Single Event Upsets Under Proton, Thermal, and Fast Neutron Irradiation in Emerging Nonvolatile Memories.
Author: Korkian, Golnaz; León, Daniel; Franco, Francisco J.; Fabero, Juan C.; Letiche, Manon; Morilla, Yolanda; Martín Holgado, Pedro; Puchner, Helmut; Mecha, Hortensia; Clemente, Juan A.
Abstract: In New Space, the need for reduced cost, higher performance, and more prompt delivery
plans in radiation-harsh environments have motivated spacecraft designers to use Commercial-Off-The-
Shelf (COTS) memories and emerging technology devices. This paper investigates the behavior of state-ofthe-
art memories manufactured in emerging technologies, including Ferroelectric Random-Access Memory
(FRAM), Resistive Random-Access Memory (ReRAM), and Magnetic Random-Access Memory (MRAM),
against radiation effects in static and dynamic modes. Radiation-ground tests were conducted under 15-MeV
and 1-MeV protons, thermal and 14.8-MeV neutrons leading to various categories of radiation effects.
Experimental results will show clear evidence of the robustness of bitcells manufactured using these
emerging technologies against radiation, but at the same time, some susceptibility in these devices to
suffer radiation effects when working in dynamic mode. Experimental results with the CY15B102Q and
CY15B104Q FRAMs (In neon Technologies), the MB85AS4MT, and MB85AS8MT ReRAMs (Fujitsu),
and the MR10Q010CSC and MR25H40CDF MRAMs (Everspin) will be presented and discussed.
Files in this item
Files | Size | Format | View |
---|---|---|---|
1.- Single_Event_Upsets_Under_ ... | 1.842Mb | View/ |
Collections
- INGENIERÍA [90]