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Table 1 (continued)

Authors (Year) Countries Data Methods Findings

Furuoka (2017) 4 Nordic
countries

Quarterly data
2000Q1-2014Q2

Nonlinear ADF
test with
structural
breaks

No hysteresis

Yaya et al. (2019) 42 African
economies

Annual data 1991–2017 Fourier ADF
(FADF) and
FADF with
breaks
(FADF-SB)

Hysteresis in 7
countries

Akay et al. (2020) 13 transition
economies

Monthly data
2001M1-2017M42

Nonlinear Kruse
test

Hysteresis

Awolaja et al.
(2021)

19 Middle
East and
North
African
(MENA)
economies

Annual data 1991–2019 Univariate and
panel
SUR-based
Fourier ADF
tests with
structural
breaks

Hysteresis in
12 MENA
economies

Cheng (2022) Asian and
OECD
economies

Annual data 1998–2018 Threshold
autoregressive
nonlinear unit
root test

Hysteresis in
some
countries

DF test means the Dickey-Fuller test, the ADF test means the Augmented Dickey-Fuller test, the PP test
means the Phillips-Perron test, the LL test means the Levin-Lin test; the IPS test means the Im-Pesaran-Shin
test; MADF test means the multivariate ADF test; KPPS test means that the Kwiatkowski-Phillips-Schmidt-
Shin test

in OECD countries by using the Fourier KPSS test (Becker et al. 2006) and concluded
that unemployment hysteresis existed in these countries.By contrast, Bolat et al. (2014)
analysed the unemployment hysteresis in European countries using the panel KSS test
without the Fourier function (Ucar and Omay 2009) and the panel KSS test with the
Fourier function (Chang and Chang 2012). The panel KSS test without the Fourier
function indicated that unemployment hysteresis existed in these countries, while the
panel KSS test with the Fourier function showed that there was no unemployment
hysteresis. Furthermore, Furuoka (2017) used the Fourier ADF with structural break
(FADF-SB) test to examine the unemployment hysteresis in the Nordic countries and
concluded that there was no unemployment hysteresis in these countries. However,
Akay et al. (2020) examined the unemployment hysteresis in transition economies
using the Kruse test (Kruse 2011) and the Fourier Kruse test (Güriş 2019) and they
detected unemployment hysteresis in these countries.

Despite their numerous research efforts, researchers could not empirically prove
whether there was hysteresis in the unemployment rates. As the summary in Table 1
indicates, researchers failed to produce consistent empirical findings on this crucial
topic in macroeconomics. To overcome the inconsistency in the empirical findings
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from the unit root approach, Luis A. Gil-Alana suggested using the fractional integra-
tion approach for the analysis of unemployment hysteresis. He pointed out that the
standard unit root approach could consider a restrictive dichotomy between the unit
root process (I (1)) and the stationary process (I (0)) following Diebold and Rude-
busch (1991); Hassler and Wolters (1994) and Lee and Schmidt (1996). In other
words, the traditional approach may tend to ignore a unique difference in the man-
ifestation of unemployment dynamics which could be captured by the fractional
integration approach (I (d)). Thus, he suggested that Robinson’s Lagrange Multi-
plier (LM) method (Robinson 1994) could be used for the empirical estimation of
the fractional integration parameter (d) in the unemployment dynamics (Gil-Alana
2001a, 2001b, 2002). There could be three possible ranges of the fractional integra-
tion parameter in line with major hypotheses of unemployment rates. Firstly, if the
estimated fractional integration parameter is in the range (0, 0.5), unemployment rates
are stationary and mean-reverting in line with the natural rate hypothesis. Secondly,
if it lies in the range [0.5, 1.0), unemployment rates are non-stationary but mean-
reverting in line with the persistence hypothesis. Thirdly, if it lies in the range [1.0,
∞), unemployment rates are non-stationary and non-mean-reverting in line with the
hysteresis hypothesis (Caporale and Gil-Alana 2007; Cuestas et al. 2011; Caporale
and Gil-Alana 2018).

More recently, a new unit root approach for the analysis of unemployment dynam-
ics was suggested by Yaya et al (2021). They authors proposed a novel ADF-type unit
root test, which was based on the autoregressive neural network (ARNN) framework.
The methodological advantage of this ARNN-ADF test was that the hidden layer in
the neural network approach could be used to capture the latent structure of unem-
ployment dynamics in terms of nonlinearities. According to the results of their Monte
Carlo simulation, the ARNN-ADF test would suffer less from size distortion than the
standard unit root test (Yaya et al. 2021). Also, due to short samples of unemploy-
ment data, often obtained annually for cross-section of countries, a good nonlinear
approximator, such as the ARNN nonlinear function, is required in the unit root test-
ing framework for unemployment hysteresis. Introducing this in empirical analysis of
unemployment data will drastically reduce the bias due to fewer annual time series
observations for unemployment.

Thus, the main objective of the current study is to propose a new fractional integra-
tion approach or the autoregressive neural network fractional integration (ARNN-FI)
testing framework, which is an updated version of Robinson’s (1994) LM method,
based on a nonlinear ARNN nonlinearity, rather than the original linear ADF regres-
sion.

Our contribution to the literature is threefold. First, we propose a fractional integra-
tion test based on the ANN nonlinearity testing framework and provide a theoretical
background for it. Second, we evaluate the size and power of the testing procedure
in comparison with extant unit root tests, such as the recently proposed ARNN-ADF
unit root test by Yaya et al. (2021), in a Monte Carlo simulation exercise. Third, we
apply the new test to empirically ascertain the stationarity stance of unemployment
rates in selected countries.

Following this introductory section, the theoretical properties of the new fractional
integration approach are given in Sect. 2 and Sect. 3 presents a supporting asymptotic
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theory. Section 4 displays the simulation analysis, while Sect. 5 contains an empirical
application to unemployment rates in selected European countries; finally, the overall
conclusion is given in Sect. 6.

2 A new fractional integration approach

Testing unit roots has become a standard practice in the empirical analysis of eco-
nomic data because econometric analysis of economic time series data tends to rely
on stationary time structures (Box and Jenkins 1976). A prominent seminal paper
by Dickey and Fuller (1979) on Augmented Dickey-Fuller (ADF) unit root test led
to the development of many other unit root tests in the literature over the last thirty
years. These include those of Phillips and Perron (1988), Kwiatkowski et al. (1992),
Elliot et al. (1996), and Ng and Perron (2001), among others. However, it is a famil-
iar stylized fact that most unit root methods have very low power when alternatives
include: structural breaks (Perron 1989; Campbell and Perron 1991), fractional unit
roots (Diebold and Rudebusch 1991; Hassler and Wolters 1994; Lee and Schmidt
1996), regime-switching (Nelson et al. 2001), or more general nonlinear structures
(Enders and Granger 1998).

One way to overcome these limitations is to incorporate nonlinearities in the deter-
ministic components of the auxiliary regressions of the unit root tests, as a proxy
for structural breaks. While fractional integration and structural break are intimately
related and can be likened to nonlinearities in the time series; either nonlinearity or
fractional integration is shown to dominate the other in some cases (van Dijk et al.
2002; Gil-Alana and Yaya 2021); hence, a powerful nonlinear approximator is needed
in this case. Franses and van Dijk (2000) emphasized nonlinear time series models
as more appropriate tools for explaining and predicting economic time series. Several
approaches have attempted to integrate nonlinear dynamics into the unit root testing
framework; these include as such Caner and Hansen (2001), Shin and Lee (2001) and
Kapetanios et al. (2003). In another study, Allen et al. (2016) extended the unit root
tests to nonlinear models for the analysis of exchange rate movements. Furthermore,
Trapletti et al. (2000) introduced the Autoregressive Neural Network (ARNN) pro-
cess, driven by additive noise and demonstrated the behaviour of its stationarity. They
further showed that the nonlinear unit root test examined would be satisfactory if the
activation function of the ARNN is bounded. Earlier, Steurer (1996) demonstrated
empirically that neural networks only work best for stationary data.

The artificial neural network (ANN) is a parametric model’s approximator for other
nonlinear time series models, such as the Threshold Autoregressive (TAR), Smooth
Transition Autoregressive (STAR), Markov Switching (MS), and Bilinear models
(Franses and van Dijk 2000). Thus, it is uncommon to imagine an ANN model as
a Data Generating Process (DGP) of any time-dependent system. Thus, to test for
neural network-type nonlinearity, the ANN serves as a universal nonlinear approx-
imator, as it induces stronger nonlinearities than other extant nonlinear time series
models (Lee et al. 1993).

So far, unit root tests based on ANN nonlinearity are scarce in the literature. A
recent test—the ARNN-ADF unit root test—was proposed by Yaya et al (2021). The
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testing procedure relies on the linear, quadratic, and cubic components of the neural
network process that induce nonlinearity in the ARNN-ADF test. The authors applied
the simplest form of the ANN model in the ARNN-ADF test regression.

In this present paper, we extend the ARNN-ADF unit root test of Yaya et al. (2021)
to a fractional unit root framework by relying on the fact that the classical unit root
tests, as well as other Dickey-Fuller-like tests, have very low power against fractional
unit root alternatives. Thus, the proposed fractional integration test is based on the
fractional integration approach using the ANN framework and a more general test to
the existing ARNN-ADF unit root test. This new fractional integration approach is
based on the following model:

yt �
r∑

p�1

θpF(γ
′
pwt ) + xt , t � 1, 2, . . . , T , (1)

where yt is the time series under investigation, F
(
γ ′
p, wt

)
is the expression for the

ANN nonlinear function in time t, where γp andwt are defined later, θp, p � 1, . . . , r
being the “connector strength” parameters and xt is the fractionally integrated process
which is expressed by:

(1 − L)d xt � ut , t � 1, 2, . . . , T , (2)

where L is the usual lag-operator in the form of Lkxt � Lxt−k for every k lag integer, d
is the fractional integration parameter defined in the interval −0.5 < d < 2 including
themoving average invertibility and nonstationary ranges of time series (Sowell 1992),
and ut is the covariance stationary I(0) process, assumed to be independently and
uniformly dispersed with mean, 0 and variance, σ 2

u . We suppose xt � 0 for t ≤ 0,
following Type II definition of fractional integration as in Marinucci and Robinson
(1999). For the fractional integration parameter, at d � 0 from (2), xt � ut , and at d �
1 and d � 2; we have the respective series differenced-transformations xt −xt−1 � ut
and xt − 2xt−1 + xt−2 � ut . The fractional difference operator (1− L)d is expressed
by the Maclaurin series as:

(1 − L)d �
∞∑

k�o

�(−d + k)

�(−d)�(k + 1)
Lk , (3)

where �(.) is a Gamma function. By putting (3) in (2), ut in (2) can be expressed as:

ut �
∞∑

k�0

�(−d + k)

�(−d)�(k + 1)
xt−k (4)
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The function F
(
γ ′
pwt

)
in (1) is known as the hidden unit of the ANN. This is a

bounded logistic function between 0 and 1, such that:

F
(
γ ′
pwt

)
�
{
1 + exp

(
−γ ′

pwt

)}−1 − 1

2
,

� 1

1 + exp
[(
c1 − γ11yt−1 − γ12yt−2 − ... − γ1p yt−p

)] − 1

2
(5)

where γp � (−c, γ11 , ... , γ1p)′ and (p + 1) × 1 vector of parameters of p hidden
units.

These hidden units are then approximated using third-order Taylor series expansion
on the logistic function as1:

F
(
γ ′
pwt

)
� F

(
γ ′
pw

0
t

)
+

p∑

i�0

∂F
(
γ ′
pw

0
t

)

∂γi
γi +

1

2!

p∑

i�0

p∑

j�0

∂2F
(
γ ′
pw

0
t

)

∂γi∂γ j
γiγ j

+
1

3!

p∑

i�0

p∑

j�0

p∑

l�0

∂3F
(
γ ′
pw

0
t

)

∂γi∂γ j∂γl
γiγ jγl + · · · + Rh

(
γp, wt , w0

t

)
(6)

where Rh
(
γp, wt , w0

t

)
is the remainder of the hth order expansion in the Taylors series

expansion (Rech 2002; Medeiros et al. 2006; Yaya 2013; Yaya et al. 2021), and

F
(
γ ′
pw

0
t

)
� 1

1 + exp(0)
− 1

2
� 0; (7)

∂F
(
γ ′
pwt

)

∂γi
�
{
1 + exp

(
−γ ′

pwt

)}−2
exp

(
−γ ′

pwt

)
wt and for i ≥ 1,

∂F
(
γ ′
pw

0
t

)

∂γi
� 1

4
yt−i ; (8)

∂2F
(
γ ′
pwt

)

∂γi∂γ j
�

[
exp

(
−γ ′

pwt

){
1 + exp

(
−γ ′

pwt

)}2 − 2
{
1 + exp

(
−γ ′

pwt

)}
exp

(
−2γ ′

pwt

)]

{
1 + exp

(
−γ ′

pwt

)}4

�
[
exp

(
−γ ′

pwt

)
− exp

(
−2γ ′

pwt

)]

{
1 + exp

(
−γ ′

pwt

)}3 for i , j ≥ 1,

∂2F
(
γ ′
pw

0
t

)

∂γi∂γ j
� 0; (9)

1 This is necessary because the distribution of parameters of ARNN does not exist, whereas that of the
Taylor polynomial exists.
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∂3F
(
γ ′
pwt

)

∂γi ∂γ j ∂γl
�
{
exp

(
−γ ′

pwt

)
− 2 exp

(
−γ ′

pwt

)}{
1 − 2 exp

(
−γ ′

pwt

)}

{
1 + exp

(−γ ′
pwt

)}4 for i , j , l ≥ 1.

Then,
∂3F

(
γ ′
pw

0
t

)

∂γi ∂γ j ∂γk
� 1

16 yt−i yt− j yt−l and if i , j ≥ 1, and l � 0,

∂3F
(
γ ′
pw

0
t

)

∂γi∂γ j∂γl
� 1

16
yt−i yt− j (10)

Thus, by substituting Eqs. (7)–(10) appropriately in Eq. (6), we obtain the approx-

imated hidden unit of the ANN function F
(
γ ′
pwt

)
which is used to mimic nonlinear

dynamics in f
(
γp, wt

)
in (1). Also, by merging terms of the same orders in Eq. (6)

gives,2

(1 − L)d yt � m0 +
p∑

i�0

mi yt−i +
p∑

i�0

p∑

j�1

mi j yt−i yt− j +
p∑

i�0

p∑

j�i

p∑

l� j

mi jl yt−i yt− j yt−l + ε̃t ,

(11)

where coefficients m0 is the intercept; and mi form the parameters for the linear
logistic component, which further acts as the autoregressive parameters linking yt and
yt−i . In the nonlinear part, mi j is the parameter for the quadratic component, where
yt−i yt− j is the quadratic component; mi jl is the parameter for the cubic component;
and yt−i yt− j yt−l is the cubic component.

About the linearity of the process, the acceptance of the null hypothesis:

H0 :

⎧
⎨

⎩

mi � 0, i � 0, ..., p
mi j � 0, i � 0, ..., p; j � i , ..., p
mi jl � 0, i � 0, ..., p; j � i , ..., p; l � j , ..., p

(12)

implies linearity of the time structure.A suitable F test for linearity against nonlinearity,
is therefore conducted. Note, the standard test may be carried out and the problem
of nuisance parameter θ not being identified under the null hypothesis as noted in
Luukkonen et al. (1988) is solved following Davies (1977).

To estimate the parameters in the model in Eq. (10), one needs to minimize the
errors ε̃t which could be re-written as the linear parameter form,

ε̃t � y∗
t − m̂01

∗
t +

p∑

i�1

m̂i z
∗
t −

p∑

i�0

p∑

j�1

m̂i j zz
∗
t −

p∑

i�0

p∑

j�i

p∑

l� j

m̂i jl zzz
∗
t , (13)

2 This expansion is similar to Volterra functional series or the Kolmogorov-Gabor polynomial (see Priestley
1988). The Kolmogorov-Gabor polynomial can approximate any random series and its estimation follows
adaptive methods or a system of Gaussian normal equations (Allen et al. 2016).
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where y∗
t � (1 − L)do yt : 1∗

t � (1 − L)do 1t : z∗t � (1 − L)d0 yt−i ; zz∗t �
(1 − L)d0 yt−i yt− j and zzz∗t � (1 − L)d0 yt−i yt− j yt−l with the hypothesized value
d � d0. The error process ε̃t is assumed to be I(0).

In the absence of nonlinearity, that is under the acceptance of the nested null hypoth-
esis, testing the ARNN-FI framework in Eq. (11) reduces to the linear specification of
the Robinson fractional integration test for p � 1, and yt−i � t , that is, a time trend
with coefficient β and intercept m0 � α.

(1 − L)d yt � α + βt + ε̃t , (14)

with the error process εt , one can easily estimate the coefficients α and β by the
conventional OLS methods such that,

ε̃t � y∗
t − α̂01

∗
t + β̂t∗t , (15)

and y∗
t � (1 − L)do yt : 1∗

t � (1 − L)do 1t : t∗t � (1 − L)do tt , with the aid
of the complex form of the test statistic,

R̂ � T

σ̂ 4 â
′ Â−1 â , (16)

where T is the sample size, and

â � −2π

T

∗∑

f

ψ(λ f ) gu(λ f ; τ̂ )−1 I (λ f ); σ̂ 2 � σ 2(τ̂ ) � 2π

T

T − 1∑

f � 1

gu (λ f ; τ̂ )−1 I (λ f ),

Â � 2

T

⎧
⎪⎨

⎪⎩

∗∑

f

ψ
(
λ f
)
ψ
(
λ f
)′−

∗∑

f

ψ
(
λ f
)
ξ̂
(
λ f
)′
⎡

⎣
∗∑

f

ξ̂
(
λ f
)
ξ̂
(
λ f
)′
⎤

⎦
−1 ∗∑

f

ξ̂
(
λ f
)
ψ
(
λ f
)′

⎫
⎪⎬

⎪⎭
;

ψ
(
λ f
) � log

∣∣∣∣2 sin
λ f

2

∣∣∣∣; ξ̂
(
λ j
) � ∂

∂τ
log gε

(
λ j ; τ̂

)
,

whereλf � 2π f /T , and * indicates that the sums are taken over all frequencies bounded
in the spectrum, with periodogram I(λj) for ε̃t and τ̂ � arg minτ ∈ T ∗ σ 2(τ ) , (T* is
a subset of the Rq Euclidean space), and f is the frequency of the sine function, and
π � 3.142.

3 Asymptotic theory

This section offers an asymptotic theory for the newly developed statistic or autoregres-
sive neural network–fractional integration (ARNN–FI) statistic. This new statistic is
based on the nested hypothesis by setting the parameter θ to zero. The zero restrictions
would impose on the sequence of scalar real values or xt (Robinson 1994; Gil-Alana
and Robinson 1997):

ϕ(L)xt � ut (17)
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where ϕ is a function of L which is the lag operator, ut is covariance stationary
sequence with zero mean and weak autocorrelation. The lag operator function ϕ could
be expressed as ϕ(z; θ) in which z is variate and θ is a vector of parameter. The value
of xt is set to zero when t � 0. Furthermore, ϕ(z; θ) � ϕ(z) for all z if and only if the
zero restrictions are imposed on the parameter. The simple unit root model could be
described as ϕ(z)xt � (1 − z)xt � ut . By contrast, the simple autoregressive model
could be expressed as ϕ(z; θ)xt � (1 − (1 + θ)z)xt � ut (Robinson 1994).

Using the fractional integration function, Eq. (1) could be re-formulated as (Robin-
son 1994; Gil-Alana and Robinson 1997; Gil-Alana 2000):

(1 − L)d xt � ut (18)

where d is fractional integration parameter which means xt is integrated of order d.
The fractional integration function could be expressed as (Gil-Alana and Robinson
1997; Gil-Alana 2000):

(1 − L)d �
∞∑

j�0

(
d
j

)
(−1) j L j � 1 − dL +

d(d − 1)

2
L2 − d(d − 1)(d − 2)

6
L3 + . . .

(19)

In the fractional integration framework, the unit root hypothesis could be tested
whether the fractional integration parameter is equal to unity (d � 1). If the fractional
integration parameter is greater than zero (d > 0), xt could be considered as the
long memory process in which the autocorrelation would persist for the long run. By
contrast, if the fractional integration parameter is equal to zero (d � 0), xt could be
considered as the short memory process in which the autocorrelation would rapidly
decay (Gil-Alana and Robinson 1997; Gil-Alana 2000).

The main objective of the fractional integration test could be to examine unit root
processes or other forms of non-stationarity. In this context, Equation (2) could be
expressed as (Tanaka 1999; Gil-Alana 2000):

(1 − L)d+θ xt � ut (20)

In this equation, the zero restrictions on the parameter could be expressed as the
following null hypothesis (Diebold and Rudebusch 1989; Robinson 1994; Gil-Alana
and Robinson 1997):

H0 : θ � 0 (21)

This newly developed statistical test uses the Lagrange multiplier (LM) statistic
for the hypothesis testing on the fractional integration by solving zero restrictions on
the parameter as constrained maximization problem. The LM statistic is widely used
because it has a simple null distribution in the analysis of nested parametric hypotheses.
However, in the analysis of unit root process, the LM statistic may have non-standard
null and local asymptotic distribution (Robinson 1994; Davidson and MacKinnon
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2004). Robinson (1994) offered an interesting statistical solution for this non-standard
distribution of fractional integration statistics which are asymptotically locally most
powerful. Under the assumption of the Gaussian distribution of ut , Robinson’s test
statistic could be considered as efficient against other local alternatives in a Pitman
sense (Robinson 1994; Gil-Alana 2000). Our fractional integration test is an extension
of his approach. In the estimation of this new fractional integration statistic, xt could be
non-observable but it could be considered as the error terms in the multiple regression
model (Robinson 1994; Gil-Alana and Robinson 1997):

yt � β ′zt + xt (22)

where yt and k×1 vector zt are observable andβ is k×1 vector of unknown parameters
and k is number of parameters. The parameterβ could be estimated as (Robinson 1994;
Gil-Alana and Robinson 1997):

β̃ �
(

T∑

t�1

wtw
′
t

)−1 T∑

t�1

wt (1 − L)d yt (23)

where wt � (1− L)d Zt and T is number of observations in the time-series. Using the
estimations from the multiple regression model of Eq. (6), ut in Eq. (4) could be also
estimated as (Robinson 1994; Gil-Alana and Robinson 1997):

ũt � (1 − L)d yt − β̃ ′wt (24)

Furthermore, the periodogram of ũt can be expressed as (Geweke and Porter-Hudak
1983; Gil-Alana and Robinson 1997; Hurvich et al. 1998):

I
(
λ j
) �

∣∣∣∣∣
1√
2πT

T∑

t�1

ũt e
iλ j t

∣∣∣∣∣

2

j � 1, 2, . . . , m (25)

whereλ � 2π j/T , andm is a positive integer. Using these estimations, our test statistic
could be expressed as:

R̂N N � T

σ̂ 4 â
′ Â−1â � r̂ ′

NN r̂NN ; r̂N N � T 1/2

σ̂ 2 â′ Â−1/2â (26)

There is a large similarity in the estimation approach between the Robinson’s test
statistic R̂ and our test statistic R̂N N which is based on the autoregressive neural
network (ARNN) process (Yaya et al. 2021). The difference between these two test
statistics essentially lies in the definition of zt . In other words, we propose a new test
statistic bymodifying zt following an example of the Fourier fractional integration test
(Gil-Alana andYaya 2021). In the Robinson’s original test statistics, zt is deterministic
regressors (i.e. zt � (1, t)) and zt is defined as the Fourier function. In the Fourier
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fractional integration, that Eq. (22) could be re-formulated as (Gil-Alana and Yaya
2021):

yt � f (t) + xt (27)

where f (t) is the smooth trend Fourier function. Similarly, in our new fractional
integration test, Eq. (22) could be re-formulated as:

yt � n(t) + xt (28)

where n(t) is the autoregressive neutral network function which is defined as (Yaya
et al. 2021):

n(t) �
p∑

i�1

ki yt−i +
q∑

i�1

q∑

j�i

ki j yt−i yt− j +
r∑

i�1

r∑

j�i

r∑

l� j

ki jl yt−i yt− j yt−l (29)

where ki is coefficient for linear component, ki j is coefficient for quadratic component
and ki jl is coefficient for cubic component, p is lag length for linear component, q
is lag length for quadratic linear component and r is lag length for cubic component
(Yaya et al. 2021).

Theorem 1 Under the null hypothesis defined in (4) and (5) and under the condition:

0 < det(ψ) < ∞ (30)

where det denotes determinant, the ARNN–FI test statistic would converge in distri-
bution:

r̂N N →d N
(
0, Ip

)
as T → ∞ (31)

where Ip is p-lowed identity matrix and p is number of zero restriction (Refer to
Appendix for the proof of this theorem).

4 Monte Carlo simulation analysis

In this section, the Monte Carlo simulation is used to examine the finite-sample
behaviour of three different fractional integration tests, namely the Robinson test
(Robinson 1994), the Alana-Yaya (AY) test (Gil-Alana and Yaya 2021), and the pro-
posed autoregressive neural network-fractional integration (ARNN-FI) test. Firstly,
a simple version of the Robinson test (Robinson 1994) is based on the following
equation:

yt � μ + βt + xt ; (1 − L)d xt � εt , (32)
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where d is the fractional integration parameter, μ is the intercept, t is the trend, β is
the gradient (slope) parameter and εt is the white noise. In this simulation analysis, the
gradient parameter (β) is set to unity. Secondly, the Alana-Yaya (AY) test (Gil-Alana
and Yaya 2021) is based on equation:

yt � μ + βt + γ1 sin

(
2π f t

T

)
+ γ2 cos

(
2π f t

T

)
+ xt ; (1 − L)d xt � εt , (33)

where sin is a sine function, cos is a cosine function and γ is the slope parameter for
the trigonometry function which is set to unity in this simulation. The ARNN-FI test
is based on the new multilayer perceptron framework with time trend, t suggested in
Yaya et al. (2021):

(34)

yt � μ + βt +
r∑

i�1

mi yt−i +
s∑

i�1

s∑

j�i

mi j yt−i yt− j

+
v∑

i�1

v∑

j�i

v∑

l� j

mi jl yt−i yt− j yt−l + xt ; (1 − L)d xt � εt .

In this simulation analysis, the lag of the linear component (r) is set to zero and the
lag of the quadratic component (s) and the cubic component (v) is set to 1. The null
hypothesis in this Monte Carlo simulation could be formulated as:

d � d0, (35)

For the size and power analysis, the null hypothesis is rejected when the absolute
value of estimated statistics is greater than the 5% critical value. In this Monte Carlo
simulation, five alternative values of fractional integration parameters are used:

d � d0 − 1, d0 − 0.75, d0 − 0.5, d0 − 0.25, d0, d0 + 0.25, d0 + 0.50

with four alternative values: d0 � 0, 0.25, 0.75, 1. This simulation study uses 1,000
replications with five different sample sizes, T � 50, T � 100, T � 250, T �
500andT � 1000.

Table 2 reports the simulation results from the Robinson test (Robinson 1994). As
the simulation analysis indicated, there would be some power and size distortions in
the Robinson test when the number of observations is small (T � 50or T � 100). For
example, at the lowest number of observations (T � 50), the power of the Robinson
test would be 0.270 when d0 � 0 and d � −0.25, and the size of the test is 0.206
when both d0 and d is equal to zero. As the number of observations increases to 500
or 1000, these distortions tend to disappear in the Robinson test. For example, as the
number of observations becomes 1000, the power of the test would converge to 1.000
when d0 � 0 and d � −0.25 and the size of the test would decrease to 0.115 when
both d0 and d are set to 0.
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Table 2 Statistical power and size of the Robinson test

d0 � 0

T d � −1 d �
−0.75

d � −0.5 d �
−0.25

d � 0 d � 0.25 d �
0.5

T � 50 0.997 0.963 0.772 0.270 0.206 0.734 0.978

T � 100 1.000 1.000 0.990 0.670 0.167 0.921 1.000

T � 250 1.000 1.000 1.000 0.970 0.127 1.000 1.000

T � 500 1.000 1.000 1.000 1.000 0.120 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.115 1.000 1.000

d0 � 0.25

T d �
−0.75

d � −0.5 d �
−0.25

d � 0 d � 0.25 d � 0.5 d �
0.75

T � 50 0.996 0.967 0.753 0.332 0.196 0.724 0.974

T � 100 1.000 1.000 0.990 0.666 0.182 0.897 1.000

T � 250 1.000 1.000 1.000 0.978 0.127 1.000 1.000

T � 500 1.000 1.000 1.000 1.000 0.106 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.119 1.000 1.000

d0 � 0.75

T d �
−0.25

d � 0 d � 0.25 d � 0.5 d � 0.75 d � 1 d �
1.25

T � 50 0.999 0.981 0.818 0.379 0.166 0.664 0.975

T � 100 1.000 0.863 0.818 0.727 0.125 0.885 0.999

T � 250 1.000 1.000 1.000 0.994 0.120 0.998 1.000

T � 500 1.000 1.000 1.000 1.000 0.105 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.097 1.000 1.000

d0 � 1

T d � 0 d � 0.25 d � 0.5 d � 0.75 d � 1 d � 1.25 d �
1.5

T � 50 1.000 0.981 0.866 0.448 0.143 0.652 0.968

T � 100 1.000 1.000 0.998 0.776 0.149 0.893 1.000

T � 250 1.000 1.000 1.000 0.986 0.098 0.999 1.000

T � 500 1.000 1.000 1.000 1.000 0.121 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.099 1.000 1.000

The size of the test is in bold
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The simulation results from the Alana-Yaya (AY) test (Gil-Alana and Yaya 2021)
are reported in Table 3. In comparisonwith the Robinson test, there would be relatively
stronger power and size distortions in the AY test when the number of observations is
small (T � 50orT � 100). For example, in T � 100, the power of the AY test would
be 0.390 and the power of the Robinson test is 0.727, when d0 � 0.75 and d � 0.5.
In the same number of observations, the size of the AY test is 0.218 and the size of
the Robinson test is 0.125, when both d0 and d is equal to 0.75. As the number of
observations increases to 500 or 1000, these distortions tend to slowly disappear in the
AY test. For example, at T � 500, the size of the AY test would be still 0.162 when
d0 � 0 and d � 0. At the highest number of observations T � 1000, the size of the
AY test would decrease to 0.121 when both d0 and d are set to zero.

More importantly, Table 4 reports the simulation results from the autoregressive
neural network-fractional integration (ARNN-FI) test. In comparison with the Robin-
son test or the Alana-Yaya (AY) test, there would be a lower size in the ARNN-FI
test. For example, in the T � 500, the size of the Robinson test is 0.106, the size
of the AY test is 0.147 and the size of the ARNN-FI test is 0.041 when both d0 and
d is set to 0.25. It means that the ARNN-FI test would have a relatively lower prob-
ability to reject incorrectly the true hypothesis. On the other hand, there would be a
relatively higher power and size distortions in the ARNN-FI test when the number of
observations is small. For example, with T � 100, for d0 � 0.25 and d � −0.25,
the power of the ARNN-FI test is 0.614, the power of the Robinson test is 0.990 and
the power of the AY test is 0.925. As the number of observations increases, these
distortions tend to disappear in this test. For example, at the number of observations
is 1000, the power of the ARNN-FI test would be equal to 1.000 when d0 � 0.25
and d � −0.25. The fact that the ARNN-FI simulation results indicate higher power
when the number of observations is small compared to large number of time series
observations further emphasized the applicability of ARNN to modelling unit root
processes of unemployment data that are often with few observations.

5 Empirical application

We examine the hysteresis in monthly unemployment rates (1978M1–2020M12) in
three European countries, namely France (FR), Germany (DE) and the United King-
dom (UK) as well as two non-European countries are included for comparison, namely
the United States (US) and Japan (JP). The total number of observations was 540. The
source of data was the S&P Capital IQ (S&P Global 2023). Three fractional inte-
gration tests, namely, the Robinson test (Robinson 1994), the Alana-Yaya (AY) test
(Gil-Alana and Yaya 2021), and the autoregressive neural network-fractional integra-
tion (ARNN–FI) test, are used for the empirical analysis.

Firstly, the Robinson test (Robinson 1994) is based on Eq. (17). As Table 5 shows,
the Robinson test indicates that the unemployment rates in three European countries,
namely France, Germany and United Kingdom, are non-stationary and non-mean-
reverting in line with the hysteresis hypothesis. It means that the findings from the
Robinson test confirmed those from the seminal paper by Blanchard and Summers
(1986a,b). On the other hand, the Robinson test failed to offer unambiguous results
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Table 3 Statistical power and size of the Gil-Alana-Yaya test

d0 � 0

T d � −1 d �
−0.75

d � −0.5 d �
−0.25

d � 0 d � 0.25 d �
0.5

T � 50 0.919 0.675 0.325 0.120 0.374 0.818 0.984

T � 100 1.000 0.998 0.923 0.363 0.289 0.940 1.000

T � 250 1.000 1.000 1.000 0.936 0.183 1.000 1.000

T � 500 1.000 1.000 1.000 1.000 0.162 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.121 1.000 1.000

d0 � 0.25

T d �
−0.75

d � −0.5 d �
−0.25

d � 0 d � 0.25 d � 0.5 d �
0.75

T � 50 0.906 0.679 0.329 0.109 0.343 0.815 0.980

T � 100 1.000 0.989 0.925 0.337 0.276 0.936 0.989

T � 250 1.000 1.000 1.000 0.941 0.198 0.899 1.000

T � 500 1.000 1.000 1.000 1.000 0.147 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.121 1.000 1.000

d0 � 0.75

T d �
−0.25

d � 0 d � 0.25 d � 0.5 d � 0.75 d � 1 d �
1.25

T � 50 0.838 0.729 0.346 0.113 0.316 0.813 0.980

T � 100 1.000 1.000 0.947 0.390 0.218 0.933 0.999

T � 250 1.000 1.000 1.000 0.957 0.155 1.000 1.000

T � 500 1.000 1.000 1.000 1.000 0.168 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.127 1.000 1.000

d0 � 1

T d � 0 d � 0.25 d � 0.5 d � 0.75 d � 1 d � 1.25 d �
1.5

T � 50 0.932 0.752 0.482 0.132 0.302 0.814 0.977

T � 100 1.000 1.000 0.945 0.422 0.212 0.935 1.000

T � 250 1.000 1.000 1.000 0.965 0.168 1.000 1.000

T � 500 1.000 1.000 1.000 1.000 0.180 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.121 1.000 1.000

The size of the test is in bold
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Table 4 Statistical power and size of autoregressive neural network-fractional integration test

d0 � 0

T d � −1 d �
−0.75

d � −0.5 d �
−0.25

d � 0 d � 0.25 d �
0.5

T � 50 0.691 0.395 0.147 0.037 0.082 0.289 0.700

T � 100 0.990 0.931 0.661 0.190 0.046 0.544 0.776

T � 250 1.000 0.999 0.994 0.714 0.045 0.932 0.959

T � 500 1.000 1.000 1.000 0.986 0.046 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.041 1.000 1.000

d0 � 0.25

T d �
−0.75

d � −0.5 d �
−0.25

d � 0 d � 0.25 d � 0.5 d �
0.75

T � 50 0.565 0.331 0.133 0.059 0.050 0.309 0.725

T � 100 0.924 0.885 0.614 0.217 0.052 0.568 0.980

T � 250 1.000 1.000 0.997 0.748 0.064 0.965 1.000

T � 500 1.000 1.000 1.000 0.988 0.041 1.000 1.000

T �
1000

1.000 1.000 1.000 1.000 0.048 1.000 1.000

d0 � 0.75

T d �
−0.25

d � 0 d � 0.25 d � 0.5 d � 0.75 d � 1 d �
1.25

T � 50 0.550 0.432 0.261 0.100 0.053 0.274 0.748

T � 100 0.843 0.753 0.631 0.314 0.039 0.569 0.973

T � 250 0.976 0.888 0.857 0.738 0.041 0.940 1.000

T � 500 0.992 0.957 0.942 0.943 0.053 1.000 1.000

T �
1000

1.000 0.990 0.982 0.997 0.053 1.000 1.000

d0 � 1

T d � 0 d � 0.25 d � 0.5 d � 0.75 d � 1 d � 1.25 d �
1.5

T � 50 0.550 0.398 0.266 0.105 0.038 0.280 0.692

T � 100 0.820 0.647 0.515 0.287 0.046 0.474 0.959

T � 250 0.980 0.872 0.766 0.649 0.043 0.835 1.000

T � 500 0.999 0.954 0.916 0.907 0.035 0.998 1.000

T �
1000

1.000 0.992 0.992 0.997 0.030 1.000 1.000

The size of the test is in bold
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on unemployment status in the USA because its 95% confidence interval was in the
range of [0.90–1.44]. By contrast, the findings from the Robinson test indicated that
the unemployment rate in Japan is non-stationary but mean-reverting in line with the
persistence hypothesis.

Secondly, theAlana-Yaya (AY) test (Gil-Alana andYaya 2021) is based onEq. (18).
The methodological advantage of this test would be able to take account of unknown
nonlinearity by using the Fourier approximation function. As Table 6 shows, the find-
ings from the AY test confirmed those from the Robinson test that the unemployment
rates in the three European countries are non-stationary and non-mean-reverting in
line with the hysteresis hypothesis. On the other hand, the AY test also failed to
produce clear-cut results on unemployment rates in the USA. However, the findings
from the AY test showed that the unemployment rate in Japan is non-stationary but
mean-reverting.

Finally, the ARNN-FI test would incorporate a new multilayer perceptron (Yaya
et al. 2021) into the context of fractional integration analysis. The test is based on
Eq. (19). As Table 7 shows, three different fractional unit root tests, namely the
Robinson test, the AY test and the ARNN-FI test, produced consistent findings on
the unemployment rate in three European countries to support empirically the validity
of the hysteresis hypothesis. On the other hand, the ARNN-FI test produced unam-
biguous findings on unemployment rates in the USA to substantiate the hysteresis
hypothesis. The findings from the ARNN-FI test indicated that unemployment rates
in Japan are non-stationary but mean-reverting.

In short, the main objective of the empirical analysis in this section is to employ
the ARNN–FI test to revisit and re-examine a unique pattern of unemployment or
unemployment hysteresis in the European labour market (Blanchard and Summers
1986b). In the context of the existing literature, the findings from the ARNN–FI test
have largely confirmed the results from the earlier country-specific time series analyses
that reported the presence of hysteresis in the unemployment rates in three European
countries, namely, France, Germany and the UK (Blanchard and Summers 1986b;
Mitchell 1993; Røed 1996; Camarero et al. 2005; Chang 2011). However, the findings
from the ARNN–FI test contradict a recent study by Cheng (2022) that detected
the natural rate of unemployment in France. This minor discrepancy in the results
could be due to the differences in the methods. Cheng (2022) employed the threshold
regression method which takes account of the change of the slope coefficients within
the different regimes in the unemployment time series. In contrast, the ARNN–FI test
does not incorporate the threshold effect in the estimation.

6 Conclusions

This paper proposed the autoregressive neural network-fractional integration (ARN-
N–FI) test which is a nonlinear fractional integration time series test based on a new
multilayer perceptron framework. The methodological advantage of this multilayer
perceptron framework is that its estimation model includes a hidden layer that is
expected to capture a latent structure in time-series data as in Yaya et al. (2021). The
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theoretical properties and the asymptotic theory of the new fractional integration test
are presented in the paper.

In the simulation exercise, the Monte-Carlo analysis examined the size and power
of three alternative fractional integration tests; namely, the Robinson test, the AY test
and a newly-proposed proposed ARNN–FI test. The simulation analysis showed that
therewere power and size distortions in all threemethodswhen the number of observa-
tions was small. However, as the number of observations increased, these distortions
tended to disappear in all three methods. As an empirical application example, the
three fractional integration tests examined unemployment hysteresis in three Euro-
pean countries, namely France, Germany and United Kingdom. The findings from
the ARNN–FI test are consistent with those from the Robinson test and the AY test
and indicated that unemployment in these European countries was non-stationary and
non-mean-reverting in line with the hysteresis hypothesis.

The empirical findings reported in this article have theoretical and policy impli-
cations. From a theoretical perspective, the current findings have substantiated the
hysteresis hypothesis proposed by Blanchard and Summers (1986a). In other words,
this study offers additional empirical evidence that contradicts the mainstream the-
oretical perspective on unemployment dynamics or the natural rate hypothesis that
assumes the mean-reversion of unemployment rates. In this context, a notable policy
implication is that a high unemployment rate in the European labour market would not
revert to a lower level without appropriate labour market interventions. In other words,
policymakers in three European countries, namely, France, Germany and theUK, need
to hammer out policies aimed at reducing the persistently high unemployment in the
labour market.

There are some potential weaknesses in the ARNN–FI test. As mentioned in the
previous section, this new fractional integration test does not take account of the
regime change or structural break. In this context, Gil-Alana (2008) proposed an inno-
vative method to incorporate structural breaks in the fractional integration framework.
Researchers may consider re-formulating the ARNN–FI test by adopting this pioneer-
ing idea. Another possible weakness is that the newly proposed test is based on the
linear regression analysis. Future lines of researchwithin themethodologyof fractional
integration might include the analysis of nonlinearities using stochastic approaches
rather than deterministic ones. An earlier study by Caporale and Gil-Alana (2007)
offered some examples of such approaches.
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Appendix

The proof for Theorem 1
The autoregressive neural network–fractional integration (ARNN–FI) statistic is

an extension of Robinson’s fractional integration framework (Robinson 1994) to the
neural network setting. The test statistic could be formulated as:

r̂N N �
√
T

σ̂ 2

â ′̂a√
Â

(A1)

where T is number of observations. The sample variance of residuals from Equation
(11) could be expressed as (Gil-Alana 1997):

σ̂ 2 � 1

T

∑T

t�1
û2t (A2)

Using the Chebyshev’s Inequality, under assumption of stationary martingale dif-
ference process of ut , Theorem 1 in Robinson (1994) ensures that sample variance
converge in probability to the variance of probability density function or σ 2 (Robinson
1994; Tanaka 1999):

lim
n→∞Prob(

∣∣∣̂σ 2 − σ 2
∣∣∣ > ε) � 0, (A3)

where ε is any positive number. Under the assumption of white noise process of ut ,
the information matrix Â in Equation (A1) could be expressed as (Robinson 1994):

Â � 2

T

∑T−1

j�1
ψ(λ j )ψ ′(λ j ) (A4)

Under the assumption of differential ϕ(z; θ) in θ on a neighbourhood of θ � 0 and
white noise process of ut ,ψ(λ) be expressed as (Robinson 1991, 1994; Tanaka 1999):

ψ(λ) � Re

∣∣∣∣
∂

∂θ
logϕ(z; θ )

∣∣∣∣ � −log
∣∣∣1 − eiλ

∣∣∣
2 � −2log

(
2sin

λ

2

)
(A5)

where ε is any positive number and Re stands for real. The Euclidean norm of ψ(λ)

has finite number of poles ρl , l � 1, 2 . . . .r and r is number of poles and the function
is monotonically increasing function and the disjoin intervals Sl , l � 1, 2 . . . .r . The
supremum in this function could be expressed as:

sup
λ∈Sk−(ρk−σ , ρk−σ)

(
|λ − ρk |ψ(λ) − ψ

(
λ ± 1

2
σ

))
� O

(
ση
)
as σ → ∞ (A6)

where η is a real number which is greater than 0.5, k � 1, 2 . . . . . . ..r and · donates
Euclidean norm. Equation (A6) ensures a crucial condition for this test statistic which
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is expressed as Eq. (13). The sampling error for a in Equation (A1) could be expressed
as:

a − ã � 2π

T

T∑

j−1

(
β − β̃

)′
I (λ)

(
β − β̃

)
− 2re

∣∣∣∣
(
β − β̃

)′
I (λ)

∣∣∣∣ (A7)

Furthermore, the Ergodic Theorem andmartingale difference sequence assumption

ensure that plim
T→∞

(
β − β̃

)
� 0 which implies:

a − ã � op

(
1√
T

)
. (A8)

Under the assumptions of Equation (13) and Equation (A8), the Theorem 2.1 and
Theorem 2.2 in the neural network framework (Yaya et al. 2021) and the martingale
difference central limit theorem (Brown 1971) ensure:

r̂N N →d N
(
0, Ip

)
as T → ∞. (A9)
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