Behavioral immune landscapes of inflammation.

Research Projects

Organizational Units

Journal Issue

Abstract

Transcriptional or proteomic profiling of individual cells have revolutionized interpretation of biological phenomena by providing cellular landscapes of healthy and diseased tissues. These approaches, however, fail to describe dynamic scenarios in which cells can change their biochemical properties and downstream “behavioral” outputs every few seconds or minutes. Here, we used 4D live imaging to record tens to hundreds of morpho-kinetic parameters describing the dynamism of individual leukocytes at sites of active inflammation. By analyzing over 100,000 reconstructions of cell shapes and tracks over time, we obtained behavioral descriptors of individual cells and used these high-dimensional datasets to build behavioral landscapes. These landscapes recognized leukocyte identities in the inflamed skin and trachea, and inside blood vessels uncovered a continuum of neutrophil states, including a large, sessile state that was embraced by the underlying endothelium and associated with pathogenic inflammation. Behavioral in vivo screening of thousands of cells from 24 different mouse mutants identified the kinase Fgr as a driver of this pathogenic state, and genetic or pharmacological interference of Fgr protected from inflammatory injury. Thus, behavioral landscapes report unique biological properties of dynamic environments at high cellular, spatial and temporal resolution.

Doctoral program

Description

Keywords

Citation