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Abstract: A dataset of aerial urban traffic images and their semantic segmentation is presented to
be used to train computer vision algorithms, among which those based on convolutional neural
networks stand out. This article explains the process of creating the complete dataset, which includes
the acquisition of the images, the labeling of vehicles, pedestrians, and pedestrian crossings as well
as a description of the structure and content of the dataset (which amounts to 8694 images including
visible images and those corresponding to the semantic segmentation). The images were generated
using the CARLA simulator (but were like those that could be obtained with fixed aerial cameras or
by using multi-copter drones) in the field of intelligent transportation management. The presented
dataset is available and accessible to improve the performance of vision and road traffic management
systems, especially for the detection of incorrect or dangerous maneuvers.

Dataset: The data presented in this study are openly available at: https://zenodo.org/doi/10.5281/
zenodo.10058944 (accessed on 17 December 2023) with DOI: 10.5281/zenodo.10058944.

Dataset License: CC-BY-4.0.

Keywords: traffic management; traffic safety; semantic segmentation; traffic infractions; CARLA;
YOLO; OpenCV

1. Summary

Data collection in real-world settings, such as urban roadways, is a laborious and
highly costly task, primarily due to the substantial investment of money and time required
to initiate data acquisition and compile a comprehensive dataset. As an alternative to this,
there are various simulators that significantly reduce the investment required, thereby
expediting the initial stages of a training process. In addition to this, after obtaining the
dataset, with all of the inherent complexity, it becomes necessary to process the data to
make them suitable for training purposes.

The objective of the dataset described in this manuscript is to be instrumental in the
analysis of traffic violations. Below, the authors list the systems aimed at data collection for
training purposes, whether through real-world data acquisition or simulated environments.
It also provides insights into the CARLA simulator and its integration with a robot operating
system (ROS), designed to streamline the interaction.
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1.1. Data Collection Strategies
1.1.1. Data Collection in Real-World Environments

There are numerous projects, such as the one developed at the Universidad Europea
de Madrid [1], which introduce an advanced driver assistance system capable of detecting
and notifying drivers about violations committed during their journey. This system is
integrated into the vehicle to gather data and train the assistant, enabling the detection
of road elements and violations and the generation of data and images for future use.
However, it is noted that the data collection and setup process is time- and resource-
intensive, especially when simulation is not employed [2]. Additionally, it focuses on
the driver’s own violations and not all violations occurring on the road. In addition to
this, there are other similar systems, such as [3–5], Mapillary Vistas [6], and BDD100K [7],
which concentrate on generating data in urban environments through sensor-equipped
vehicles that collect various environmental information, including images (among many
others). These systems offer data under various licenses and are valuable for acquiring
information from a vehicle’s perspective. However, the primary challenge in all cases is the
high economic and time costs associated with implementing sensor-equipped vehicles for
data collection.

1.1.2. Data Collection in Simulated Environments

This group stands out for its ability to reduce costs and expedite the data acquisition
process. Two projects excel in the utilization of the CARLA simulator [8] for generating
datasets. The first one is the “AD PerDevKit” [9], a development kit focused on generat-
ing driving and vehicular environment data in the CARLA simulation system, with the
support of ROS. Its primary goal is to increase the quantity of available data to enhance
the training of computer vision models in autonomous vehicles. The second initiative,
named “CarFree” [10], focuses on generating datasets for object detection in autonomous
vehicles using CARLA. A noteworthy aspect of this project is its consideration of factors
such as weather conditions and the time of day, contributing to the creation of more realistic
data for future training. Both projects demonstrate the effectiveness of simulation with
CARLA as a fundamental tool for acquiring high-quality data in the field of autonomous
driving. Furthermore, the inclusion of weather and temporal data as a future line of de-
velopment suggests an innovative approach to the training of computer vision models,
which could have a significant impact on the advancement of more advanced and secure
autonomous vehicles.

In addition to the previously mentioned advantages, such as the agility to conduct
tests and the ease of generating specific environments like low-visibility situations and
retentions, the most significant advantage, which is indeed challenging to replicate in
real-world settings, lies in traffic infractions and hazardous situations. Examples include
driving in the wrong direction or pedestrians crossing roads at improper locations [11].
Reproducing these situations in real-life scenarios requires highly controlled and restricted
environments, involving numerous individuals (security personnel, actors, fake drivers,
etc.) to simulate realistic circumstances. In virtual environments, all of these features are
simulation parameters that can be easily adapted without any human risks.

1.2. CARLA Simulator and ROS—Robot Operating System
1.2.1. CARLA Simulator

CARLA is a simulation environment created with the purpose of aiding in the de-
velopment, training, and validation of autonomous driving systems [12,13]. It provides
users with the necessary tools for full simulation control through flexible application pro-
gramming interfaces (APIs) that enable actions such as traffic generation, pedestrians, map
events, sensor control, and more [14]. When launching the simulation, CARLA loads a map
of an urban environment where all of the events will take place. Figure 1 was captured
from the perspective of a unique entity within the simulation, the “Spectator”, a mobile
camera used to observe the simulation. This entity belongs to a group known as “Actors”,
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which interact within the simulation. Within these actors, there are also sensors, traffic
signs, traffic lights, vehicles, and pedestrians. All these actors have a position within the
map and share certain basic functionalities, such as being generated in the map or having
their positions redefined during the simulation time, all through the API.
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1.2.2. ROS—Robot Operating System

ROS is a set of libraries and tools for robot development [15]. What makes ROS
interesting is its ability to reuse code and its scalability [16]. It achieves this through
its approach of generating interconnected, interchangeable, and independent nodes that
communicate via a publisher–subscriber system. For this work, ROS (version 1) was used.
The choice of this version is due to its compatibility with previous systems that require
this version of ROS. However, the installation process is very similar for both ROS and
ROS2. In fact, the CARLA community has an extensive collection of manuals and code
developed in ROS, allowing for straightforward integration, as demonstrated in various
previous works [17,18].

CARLA essentially functions as a service upon which a graphical environment runs,
enabling the visualization of simulation data. ROS can connect to this service through
its public API [19,20]. In this study, it was only necessary to connect to sensors (RGB
and segmentation cameras) that become topics to which one could subscribe and obtain
their information. For all of this, programming is not required, as the CARLA–ROS
communications bridge is already developed, and it is just a matter of configuring it
appropriately (IP, ports, nodes, etc.). This clarification has been added in Section 1.2.2 “ROS
Operating System”.

2. Data Description

Our dataset is composed of 4347 frames of a single scene. The scene is an urban
crossroads with a large crosswalk along four lanes. There are several buildings, as well
as parking, streetlights, vertical signage, and even a sports field. Each frame is composed
of an RGB (red–green–blue) in .png images and its semantic segmentation in .tiff format,
which makes a total of 8754 images. The dataset directory structure is as follows:

• classes.txt: A file that references the entities to be considered for the training phase.
• images: A directory where RGB images are stored. These images are extracted

from the CARLA simulator in “.png” format. All of these images have a naming
format: frRGBxxxxx.png.

• segmentation: A directory where segmented images are stored. The segmented images
are extracted from the CARLA simulator in “.tiff” format. All of these images have a
naming format: frSEGxxxxx.tiff.



Data 2024, 9, 4 4 of 12

• labels: A directory where labeling files are stored. There is one file per RGB image.
This labeling is custom-generated and saved in plain text “.txt” format. All of these
files have a naming format: frRGBxxxxx.txt.

# classes.txt: A file that specifies the classes for labeling.

Figures 2 and 3 show examples of images of the same scene in its RGB and segmented
variants. The scenes are accompanied by as many files with a .txt extension with the descrip-
tion of the elements identified in each of the images. In total, there are 13,042 files between
the images (4347 .png), segmentations (4347 .tiff), and descriptions (4347 .txt for each pair
of .png and .tiff images and one for classes.txt). In these images, 77,144 targets were labeled,
including cars, motorcycles, pedestrians, and pedestrian crossings (crosswalks). These
labels refer to elements present in the visible and segmented images. These data can be
seen in Table 1.
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Figure 3. Segmented image (tiff format) from the dataset.

Table 1. Detail of the labels obtained.

Class Labels

Cars 67,346
Motorcycles 3507
Pedestrians 1944
Crosswalk 4347

TOTAL 77,144

As can be observed, each element corresponding to the RGB image (Figure 2) is
represented by a different color in the segmented image (Figure 3). The color mapping



Data 2024, 9, 4 5 of 12

used in the segmented image works in such a way that each entity is represented by
a specific color in the RGB spectrum. This color representation consists of the bytes of
information, one representing the color red (R), another representing green (G), and the last
one representing blue (B). By combining the three colors, whose values range from 0 to 255,
the color to be represented is generated. Within the RGB scheme, the red (R) component
represents the type of entity. For example, all entities with a value of 10 in this color are
identified in the simulation as vehicles, as can be seen in Figure 4. The values assigned to
green (G) and blue (B) are used to differentiate each entity from those that share the same
type. In Table 2, you can observe some examples of the relationship between the segmented
entity type and its value for the R component of the RGB code.
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Table 2. Details of the R-value for entities from the RGB code.

Entity RGB Values

Vehicle R = 10
Pedestrian R = 4

Pedestrian Crossing R = 6, G = 34
Lines on Road R = 6, G = 32

Roadway/Pathway R = 7
Traffic Light R = 18

The dataset was created in You Only Look Once (YOLO) format [21] due to its
widespread popularity, as well as the ease with which it can be easily adapted or con-
verted to other formats due to its characteristics. In this format, the images and their
annotations are called in the same way (consecutive integer values, starting at 0) using the
extension .png/.tiff for the images and .txt for the annotations associated with that image.
In the .txt files, this notation is used to define five fields:

<object-class> <x> <y> <width> <height>
Specifically, each of the fields contains the following:

• object-class: Integer number varying between 0 and N-Classes-1. The four classes
that were incorporated into the model are as follows: 0. Cars, 1. Motorcycles, 2.
Pedestrians, and 3. Crosswalk.

• x, y: Decimal values relative to the center of the rectangle containing the labeled object.
They vary in the range [0.0 to 1.0].

• width, height: Decimal values relative to the width and height of the rectangle con-
taining the labeled object. They vary in the range [0.0 to 1.0].
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3. Methods

For the construction of the dataset, aerial images were captured from a CARLA
simulation. Since these are overhead images, the recommendations from [22,23] regarding
the requirements for collecting trajectory datasets were considered. These requirements
were extrapolated to the specific goal of object recognition in images taken by UAVs
(unmanned aerial vehicles) like drones or from elevated cameras [24,25]. The dataset should
include many images as well as many labeled objects within these images. Furthermore,
it should encompass all types of objects. When labeling images, objects related to the
objects that we wanted to predict should not be excluded; for example, trucks should not be
excluded from the dataset when labeling all cars. All objects can be included in a category
like “vehicles” or a separate category can be created for each of these objects. Taking these
requirements into account, let us move on to describe each of the tasks performed for
dataset construction.

3.1. Obtaining the Dataset

The images in the dataset were taken by the authors using the CARLA simulator,
assisted by ROS for the interaction with the simulator as well as for the management and
capture of the RGB and segmented images. One application scenario involves creating
static sensors and placing them at a certain height above the road. In CARLA, users can
generate actors and move them wherever desired, as described in Section 1.2.1, for the
purpose of gathering information.

Specifically, two types of sensors were defined: an RGB camera and an instance
segmentation camera. The RGB camera captures images in the “.png” format of the
roadway, while the instance segmentation camera displays a color representation of all
entities on the road, with each entity clearly distinguishable. To avoid image quality loss,
the instance segmentation images are stored in “.tiff” format. By combining both sensors
with identical specifications (focal length, sensor size, etc.) and positioning them at the
same angle and location, the images captured by both sensors can be related, making
them representations of the same scene at a specific moment in the simulation. However,
there is a challenge in this process because the image capture between both sensors is not
coordinated by CARLA. This means that the image pairing process must be performed
manually, which is why the integration of ROS with CARLA was utilized to address this
difficulty. To address this issue, post-processing on the dataset was carried out. Initially,
the simulation timestamp (the timestamp generated by CARLA) was saved for each image
captured by the cameras. Subsequently, the images were filtered by their timestamp, with
RGB and segmented images whose timestamps differed by less than 50 ms being paired.
Such pairs were considered synchronized and associated with each other.

The location was defined considering its interest in the crossroads it contains. This
crossing has a large crosswalk that spans it. In addition, there are parking areas, traffic
lights, and pedestrian roads and sidewalks. The images were taken from a zenithal view,
with the upper part of the image oriented to the north.

3.2. Dataset Processing and Labeling

This phase focuses on transforming the dataset’s data into information that can be
used to train a model capable of identifying entities in images. The target format for this
data transformation is the format used by YOLOv8. The data transformation to be carried
out is as follows: the segmented images are taken, and the positions of relevant entities,
represented as rectangles, known as boxes, are extracted. After this, these positions are
stored in a text file, along with a numeric identifier representing the type of entity. The
process’s workflow can be observed in Figure 5.
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Figure 5. Scheme of the labeling process. It uses the information from the semantic segmentation
to build the .txt file with the list of entities contained in the .png file. Red marks in central image
represents the labeling of the vehicles identified in the segmented image.

There were some challenges in entity detection that required manual review after the
automatic labeling based on semantic segmentation:

Pedestrian Crosswalk Detection: Pedestrian crosswalks and other longitudinal road
lines were identified using the same R (red) value, making it difficult to differentiate
between them. In some cases, they even shared the same RGB color, as can be seen in
Figure 6. Labeling of this class was performed through the use of classical computer vision
techniques, such as morphological filters (erosion/dilation), and by analyzing the shape of
the figure (height-to-width ratio).
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Figure 6. RGB representation of lines and pedestrian crossings in the segmented images.

Vehicle Detection for 2-Wheelers: One point to consider when labeling vehicles is how
CARLA’s segmentation identifies 2-wheeled vehicles. CARLA treats them as a vehicle
with a pedestrian on top. Therefore, by employing classic computer vision techniques, it is
relatively straightforward to separate motorcycles from cars, remove the “pedestrian” from
the vehicle, and label it all as a motorcycle.

Labeling of Invisible Pedestrians: During the initial labeling process, an anomalous
behavior was observed in the labeling, where pedestrians were occasionally labeled under
obstacles like trees. Upon investigating the cause, a segmentation issue with entities
captured in CARLA images was discovered. Many trees that appeared in RGB images
were not represented in the segmented images, leading to pedestrians under the trees being
labeled even though they did not appear in the RGB image, as depicted in Figure 7.
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Figure 7. Problem in the segmented representation of trees.

To address this issue, a system was implemented to mark those entities not represented
in the segmentation, with them being treated as obstacles. This allowed for the subsequent
removal of pedestrians located beneath these entities. This tool generates a window using
OpenCV (Open Computer Vision), which enables marking of the entities by clicking on
two points, creating a rectangle that identifies the area.

3.3. Dataset Validation

The purpose of the training was not to determine how well convolutional neural
networks perform but rather to demonstrate that the dataset is well-constructed and labeled.
Therefore, the outcome of the training was not a critical factor for this data descriptor. The
training parameters were chosen based on our own experience with this type of dataset,
particularly to verify that it can effectively recognize small objects such as motorcycles and
pedestrians in aerial images.

Specifically, the dataset was utilized to create a baseline model to assess its utility,
with an 80% distribution of images for training and 20% for validation. The cluster at the
Universidad Europea de Madrid (UEM) was employed for machine learning model training.
This cluster comprises 10 network-connected nodes, each configured with 32 cores, 256 GB
of RAM, and NVIDIA RTX 3080 Ti GPUs with 12 GB of RAM.

The chosen model is yolov8n, a 365-layer PyTorch neural network. In this work other
architectures were not tested. But this does not mean that they have not been tested on
other networks like TensorFlow (Keras), ResNet, DETR, EfficientDetLite, etc., with similar
datasets, as can be seen in [26]. The characteristics of these images (large images, small
objects to recognize, objects grouped in an area of the image, low-density areas of targets
against other very saturated areas, etc.) make the selected YOLOv8n network the one
through which we obtained the best results, as discussed in [27].

Thus, the training results after 30 epochs are as follows:
Normalized Confusion Matrix: Analyzing the resulting confusion matrix (Figure 8),

it can be observed that the “car” class performs very well, as it is the most common
and diverse object in the dataset. Similarly, the “pedestrian crossing” class also achieves
excellent results. However, this is because there is limited variation; the training and
validation images feature this object in a very similar manner. Next, it can be seen that
the “motorcycle” class also performs well, although not perfectly. This is due to the
underrepresentation of this class in the dataset, and the objects are relatively small, making
them easily confused with other road elements. On the contrary, the “pedestrian” class is
the most challenging to recognize, primarily due to its low occurrence in the images and its
small size, making it very challenging to detect.



Data 2024, 9, 4 9 of 12Data 2024, 9, 4 9 of 12 
 

 

 
Figure 8. Normalized confusion matrix for YOLOv8n network training. 

Mean average precision (mAP): The mean average precision (mAP) at a 0.5 intersec-
tion over union (IoU) reaches a final value of 0.7 after 30 training epochs, while at a 0.95 
IoU, it concludes with a value of 0.57 (see Figure 9). This graph represents the average 
across all classes, as there is a significant difference in this graph when analyzed separately 
for each class. Figure 10 graphically presents the training results for other relevant metrics, 
such as “loss (train set)” and “val_loss (test set)”. 

 
Figure 9. Evolution of the mean average precision (mAP) over the 30 training epochs. 

 
Figure 10. Results of training a basic model. Loss (train) and val loss (testing) over the 30 training 
epochs. 

Figure 8. Normalized confusion matrix for YOLOv8n network training.

Mean average precision (mAP): The mean average precision (mAP) at a 0.5 intersection
over union (IoU) reaches a final value of 0.7 after 30 training epochs, while at a 0.95 IoU, it
concludes with a value of 0.57 (see Figure 9). This graph represents the average across all
classes, as there is a significant difference in this graph when analyzed separately for each
class. Figure 10 graphically presents the training results for other relevant metrics, such as
“loss (train set)” and “val_loss (test set)”.
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Precision and Recall: In this metric graph (see Figure 11), the evolution of precision
and recall can be observed. Precision refers to the proportion of correctly classified positive
instances relative to the total instances classified as positive (true positives and false
positives). Recall, also known as the true positive rate, pertains to the proportion of
correctly classified positive instances relative to the total instances that are positive (true
positives and false negatives) and the evolution of the precision and recall metrics over the
30 training epochs.
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4. User Notes

The approach used to build the dataset shown in this work seeks to provide resources
to train neural networks for artificial intelligence systems to be used in the identification of
incorrect traffic maneuvers. The possible potential uses of the dataset in traffic management
would be to identify dangerous or incorrect maneuvers such as oncoming traffic, speeding,
pedestrians crossing outside the designated areas, and vehicles jumping traffic lights,
among others.

The main features and strengths of the dataset are the 4347 visible images with just as
many others corresponding to its semantic segmentation. These images show an intersec-
tion with a multitude of situations in which pedestrians and two- and four-wheeled vehicles
coexist. For all of these reasons, they make the described dataset a useful contribution to
traffic analysis research.

The authors will work on an update to include more urban scenes. It will also be
enhanced to include a variety of lighting and weather conditions. This will be carried
out to increase the diversity and breadth of the datasets and consequently improve the
model performance.
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Abbreviations
The following abbreviations are used in this manuscript:

DETR DEtection TRansformer
ROS Robot Operating System
API Application Programming Interfaces
RGB Red–Green–Blue
PNG Portable Network Graphics
TIFF Tagged Image File Format
YOLO You Only Look Once
OpenCV Open Computer Vision
IoU Intersection over Union
mAP Mean Average Precision
UAV Unmanned Aerial Vehicle
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