Gaining Insights into Dwelling Characteristics Using Machine Learning for Policy Making on Nearly Zero-Energy Buildings with the Use of Smart Meter and Weather Data.
Author: Čurčić, Teo; Robin Kalloe, Rajeev; Kreszner, Merel Alexandra; Van Luijk, Olivier; Puertas Puchol, Santiago; Caba Batuecas, Emilio; Baldiri Salcedo Rahola, Tadeo
Abstract: Machine learning models have proven to be reliable methods in classification tasks. However,
little research has been conducted on the classification of dwelling characteristics based on
smart meter and weather data before. Gaining insights into dwelling characteristics, which
comprise of the type of heating system used, the number of inhabitants, and the number of solar
panels installed, can be helpful in creating or improving the policies to create new dwellings at
nearly zero-energy standard. This paper compares different supervised machine learning
algorithms, namely Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and
Long-short term memory, and methods used to correctly implement these algorithms. These
methods include data pre-processing, model validation, and evaluation. Smart meter data, which
was used to train several machine learning algorithms, was provided by Groene Mient. The
models that were generated by the algorithms were compared on their performance. The results
showed that the Long-short term memory performed the best with 96% accuracy. Cross
Validation was used to validate the models, where 80% of the data was used for training
purposes and 20% was used for testing purposes. Evaluation metrics were used to produce
classification reports, which indicates that the Long-short term memory outperforms the
compared models on the evaluation metrics for this specific problem.
Files in this item
Files | Size | Format | View |
---|---|---|---|
JSDEWES_d9.0388.pdf | 1.272Mb | View/ |
Collections
- INGENIERÍA [87]