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A B S T R A C T   

Layer-by-layer (LbL) assembly has revolutionized the field of biomedical engineering by enabling the precise 
design and fabrication of thin multilayer films with diverse functionalities. This article provides a comprehensive 
review of the applications of LbL assembly in drug delivery, antimicrobial action, wound healing, and tissue 
engineering. The LbL technique involves the sequential adsorption of oppositely charged materials onto a sub-
strate, facilitating the incorporation of different chemical species through electrostatic interactions and other 
driving forces. This approach offers remarkable control over film properties such as porosity, mass, and thick-
ness, and provides the flexibility to incorporate multiple components within the film structure. In drug delivery 
applications, LbL-produced films have demonstrated exceptional potential for controlled and sustained release of 
therapeutic agents, minimizing dosing frequency and improving patient compliance. Studies successfully report 
incorporated antimicrobials, anticancer agents and growth factors into LbL assemblies, demonstrating their 
effectiveness in targeted drug delivery and combating microbial infections. In addition, LBL assembly has 
emerged as a promising approach for wound healing strategies. By incorporating bioactive molecules and growth 
factors, these films promote tissue regeneration, angiogenesis and accelerated wound closure, thereby improving 
the overall wound healing process. In the field of tissue engineering, LbL-produced films provide a versatile 
platform for constructing bioactive structures that mimic the extracellular matrix and support cell attachment, 
proliferation, and differentiation. This versatile approach has significant implications for the development of 
tissue substitutes and regenerative therapies. This review also emphasizes the influence of LbL assembly methods 
on film properties, including thickness and porosity, and highlights the effect of various parameters such as pH, 
solvent, ionic strength, and temperature on film formation.   
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1. Introduction 

Drug delivery systems (DDS) are a useful tool in the pharmaceutical 
approach to controlling drug bioavailability. It allows the drug con-
centration profile to remain constant within the therapeutic index and 
reduces adverse side effects, which is convenient for the patient and 
therapeutic success [1–3]. The combination of dosage form and route of 
administration knowledge must therefore be carefully evaluated in DDS. 
The former refers to the technology used to deliver the drug into the 
body, such as tablets, nanoparticles, microparticles and microneedles, 
among others, which, depending on the route of administration, are 
used as oral, nasal, topical, transdermal, rectal, vaginal, parenteral, or 
ocular. This ensures maximum efficacy, safety, and reliability of the 
drug [4–6]. 

Layer-by-layer (LbL) deposition technology has enormous potential 
for use in DDS [7–9]. The first paper on LbL was published by Iler (1966) 
who demonstrated the technique of constructing LbL films deposited on 
the glass surface using silica and alumina to obtain uniform thickness 
films [10]. However, it was not until 1991 that Decher & Hong produced 
several alternative multilayer arrays achieving a thickness of 170 nm 
[11]. Since then, it has become a versatile, simple, and inexpensive 
technique. The thin layers are built up by polymer bonds based on hy-
drophilicity, van der Waals forces, hydrogen bonding, covalent bonding, 
host-guest and bispecific interactions [12]. LbL assembly has been used 
to coat organic and inorganic materials such as nano- and microparti-
cles, multilayers, stents, nanotubes, graphene, DNA, and proteins. 
Several techniques are described in the literature and the most common 
are dipping, spraying and spin coating for drug delivery systems [13]. 
The advantages of this technique are the avoidance of organic solvents, 
drastic temperatures and the possibility of a range of pH values and ionic 
forces to stabilise the formulation [14]. 

LbL is also referred to collectively as ‘multilayer’, ‘biomaterial’, 
‘film’, ‘assembly’ and ‘membrane’, and demonstrates these properties 
with applications in various types of materials such as pharmaceutical, 
electrotonic and environmental. The aim of this review is to focus on LbL 
for tissue engineering, wound healing, antimicrobial and anti-cancer 
applications, among others. LbL allows the loading of chemical and 
biological molecules to promote controlled and sustained drug release. 

To understand the literature profile, the papers published in the last 
10 years were examined. The research was limited to papers published 
in English and covering the period 2012–2022. The study was conducted 
with LbL AND drug delivery*, LbL AND multilayer*, and LbL AND as-
sembly, LbL AND film, LbL AND membrane. Fig. 1 shows the number of 
scientific articles published using Pubmed Medline data (https://www. 

ncbi.nlm.nih.gov/pubmed/). It was observed that the number of articles 
published on LbL in the pharmaceutical field has remained stable in 
recent years. 

The number of papers maintained in all the terms studied provides 
information that is an understudied topic compared to other DDSs. Ac-
cording to the research, the use of the word “LbL” is higher due to 
several applications in other areas that are not the focus of this research. 
In order to analyse the inclusion of the terms “membrane”, “multilayer” 
and “film”, a much smaller number of papers was observed. It empha-
sizes that this methodology is new and still has the potential to be 
explored. In addition, when looking at the papers, the authors do not 
show a consensus regarding the terms and the characteristics of each 
area of application of the LbL technique. In addition, a search was car-
ried out in Scopus (https://www.scopus.com) from 2012 to 2022, using 
the keywords mentioned above. LbL AND drug delivery*, LbL AND 
multilayer* and LbL AND assembly, LbL AND film, LbL AND membrane 
yielded 687, 1,363, 2,848, 2,367, and 894 papers, respectively. The 
number of papers was slightly higher compared to the previously eval-
uated platform. 

The VOSviewer software version 1.6.16 [15] was used for data 
analysis to examine a bibliometric map of this study in the world using 
the Scopus database. The combined searched terms were “layer-by--
layer” and “drug delivery” AND “assembly” or “multilayer” or “mem-
brane” or “film” of extracted documents as the abstract and keywords. A 
total of 3399 papers were found since 2022 and the resulting map is 
shown in Fig. 2. The map highlights the terms “tissue engineering”, 
“biocompatibility” and “controlled drug delivery” as the central con-
cepts of all the relationships identified. VOSviewer organised the map 
elements into five clusters. The largest (red) cluster includes terms 
related to hydrogels, biocompatibility, nanofibers, biodegradable poly-
mers, chemistry, morphology and controlled drug delivery. The green 
cluster relates to topics of drug formulation, in vivo studies and human 
studies. The blue cluster relates to non-human studies and unclassified 
drugs. The yellow cluster refers to tissue engineering and scaffolds, and 
the smallest cluster (purple) depicts the only item about drug-delivery 
systems. 

In this paper, our objective is to review the state of the art of LbL 
multilayer films-composed drug delivery systems, including the prop-
erties of materials and potential controlled release profile. 

2. Layer-by-layer multilayer film 

LbL multilayer films involve the development of ultra-thin struc-
tures. LbL assembly requires the alternating adsorption of materials onto 

Fig. 1. Scientific papers indexed in the Pubmed Medline database, published yearly since 2012 until August 7th, 2023.  

V.L.S. dos Santos et al.                                                                                                                                                                                                                        

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.scopus.com


Journal of Drug Delivery Science and Technology 91 (2024) 105243

3

the substrate surface. The layers must consist of chemical species that 
allow the formation of intermolecular interactions, such as electrostatic 
(Fig. 3). In addition, other driving forces enable LbL formation, such as 
hydrogen bonding, covalent bonding, hydrophobic, van der Waals, host- 
guest and bio-specific interactions [16–18]. 

LbL assembly is a versatile, simple, economical technique that allows 
the control of porosity, mass and thickness, in addition to being envi-
ronmentally friendly [19–21]. This method has numerous advantages, 
being compatible for large-scale production, and allowing the incorpo-
ration of several components. Thus, potentially obtaining an effective, 
functional, and intelligent system [20,21]. 

LBL technology has been widely applied in several areas, such as 
pharmaceutical and biomedical areas [22], in the production of drug 
delivery systems [23], production of biosensors [24], tissue engineering 
[25], as dressings [26], cell regeneration [27], and self-repairing ma-
terials [28]. 

LbL assembly methods are extremely important as they determine 
the characteristics of the process, namely: manual intervention, scal-
ability, and time. In addition, these methods also influence the physi-
cochemical properties of the films, such as thickness, interactivity, and 
homogeneity. These properties directly affect the performance of the 
product and make it application specific [29]. 

Other factors that can affect film properties, particularly thickness 
and porosity, are pH, solvent, polyelectrolyte concentration, ionic 
strength, and temperature [14,30,31]. It has been observed that there is 
a direct relationship between ionic strength and pH with the thickness of 
the films, and as the variables increase, so does the thickness of the film 
[32]. With regard to temperature, it is noted that this factor is critical to 

the solubility of the materials used to make the films [30,31]. 
Of the existing methods for producing films, the LbL method is 

considered to be the most suitable for the production of drug release 
films [33–35]. This is due to the controlled release of the drug, the lack 
of a requirement for high temperature and/or pressure, and the lack of 
restrictions on the size or shape of the substrate [16,36]. In addition, this 
method allows the manufacturer to modulate the properties of the films, 
allowing the development of films with two layers, one mucoadhesive 
and the other capable of controlling the release of the drug [34,37,38]. 

A number of materials can be used in the manufacturing of films. The 
most widely used are polyelectrolytes, including synthetic polymers 
such as poly-L-lysine, poly(sodium 4-styrenesulfonate), poly(acrylic 
acid), polyethyleneimine, poly(diallyl dimethyl ammonium chloride) 
and natural-based polymers such as chitosan, hyaluronic acid, and 
alginate [17,39]. Some uses of these polymers for the production of the 
films can be seen in Table 1. 

In this way, LbL demonstrates its wide applicability and production 
forms, thanks to its ability to formulate with different types of materials, 
whether polymeric or not, thus confirming its specificity in the formu-
lation of new nanocomposites; such as: carbon nanotubes and nano-
particles [40], liposomes [41], proteins [42], and deoxyribonucleic acid 
(DNA) [43]. 

3. Production methods 

3.1. Dipping 

Dipping stands out for its advantages such as cost effectiveness and 

Fig. 2. Bibliometric map of published works from 2022, obtained using VOSviewer software version 1.6.16 [15], searching [“layer-by-layer” and “drug delivery”] 
AND [“assembly” or “multilayer” or “membrane” or “film”] as the combined keywords, recorded from the Scopus database (August 7th, 2023). 
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scalability for mass production [62,63]. However, this method is time 
consuming compared to others and has as a manufacturing conditions 
the immersion time, the number of assembly cycles, and the speed of 
immersion and extraction [62–64]. 

The preparation of films by this method requires the use of a poly-
anion, a polycation and a substrate with ionic charges on the surface. In 
this method, the substrate is immersed in a solution of polyelectrolytes 
with opposite charges to those present on the substrate. After adsorption 
of the first layer, the substrate is washed to remove excess poly-
electrolyte and to avoid cross-contamination. The substrate is then 
immersed in the second polyelectrolyte solution and washed. This 
deposition cycle is repeated until the desired number of layers is ach-
ieved [64,65]. 

Given the advantages of this method, coupled with the analysis of 
studies on LbL confirms that this methodology is commonly used. As in 
the work of Neto et al.. (2021), where films of chitosan, hyaluronic acid, 
and Rose Bengal were prepared to evaluate the antimicrobial capacity 
and drug delivery properties. The pH of the polyelectrolyte solutions and 
the degree of deacetylation of chitosan were adjusted. Effective films 
were obtained against Escherichia coli (pH 4.5) and showed controlled 
release of Rose Bengal (pH 7.2) [48]. 

Other works have demonstrated the application of controlled release 
by this method utilizing a film with montmorillonite, poly-L-lysine, and 
vancomycin for the treatment of bone infections. The developed films 
showed drug release, biocompatibility, and high bactericidal activity 
against Staphylococcus aureus demonstrating its effectiveness and effi-
ciency for several functionalities [49]. 

3.2. Spraying 

The spray LbL method consists of alternating or simultaneous 
spraying of oppositely charged polyelectrolyte aqueous solutions onto a 
substrate in a vertical position [66,67]. This method was introduced by 
Schelenoff, Dubas, and Farhat (2000), who fabricated films with poly 

(styrenesulfonate) and poly(diallyldimethylammonium chloride) by 
dipping or spraying for comparison [68]. 

Spray deposition of LbL is a simple, effective, versatile, economical, 
and rapid technique compared to traditional techniques such as dipping 
[66,69]. This method has the ability to overcome practical limitations of 
the dipping method, such as long times for complete adsorption of the 
film and the ability to coat small areas [70]. 

It has also been observed that the films produced by this technique 
have smoother characteristics and thicknesses, generally 50 %–70 % of 
those obtained by dipping [71]. In addition, a different molecular ar-
chitecture is observed compared to the dipping method, which makes it 
necessary to carry out surface morphology characterisations and study 
the possible applications of the films [67,70]. 

When analyzing the studies using the spray LbL method, the work of 
Criado et al.. (2017) described the development of films using alginate, 
chitosan, and iron oxide nanoparticles. The authors observed that the 
cross-linked alginate and chitosan films showed a reduction in rough-
ness and an increase in Young’s modulus. However, when compared to 
films with alginate, chitosan and nanoparticles, an increase in roughness 
and elastic modulus was observed, as well as an increase in the adhesion 
values of the films [72]. 

In another study, coatings were prepared with polyethyleneimine 
and tannic acid complexed with iron ions, which showed antibacterial 
activity and contact killing of E. coli. Coatings incorporating silver 
nanoparticles were also prepared and showed enhanced antibacterial 
activity. In summary, the spray LbL method was found to be effective, 
rapid, and of high industrial viability [52]. 

3.3. Spin 

The spin LbL method is a process in which a substrate is mounted on 
a rotating support at a constant speed and the material is added by 
dripping, which spreads out due to centrifugal force. Another method is 
to drop the solution onto the substrate and then rotate it. Whatever the 

Fig. 3. LbL assembly process by alternating adsorption of materials through electrostatic interactions for drug incorporation.  
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method, the multilayers are formed by alternating solution addition, 
drying, and washing [73]. 

This method has the advantage of fast production, more uniformity, 
stratified, organised, and thinner layers due to greater control of the 
thickness by changing the speed of the carrier and the concentration of 
the solution. In addition, when using this technique for small molecules, 
a greater influence on the morphology of the film has been demon-
strated, as this presents greater mobility compared to larger molecules 
[74,75]. 

However, this method has disadvantages when high ionic strengths 
of polymer solutions are used in combination with low rotation speeds, 
causing the solution to be thicker at the point of application than at the 
edges. In addition, this technique does not work very well on irregular 
surfaces, as the distribution of the solution is impaired [29]. 

Considering the advantages presented, the spin LbL method is widely 
used in works such as that of Stana et al.. (2017), in which N, N, N-tri-
methylchitosan and alginic acid nanofilms were prepared to obtain a 
uniform encapsulation with better control of the release of pentoxifyl-
line, an anti-inflammatory drug used in the treatment of chronic venous 
ulcer. The films produced have been shown to have two positive phar-
macotherapeutic effects: a contribution to wound healing and a reduc-
tion in local inflammation [76]. 

In addition to this study, the work of Lai and co-workers (2018) used 
the spin method to fabricate films with chitosan, gelatin, and simva-
statin incorporated onto a titanium substrate. The aim of the study was 

to realize the controlled release of simvastatin for the stimulation of 
bone formation. The results showed that the resulting film promoted 
osteoblastic differentiation and inhibited osteoclast formation to combat 
osteoporosis. In addition, the titanium substrate improved the biocom-
patibility of the film and provided cell adhesion [77]. 

3.4. Brushing 

The LbLmethod by brushing is a technique in which a substrate is 
fixed to a support wall where it is brushed with a polyelectrolyte solu-
tion and then washed to form the layers [36]. This method has the 
advantage of speeding up film production, reducing raw material waste, 
and being a more dynamic process than static dipping [78]. 

The brushing LbL method is a method that is rarely found in pub-
lished studies compared to the other aforementioned techniques. Among 
the existing studies is that of Iqbal et al.. (2022) [79], who used brushing 
to produce tannic acid and collagen nanofilms for the development of 
human muscle fibers. This method is relatively versatile and simple, 
being able to produce fibers at acidic pH with surfaces with aligned 
topography. 

Furthermore, Li et al.. (2021) [78] used the brushing method to 
prepare membranes using poly(allylamine hydrochloride), sodium 
lignin sulphonates, and glutaraldehyde. In the study, the membrane 
showed satisfactory separation performance for trivalent and tetravalent 
anionic salts and exhibited stability in separation performance. It was 

Table 1 
Refers to the most frequent use of polyelectrolytes for film production by LbL.  

Drug Polymer Methodology Application References 

Bone morphogenetic protein 2 Poly(β-amino ester), Dextran Sulphate, Chitosans Dipping Bone regeneration [42] 
Methylene blue polyethyleneimine (PEI)-grafted chitosan, polyacrylic acid Dipping Drug-delivery [44] 
Fibroblast growth factor 2 Chitosans; Alginate Dipping Future wound dressing [45] 
5-fluorouracil or moxifloxacin 

HCl 
Chitosans; Sodium alginate Casting Treat colon cancer [46] 

Acyclovir Iota-carrageenan, Hydroxypropyl methylcellulose e 
Polymethacrylates (Eudragit® RS PO and Eudragit® S100) 

Solvent casting Prevent genital herpes [34] 

Ibuprofen Poly(ethyleneimine); Heparin; Chitosan Dipping Resolve implant infections during the 
implantation period and improve the corrosion 
resistance of magnesium alloys. 

[47] 

Rose Bengal Polyethylenimine; Chitosan; Hyaluronic acid Dipping Films as antimicrobial surfaces and in drug 
delivery. 

[48] 

Vancomycin Montmorillonite, poly-l-lysine Dipping Treatment of bone infections [49] 
Atenolol; Propranolol; 

Theophylline; Ibuprofen; 
Ketoprofen 

Chitosan; Sodium alginate Dipping; 
Spraying 

In vitro bioinspired that mimics the key natural 
characteristics of the physiological mucus layer. 

[50] 

Fluorescein isothiocyanate; 
Ovalbumin; Doxorubicin 
hydrochloride 

Chitosan, Hyaluronic acid; Alginic acid; Tannic acid Electrostatic 
interaction 

Anticancer treatment [51] 

Fulvestrant Chitosan; Sodium alginate (ALG); Dipping Drug- delivery [52] 
Insulin Nafion poly(allylamine hydrochloride)   Dipping Films with an insulin release control system [53] 

poly(ethyleneimine)  

poly(diallydimethylammonium chloride) 
Emodin Poly(ethylenimine); Poly(vinyl sufonate) Dipping Drug- delivery transdermal [54] 
Lysozyme Cellulose acetate nanofibrous; N-[(2-hydroxy-3-trimethyl- 

ammonium) propyl] chitosan chloride; Sodium alginate 
Dipping Antibacterial [55] 

Dexamethasone Poly(methacrylic acid); Poly(acrylamide); Poly(ethylene 
oxide)-block-poly(ε-caprolactone) micelles 

Dipping Drug delivery and induction of human 
mesenchymal stem cells differentiation into 
osteoblasts 

[56] 

Methotrexate poly(allylamine hydrochloride)-dextran microgel; 
hyaluronic acid; poly(lactic-co-glycolic acid) 

Spin Drug-delivery [57] 

Doxorubicin Poly(N-vinylpyrrolidone)-b-poly(N-isopropylacrylamide) Dipping Drug-delivery [58] 
Lysozyme Poly(β-l-malic acid), and chitosan Dipping Drug-delivery [59] 
Recombinant human basic 

fibroblast growth factor 
Insulin Poly(methyl methacrylate); glucose oxidase; Insulin; 

positively charged 21-arm poly[2-(dimethylamino)ethyl 
methacrylate] 

Dropped and 
extended 

Drug-delivery and diabetes treatment [60] 

Neurotrophin; Nerve growth 
factor; Lysozymes 

Polyethyleneimine (PEI); Dextran sulphate; Heparin; 
Gelatin type B 

Dipping Neurotrophin-releasing [61]  
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also found that the ultra-thin separation layer and hydrophilicity 
enabled an increase in permeate flux. Thus, the brushing LbL method-
ology is effective for the development of films and membranes, both 
economically and rapidly. 

The above-mentioned methods, that can be used for the LbL assem-
bly production, are schematically represented in Fig. 4. 

4. Applications 

4.1. Antimicrobial 

Antimicrobial resistance occurs when microorganisms undergo 
changes when exposed to antimicrobial agents. According to the World 
Health Organization (WHO), antimicrobial resistance is one of the top 
ten global threats to public health and requires multisectoral action to 
achieve the Sustainable Development Goals (SDGs) [80]. In the face of 
this problem, one alternative approach to solve this is the use of new 
technologies and the development of new products. One of the existing 
alternatives is the production of films with antimicrobial activity using 
the LbL method, which allows the controlled delivery of a drug [74]. 

Several studies have applied the LbL method to the delivery of these 
antimicrobials, as evaluated by Taketa et al.. (2021). In this study, 
different films were prepared using hyaluronic acid (HA), alginate 
(ALG), and chitosan (CHI). The films were incorporated with silver and 
evaluated for antimicrobial activity using Staphylococcus aureus and 
Candida albicans strains. The results showed that the HA/CHI films were 

able to support higher silver loading compared to the ALG/CHI films. In 
addition, HA/CHI films were able to completely inhibit the growth of 
microorganisms, with a greater inhibition halo observed against the 
growth of Staphylococcus aureus. This higher activity is related to the 
presence of hyaluronic acid molecules, which favour the bioavailability 
of silver [81]. 

Additionally, Saracogullari et al.. (2021) studied CHI-based films 
prepared using tannic acid (TA), poly (acrylic acid) (PAA), ciprofloxacin 
(CP), and bovine serum albumin (BSA). It was found that the PAA/CHI/ 
BSA film showed no anti-adhesion behaviour, whereas TA/CHI/BSA 
showed higher resistance to protein adsorption. The PAA/CHI/CP film 
had higher drug release capacity and antibacterial activity compared to 
TA/CHI/CP. It was found that pH was influenced the extent of layer 
association, drug release, and antibacterial activity of the developed 
films [82]. 

Neto et al. (2021) also observed the development of films by the 
dipping method, using Rose Bengal (RB), HA, and CHI, with different 
degrees of deacetylation and varying solution pH. Antibacterial activity 
against Escherichia coli was observed, with the antibacterial capacity 
being favoured in films assembled at pH 4.5 using chitosan with a lower 
degree of deacetylation. Films assembled at pH 7.2 showed no anti-
bacterial activity but had a higher RB loading capacity [48]. 

Roupie et al. (2021), prepared films by the dipping method using 
chondroitin sulphate A (CSA), poly-L-lysine (PLL), and nisin Z, an anti-
microbial peptide. They evaluated the antimicrobial activity of the films 
with and without nisin Z against Staphylococcus aureus. It was observed 

Fig. 4. Methods for the production of layer-by-layer films.  
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that only the films with nisin Z showed activity against the strain (60 % 
inhibition after 24 h and 92.5 % after 48 h of loading). It was verified 
that the films loaded for 48 h reached the optimal bactericidal concen-
tration against the Staphylococcus aureus strain [83]. 

In a study by Souza et al. (2022), films were developed using gelatin 
and chondroitin sulphate, with and without the ionic liquids. The study 
evaluated the antimicrobial activity of the films against Staphylococcus 
aureus and Pseudomonas aeruginosa. No antimicrobial effect was 
observed in the films without ionic liquids. However, when incorpo-
rated, a high antimicrobial capacity was observed, capable of preventing 
the adhesion and growth of microbial cells. This activity was attributed 
to the ammonium moieties present in the films interacting with the 
microbial cells, leading to bacterial adhesion and, after cell attachment, 
to bactericidal activity [84]. 

In addition to the cited studies, work was found that produced films 
and evaluated the antimicrobial activity of structures such as carbon 
nanotubes. Aslan et al. (2012) created a film using PLL, poly (L-glutamic 
acid) (PGA), and single-walled carbon nanotubes. This study found that 
the films were effective against Escherichia coli and Staphylococcus epi-
dermidis, with an inactivation rate of 90 % after 24 h of incubation. Thus, 
the analysis of the developed studies confirmed that the LbL assembly 
was effective and allowed an alternative drug delivery approach to 
contribute efficiently to microbial inhibition [85]. 

4.2. Wound healing 

Skin wounds are usually caused by several factors, such as accidents, 
burns, medical procedures, etc. It is important that healing occurs 
quickly to avoid possible infection. This happens through the inflam-
mation, re-epithelialisation, and remodelling phases. One of the tech-
nologies used to improve and accelerate the healing process has utilized 
LbL films. This method allows targeted and multi-drug delivery, 
providing potential efficient and safe treatment [86]. 

Several papers have used the LbL method to form films that aid in 
wound healing. These include that of He et al. (2019), in which films 
were developed in situ with CHI and heparin (HE). The films were pre-
pared using a shear flow guided LbL self-assembly methodology, which 
allowed the formation of the layers directly on the wound surface of 
diabetic mice. In this study, the CHI/HE film demonstrated effective 
suppression of inflammation and promoted wound healing. In addition, 
CHI/HE was found to induce accelerated formation of vascular struc-
tures and HE was found to support the revascularisation process and 
tissue regeneration. Finally, the films were found to be air permeable, 
customisable, and aid in chronic wound healing [87]. 

In a study by Maver et al. (2019), films were developed by the spin 
method using ALG, carboxymethyl cellulose (CMC) incorporated with 
lidocaine (LID), and diclofenac (DCF), which have analgesic and anti- 
inflammatory properties, with the aim of supporting skin regenera-
tion. In the work, an initial rapid release, followed by a sustained release 
of the evaluated drugs was observed. The biocompatibility test showed 
that the materials used to produce the membrane were biocompatible 
and had no toxic effect on keratinocytes and fibroblasts. In addition, the 
film promoted the growth of cells, mainly skin fibroblasts, and was 
considered suitable for use in wound treatment [88]. 

In a study by Mandapalli et al. (2016), CHI, ALG, and polyethylene 
glycol (PEG) hydrogels were used to fabricate films with pirfenidone 
(PFD) incorporated into these drug films. PFD has anti-fibrotic and anti- 
inflammatory properties and is used to aid in the healing of excisional 
wounds. In the study, it was observed that wounds treated with the PFD- 
loaded films showed greater wound healing at day 9 compared to the 
PFD-loaded hydrogel, commercial povidone-iodine gel, and LbL film 
without drug. In addition, wounds treated with hydrogel and film were 
found to have less inflammation. Finally, it was found that PFD 
controlled collagen production by suppressing TGF-β, a protein that 
controls cell proliferation and differentiation, PFD was rapidly absorbed 
into the circulation after topical application using LbL-produced films 

[89]. 
Another study by Zhao and colleagues (2022) evaluated films pro-

duced by the spray method using polymethyl methacrylate (PMMA), 
phenylboronic acid-grafted γ-PGA (PBA-PGA), and polyvinyl alcohol 
(PVA), in addition to encapsulating an anti-inflammatory tripeptide 
(KPV) and epidermal growth factor (EGF), with the aim of aiding the 
healing of diabetic wounds. It was found that the three-layer film with 
the encapsulated substances (KPV and EGF) showed the best results for 
long-term wound healing, with inhibition of scar formation, angiogen-
esis (promoting the recovery of blood flow to the wound), increased 
collagen production, reduced inflammation, being non-toxicity, and 
showing biocompatibility. It also showed good transparency, flexibility, 
and glucose responsiveness [90]. 

4.3. Drug delivery 

Drug delivery systems are an effective means of controlling the 
concentration of a drug in the blood and providing greater bioavail-
ability of a therapeutic agent. For the drug to be effective, it is essential 
that the concentration be within the therapeutic range of action, and this 
often requires frequent administration to the patient. Therefore, one 
way to reduce the number of daily doses required by an individual is to 
incorporate drugs into systems that provide a controlled and sustained 
release. One of the existing methods to achieve this control is the pro-
duction of films using the LbL method [16,36]. 

When analysing the literature, several works were found that focused 
on drug delivery using the LbL method. Among them is that of Lu et al. 
(2019), in which films were prepared by the dipping method using CHI 
and HA (with and without functionalisation). The films were loaded 
with an aspirin derivative synthesised from methyl anthranil trisulphide 
and acetyl salicyl chloride (ACS14). The study found that the films 
prepared with the functionalised materials showed better stability. It 
was also observed that the films swelled at acidic pH values and shrank 
at alkaline conditions. To evaluate the release of ACS14 from the films, 
the study was carried out at pH 6.5 and 7.5, with greater drug release at 
pH 6.5 for 3, 5 and 21 days [91]. 

In the study by Paker and Senel (2022), films were prepared by the 
dipping method using CHI grafted with polyethyleneimine, polyacrylic 
acid, and methylene blue (AM). The results showed that the pH and 
strength of the ionic solution significantly affected the loading of the 
drug into the film, with pH 9.0 being observed to allow rapid and high 
loading of AM. When the release profile of AM was evaluated, it was 
found that higher release occurred at low pH values. It was also found 
that the strength of the ionic solution influenced the loosening of the 
film structure, resulting in faster drug release [44]. 

In addition to these studies, work was found that focused on drug 
delivery to both the vaginal and oral mucosa. For example, in the study 
by Pacheco-Quito et al. (2022), vaginal films were developed using the 
LbL casting method with iota-carrageenan (iota-CG), hydroxypropyl 
methylcellulose (HPMC), acyclovir (AC), and the polymethacrylates 
Eudragit RS PO (ERS) and Eudragit S100 (ES), for protection against the 
genital herpes virus. Among the films produced, the iota-CG/HPMC with 
ERS/ES showed the best results, against the virus. In addition, controlled 
release of the drug and a mucoadhesive retention profile up to 192 h 
were observed [34]. 

Pilicheva et al. (2020) [92] prepared films, with and without 
cross-linking, using CHI and casein (CAS) incorporated with benzyd-
amine hydrochloride (BZ). The results showed that the films with double 
crosslinking in the chitosan layer, using glutaraldehyde and sodium 
tripolyphosphate, exhibited higher drug loading and mucoadhesiveness. 
When the release profile of BZ was evaluated, it was found that the films 
showed a prolonged release of the drug, albeit slowly. 

In addition to the aforementioned studies, it is possible to use the LbL 
method for drug delivery for cancer treatment, Xu et al. (2019) [52] 
developed films by the dipping method using CHI and nanocapsules 
loaded with fulvestrant. The surface of the nanocapsules were coated by 
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the LbL method using the biopolymers ALG and CHI. It was found that 
the films exhibited stability, well-defined structure, and high loading 
capacity. The drug release profile showed that at pH 7.4 the drug was 
efficiently bound, with a release of 38 % in 120 days, while at pH 5.0 a 
faster release of fulvestrant was observed. 

In the study by Janardhanam et al. (2022) [46], films were prepared 
by the dipping method using ALG and CHI loaded with 5-fluorouracil 
(5FU) or moxifloxacin HCl (MF). The films produced were incorpo-
rated into enteric-coated capsules for targeted delivery to the colon. The 
films with MF were thicker than those with 5FU. In the release study, the 
MF film showed no initial burst release of the drug, whereas the 5FU film 
displayed an initial burst release followed by controlled release. In 
addition, the MF film was found to have linear pharmacokinetic profile, 
unlike 5FU, which was found to be non-linear. 

4.4. Tissue engineering 

Tissue engineering has been growing over the years and several 
papers have been published in this field. Tissue engineering aims to 
solve problems related to tissue loss or organ failure in patients. Thus, 
the concept of tissue engineering involves the implantation of a bioac-
tive structure into individuals with the aim of replacing damaged tissues 
and restoring their function. One way to achieve this goal is through the 
use of LbL, which allows for the controlled delivery of therapeutic 
agents, such as growth factors, that promote tissue regeneration [93]. 

Among the works developed for tissue engineering is a study by He 
et al. (2012) [94], in which devices were fabricated by the dipping 
method using the biodegradable polyurethane (PU) substrate and the 
materials type I collagen (Col) and chondroitin sulphate (CS). In terms of 
surface morphology, the PU substrate was found to have a smoother 
surface after LbL assembly. In addition, it was observed that the hy-
drophilicity was modified and increased after the assembly. Therefore, it 
is observed that PU/Col/CS is a chondrogenic mimicking environment, 
which presents potential for use in cartilage tissue engineering. 

Another study by Zhang et al. (2019) [95], fabricated 
multi-structured vascular coatings containing HE and CHI on PU/de-
cellularized scaffold substrate (DCS). The coatings were prepared using 
the LbL dipping method. Cell attachment and proliferation analysis was 
performed at 4, 8, 24, and 48 h on PU/DCS and HE–CH–5/PU/DCS 
samples. It was found that endothelial progenitor cells grew rapidly in 
HE–CH–5/PU/DCS, whereas they proliferated slowly in PU/DCS. It was 
also found that He-Ch-5/PU/DCS coatings had a long clotting time in 
vitro and maintained the long-term permeability of surgical arteries. In 
view of these results, the coating produced was deemed as a potential 
treatment for diseased or damaged blood vessels. 

In addition to these studies, Amaral et al. (2021) [96] produced films 
using the LbL method employing regenerated cellulose nanofibers 
(NFCR) and poly(globalide) (PGl). The films produced were intended to 
be used for keratinocyte cell growth for application in skin tissue engi-
neering. The cellular metabolic activity of cultured keratinocytes was 
evaluated on pure PGl and NFCR/PGI films after 1, 3, and 7 days. The 
results showed that the films with PGl alone displayed an extremely low 
metabolic activity, but a much higher activity was observed for 
NFCR/PGI, demonstrating the role of the NFCR layer in the metabolic 
activity of the bilayer film. Therefore, the potential use of these mate-
rials for skin tissue engineering was supported. 

In a study by Dash et al. (2022) [97], films were fabricated using the 
spin LbL method on a 316L stainless steel substrate. The films were 
prepared using Col, poly (y-glutamic acid) (y-PGA), CHI, vancomycin 
(VA), and strontium containing bioactive glass (SrBG). In the study, the 
cell viability rate in MG63 cells was evaluated and it was observed that 
the Col/y-PGA/VA and Col/y-PGA/SrBG films, with lower concentra-
tions of VA and SrBG, showed a cell viability rate close to and higher 
than 85 %, respectively. Thus, the materials used were found to have 
enhanced biological activity for tissue engineering applications. In 
addition, it was found that Col/y-PGA/VA/SrBG films exhibited greater 

cell proliferation, hydrophilicity, biocompatibility, improved mechani-
cal properties, and great potential for orthopaedic application. 

4.5. Future perspectives 

The current scenario of LbL studies shows a growing trend in various 
areas, especially in biomedical applications. Future prospects include 
approaches aimed at optimizing LbL techniques, since parameters such 
as pH, solvent and ionic strength can significantly affect the film prop-
erties. In addition, future studies are expected to focus on brushing and 
spraying techniques to produce films for clinical applications, since a 
lower prevalence of these techniques was observed compared to other 
LbL construction approaches. It is also expected in-depth studies related 
the biocompatibility of developed materials for their use in regenerative 
medicine. With regard to antimicrobial applications, it is hoped that 
further in vivo and clinical studies are carried out to prove the effec-
tiveness of such materials. In addition to using the LbL methodology to 
produce films, other applications have been exploited with potential for 
growth. 

The LbL technique can be used as a coating for other types of ma-
terials, such as nanoparticles and nanofibers, forming multiple layers on 
the surface, enhancing various actions, especially drug delivery [17]. In 
the study by Ma et al. (2021) [98], silk fibroin nanofibers were produced 
by the electrospinning method, with multiple layers prepared with 
chitosan and polydopamine. As a result, it was observed that with the 
increase in the number of layers, the hydrophilicity and tensile modulus 
improved. Another factor observed was the sample with 5 bi-layers of 
chitosan and polydopamine which showed antibacterial activity of 98 
%, so the material produced is a potential product for the biomedical 
area. Another study that addressed this issue is the one by TU et al. 
(2019) [99], in which nanofibrous mats were produced using silk fibroin 
coated by the LbL technique with carboxymethyl chitosan. The results 
revealed that the LbL-coated nanofibrous mats showed greater ther-
mostability and improved mechanical properties, as well as increased 
antimicrobial activity. This approach is considered a promising strategy 
for use in wound dressings. Song et al. (2013) [100] described the 
modification of polyacrylonitrile nanofibrous mats using silver ions to 
be positively charged so that they could be linked to ovalbumin to 
develop layer-by-layer composites. The produced films were morpho-
logically characterized confirming the coating while keeping the anti-
bacterial activity against Escherichia coli and Staphylococcus aureus 
without the risk of cytotoxicity. 

Composite films based on hydroxypropyl chitosan and soy protein 
isolate were produced by solution casting, and evaporation process 
[101]. The hydroxypropyl chitosan showed a lower swelling ratio with 
an increase of the soy protein isolate content, and could support the 
attachment of proliferation of L929 cells, with hemocompatibility and 
cytocompatibility, opening prospects of their use as skin wound dress-
ings. The increased content of protein isolate could promote a faster 
healing and skin regeneration. 

5. Conclusions 

The study highlighted the efficacy and significant impact of multi-
layer films produced using the LbL method in the healthcare sector. This 
versatile approach allows the use of different polymers and the incor-
poration of therapeutic molecules, enabling targeted and controlled 
drug delivery with reduced patient side effects. LbL assembly has been 
demonstrated to be an efficient technique for the fabrication of tailor- 
made biomedical films with a wide range of applications in drug de-
livery systems, wound healing, tissue engineering, and beyond. 

The reviewed studies demonstrated the potential of LbL-produced 
films to achieve controlled drug release, antimicrobial properties, and 
tissue regeneration, offering promising opportunities for personalized 
medicine and improved patient outcomes. The scalability and environ-
mental friendliness of the method makes it suitable for large-scale 
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production, and attractive for commercial applications. Moreover, its 
adaptability to incorporate different materials further enhances its po-
tential to create innovative nanocomposites, opening new avenues in 
biomedical research. 

The current scenario of LbL studies shows a growing trend in various 
applications, including antimicrobial activity, tissue engineering, 
dressings, and drug delivery. However, challenges remain in optimizing 
LbL assembly techniques and further research is required to achieve 
precise and reproducible film properties, as parameters such as pH, 
solvent, and ionic strength can significantly affect film properties. 
Further research and optimization of LbL techniques is warranted to 
achieve precise and reproducible film properties. 

In summary, layer-by-layer assembly is a powerful tool that is driving 
advances in biomedical engineering. Its ability to customize film func-
tionalities, coupled with its ease of fabrication, positions it as a trans-
formative technology with the potential to address complex biomedical 
challenges and pave the way for novel therapies and regenerative 
medicine. Continued interdisciplinary efforts will undoubtedly lead to 
exciting breakthroughs, broadening the horizon of biomedical applica-
tions, and providing efficient solutions for various diseases. 
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Lopes, Ricardo L. de Albuquerque-Júnior, Juliana C. Cardoso, Eliana B. 
Souto and Patricia Severino contributed for sample prospection, data 
collection, data analysis and interpretation of results; Cristina Blanco- 
Llamero, Eliana B. Souto, Ronny Priefer and Patrícia Severino contrib-
uted for the revision of the first drafted English version. Ricardo L. de 
Albuquerque-Júnior, Juliana C. Cardoso, Cristina Blanco-Llamero, Eli-
ana B. Souto, Tanvi A. Deshpande, Henning O. W. Anderson, Ronny 
Priefer and Patrícia Severino contributed for the validation of results, 
discussion, draft and final version of manuscript preparation, and 
management of the project. All authors approved the final version of the 
manuscript. 

Ethics approval 

Not applicable. 

Consent to participate 

Not applicable. 

Consent to publish 

All authors agreed with the final version of this manuscript and with 
the current submission. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

Funding/Acknowledgements 

The authors acknowledge the National Council for Scientific and 
Technological Development (CNPq) within the frame of the projects - 
Processo n. 408377/2022–4 - Edital Chamada CNPq/MCTI/FNDCT N◦

22/2022 - Linha 1 - Projetos de pesquisa básica e aplicada. Projeto - 
Desenvolvimento de biotinta GelMA/óxido de grafeno funcionalizado 
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