Mostrar el registro sencillo del ítem

dc.contributor.authorGarcés Jiménez, Alberto
dc.contributor.authorCastillo Sequera, José Luis
dc.contributor.authorCorte Valiente, Antonio del
dc.contributor.authorGómez Pulido, José Manuel
dc.contributor.authorDomínguez González-Seco, Esteban Patricio
dc.date.accessioned2019-11-13T11:15:36Z
dc.date.available2019-11-13T11:15:36Z
dc.date.issued2019
dc.identifier.issn2169-3536spa
dc.identifier.urihttp://hdl.handle.net/10641/1722
dc.description.abstractCurrently, population growth is global and tends to concentrate in large cities, which increases the demand for illuminating public spaces for safety, visual orientation, aesthetic considerations, and quality of life. The undesirable side effects are increase in energy consumption and light pollution. The current tools used for designing public lighting systems are not suitable for optimizing multiple objectives in addition to energy savings, and these solutions could provide for a more sustainable environment. The application of evolutionary optimization techniques seems to be growing rapidly because of the nonlinearity of the model behavior and the nonproprietary nature of the algorithms, which are considered as black box systems. This paper develops a data model for these types of optimizers, analyzing the ability of different arti cial neural network (ANN) architectures to simulate a simple public lighting design by measuring the performance with respect to the tness function, training speed, and goodness of t with a dataset generated with different conditions. The architectures selected in this paper are those with multilayer perceptrons (MLPs) with different hidden layer con gurations using different numbers of neurons in each layer, which have been analyzed to determine the con guration that best ts the purpose of this work. The data for training the ANNs were generated with a recognized open-software platform, DIALux. The experiments were repeated and analyzed to determine the variance of the results obtained. In this way, it was possible to identify the most appropriate number of iterations required. The results show that better precision is obtained when using the Levenberg Marquardt training algorithm, especially when the ANN architecture has fewer neurons in the hidden layer.spa
dc.language.isoengspa
dc.publisherIEEE Accessspa
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectPublic lighting designspa
dc.subjectArtificial neural networksspa
dc.subjectMultilayer perceptronspa
dc.subjectData modelingspa
dc.subjectEnergy eficiencyspa
dc.subjectUniformity ratio of luminancespa
dc.subjectSustainable citiesspa
dc.titleAnalysis of Artificial Neural Network Architectures for Modeling Smart Lighting Systems for Energy Savings.spa
dc.typejournal articlespa
dc.type.hasVersionAMspa
dc.rights.accessRightsopen accessspa
dc.description.extent1234 KBspa
dc.identifier.doi10.1109/ACCESS.2019.2932055spa
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8781776spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Analysis of Artificial.pdf1.204MbPDFVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España