Fast Computing on Vehicle Dynamics Using
Chebyshev Series Expansions

IEEE/ASME TRANSACTIONS ON MECHATRONICS

REGULAR PAPER

COVER LETTER

Authors: Lopez A., Moriano C., Olazagoitia J.LndaPaez J.

Alberto Lopez : Universidad Antonio de Nebrijadustrial Engineering Department.
C/Pirineos 55, 28040 — Madrid, (Spain)

e-mail:alopezro@nebrija.es Phone: 00 34 91 452 11 00; Fax: 00 34 91 45201
Corresponding Author.

Cristina Moriano: Universidad Antonio de Nebrijadustrial Engineering Department.
C/Pirineos 55, 28040 — Madrid, (Spain)
e-mail:cmoriano@nebrija.esPhone: 00 34 91 452 11 00; Fax: 00 34 91 452011

José Luis Olazagoitia: Universidad Antonio de Nebrilndustrial Engineering
Department. C/Pirineos 55, 28040 — Madrid, (Spain)
e-mail:jolazago@nebrija.esPhone: 00 34 91 452 11 00; Fax: 00 34 91 452011

Francisco Javier Paez: Universidad PolitécnicaMbalrid. INSIA. Instituto de
Investigacion del Automovil. Campus Sur UPM, Ceara de Valencia (A-3), km 7,
28031 Madrid, (Spain). e-matitranciscojavier.paez@upm.eshone 00 34 91 336 53
00; Fax 00 34 91 336 53 02




Fast Computing on Vehicle Dynamics Using
Chebyshev Series Expansions

Lépez A., Moriano C., Olazagoitia J, and Paez

Abstract This article focusses on faster computation techniges
to integrate mechanical models in electronic advard active
safety applications. It shows the different techniges of
approximation in series of functions and differental equations
applied to vehicle dynamics. This allows the achiement of
approximate polynomial and rational solutions witha very fast
and efficient computation. Firstly, the whole theoetical basic
principles related to the techniques used are prested:

orthogonality of functions, function expansion in Giebyshev and
Jacobi series, approximation through rational functons, the
Minimax-Remez algorithm, orthogonal rational functions
(ORF’s) and the perturbation of dynamic systems thery, that

reduces the degree of the expansion polynomials dse

As an application, it is shown the obtaining of apmximate

solutions to the longitudinal dynamics, vertical dpamics, steering
geometry and a tyre model, all obtained through dexlopment in
series of orthogonal functions with a computation mch faster
than those of its equivalents in the classic veheltheory. These
polynomial partially symbolic solutions present vey low errors

and very favourable analytical properties due to tleir simplicity,

becoming ideal for real time computation as thoseequired for

the simulation of evasive manoeuvres prior a crashrhis set of
techniques had never been applied to vehicle dynaos before.

Keywords Fast solvers, Chebyshev series, Theory of
Approximation, Vehicle Dynamics.

I. INTRODUCTION

WITHIN the work areas about active safety and collision

avoidance, nowadays it is being developed an ietezsearch
on obstacle detection and image processing, seR]18] and
[4], as not all the problems of global environment

seriousness and the vehicle's response withimitsament
when performing that evasive action. In order taleate those
possible evasive actions, it is necessary to psogasmulation
model of the vehicle working faster than real time.
Following the works by Margolis [5], Lépez [6] afdioriano
[7] the study of the dynamic behaviour of a vehiclea pre-
collision scenario, with at least a second in adeanequires a
model with ten degrees of freedom at least, pliyseamodel.
Supposing a scenario where a vehicle detects aaaksfor
instance a pedestrian in the middle of the road {&Eg. 1),
there may be several possible escape trajectdeegnding on
whether the evasive action is braking, a turn ef skeering
wheel or a combination of both.

Possible trajectories

Longitudinal
Acceleration

Fig. 1. Pre-collision scenario.

Evaluating all the possible trajectories and saigcthe one
requiring less force in the contact tyre-groundepiag the
contact stress within the friction ellipse (see.Hipand a safe

recognition surrounding a vehicle with its multiplegyasive manoeuvre, implies a very large computatitoad.

configurations and situations are resolved.

But even in the case of a complete and precisegrétion of
the vehicle's environment, the next step wouldheadefinition
of the vehicle's behaviour in an imminent danggrasion, its
correct action in order to avoid an accident oupedits
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The real time condition demands the time the complatkes

Of course, the risk evaluation at the end of thi@esteps, in

to calculate an integration stef) (to be less than the actualthe following second should take into account tlssible
integration step (t In order to guarantee the correctmovements of the obstacles on the road, measuradvanced

convergence of the equations system of the completiel of
a 10 DOF vehicle plus a tyre model, the integrastep, i
must be of 25 ms maximum, that is, 40 steps to Isitawa
second, see [6].

In order to simulate at least 1 s of a future sdento predict
the dynamic situation, position and active safetygim of the
car, (under certain hypothesis of inputs to the ehodriver
actions on steering and brakes) then the model rbast
processed 40 times faster than the real time dondiand all
this to get just one trajectory. If the goal is et@mluate 7, for
instance, (see Fig. 1) in order to choose the dmast then the
computation demand in real time using numericalhogs of
integration is multiplied even more, Fig.2 showsisth
computation timing scheme.

t;=25ms

Real time
axis g
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M M|--
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Fig. 2. Real time predictive simulation

In Fig. 2:

te: It is the computing time required by the procegdinit to
simulate one computation step, solving the setaflinear
differential equations of the vehicle dynamics plstyre
model. b are the measured driver inputs to the model, bgaki
and steering manoeuvers at the timevhen the predictive

detection systems and some hypothesis of the maximu
friction available in the tyre-road patch. A compfgoblem on
the whole. Obviously, the requirement of computsigower

is tremendous.

Nevertheless, when observing the possible escajetories

to avoid the collision without reaching situatiafslirectional
instability, leaving the road or wheel lock-upcidn be seen
that the curves are smooth, and maybe they could be
approximated with low degree polynomials avoiditpse
hundreds of thousands operations of the numerietthodls.

The goal of this paper is to propose a methodotoggbtain
approximate solutions to the non-linear equatioogegiing
the behavior of a vehicle's dynamics in order ttaivba more
efficient processing than the traditional numerinathods,
appropriate for real time computation, that wouwddilitate the
selection of evasive manoeuvers and avoid thesamtli

Fig. 2 shows that ifctis reduced, the final simulation time t
will be reduced 40 times more.

In order to achieve this general goal, a significeduction of
the computation load, the approach of this paprferget the
classic numerical integration methods and to apmgrahe
dynamic simulation in a different way.

To do this, different approximations and their éggion to
vehicle decoupled models are analyzed to search
approximate polynomial analytical solutions to thgamic
equations.

for

The methodology in this paper is the following:

1.- As a general approach, symbolic computing ézlumstead
of numeric.

2.- Search for pre-calculated solutions even thdabglsystems
are nonlinear, leaving for real time computing oalyart of
the computing load.

simulation starts. Sis the set of states, initial conditions of3.- Search for approximate solutions, accurate gmou

speed (measured as well) in the 10 DOF requirathtalate.
The successive states S’, S"M.®ill not be measured
anymore, but calculated as a result of the prevatep, as it
always happens in numeric simulation. To predietgbsition
and dynamic situation of the car in the next oreoed, some
hypothesis should be made about the possible dastons
during that second, they will be the hypotheticuitspl’y, 1"+,
...I"w . If the vehicle is “driver free” those inputs wdube
possible decisions considered by the computer todathe
hazardous situation. At the end of those 40 steps;omputer
has calculated (predicted) the position, dynanticasion and
active safety margin of the car in the followingsed. To do
this calculation, the computer has requiredhiiliseconds of
real time; being stthe simulation time. The condition for
predictive simulation of just one trajectory<tt) is 40 times
more demanding in terms of speed, than the real tiondition
(tc<t|).

It is clear than the predictive simulation requifed accident
avoidance requires far more computation speed ttiameal
time simulation.

solutions instead of the exact ones.

This leads to series expansions of the differerdguations
(DE).

But to find them, the series expansions of fundi¢mot DE)

should be first analyzed, for two reasons:

- Because they are the base to the DE expansions.

- Because one of the conclusions of [6] was that rtitae
a 50 % of the computation time in the dynamic satioh
of a car is due to the tyre model; for that reasismpaper
focus the series expansions of functions, on thebahic
equations depicting the tyre models. The most tffec
series expansions to approximate tyre models &imneh
functions, for that reason they must be includedhia
analysis, proposing a new tyre model much moreiefft
for real time applications, this is very importéetcause it
means a 50 % of the computation time.

4.- Some examples of application are presented.



TABLE |

METHODS AND TECHNIQUES

TECHNIQUE-THEORY APPLIED

COMMENTS

Power series
Classic orthogonal functions
Families of orthogonal polynomials

See bibliography. Not
detailed in this paper.

Il. APPROXIMATION OF FUNCTIONS

A.- Chebyshev Polynomials (ChP)

Basis for the method

B.- Approximation of functions through

General method of

Chebyshev Polynomials expansion of functions

C.- Approximation using rational functions
Pade, Chebysheb-Pade, Remez.

D.- Approximation using Jacobi
Polynomials

E.- Examples of approximations of functio
applied to vehicle dynamics

More accurate for tyre
models

More flexible. Used in
the new tyre model
A new tyre mode
Ackermann steering
mechanism

IIl. APPROXIMATION OF DIFFERENTIAL EQUATIONS (DE)

A.- Expansion of a DE in power series Slow convergence

Not used before in

B.- Expansion of a DE in Chebyshev series . -
automotive applications

Fastest convergence
Polynomials of reduced
degree

C.- Perturbation of differential systems

D.- Application example of perturbation Vertical dynamics

Maximum flexibility. Allows to choose :

- Inputs to the model

- Model parameters

- Initial conditions
As the unknown variable allows obtaining
pre-calculated solutions

E.- Partially symbolic
solutions

F.- Vertical model and 1 example

Examples of partially
symbolic solutions G.-Longitudinal dynamics. Succesive

Approximations and 4 Case examples.

Table | shows a summary of the methods presentddisn
paper which have been applied to vehicle dynanridssashort
comment about the reason or the main advantage usé. The
work flow of this paper follows the Table I.

More in detail, expansions in series based on lieery of
approximation of functions, expansions in poweresgrand in
Chebyshev and Jacobi series of orthogonal polyrnenaige
analyzed, generally used in the theory of approtionathe
convergence acceleration method of the power sesies
called economization, is revised.

Then, the rational functions are introduced, primgda more
accurate adjustment in multiple situations with@erefficient
processing, for instance, in tyre models; PadéGimebyshev-
Padé approximations, the Remez algorithm, and

Chebyshev and Jacobi expansions in series of Qottadg

Rational Functions (ORF’s). This study includes diféerent

quadrature algorithms that allow to obtain the eseri
the Chebyshev-Gauss-ttoba

coefficients, for example,
(CGL) quadrature, and its application to a suspensiodel is
shown.

Subsequently, the approximation of differential &tpns is
analyzed through the previous developments in seaied the
theory of perturbation of dynamic systems allowitige
reduction of the expansion polynomial degree idarpd.

As general mathematical tool, the symbolic calcolat
program (MAPLE) is used, which becomes a true latooy
where results from the different techniques arepamed with
a systematic valuation of errors in the resultseactd and of
the speed in the series convergence. A test-error
experimentation is carried out, testing the diffétechniques
in every model, as the approximation is good dejpgnan the
shape of the curve to be approximated.

The previous approximation methods are appliedifferdnt
models: tyre simulation, steering geometry, veltiead
longitudinal dynamics, which serve to illustrate tise of the
different described techniques while showing thegehu
reduction of computing time obtained when usingrapiate
solutions.

Some application examples are presented.

The set of methods and techniques given here, agyptied to
vehicle dynamics before, may be used in more comatel
integrated models as a follow-up of our researctkwo

Il. APPROXIMATION OF FUNCTIONS
A) Chebyshev Polynomials

An introduction to power series, classic orthogdiuaiction
series and orthogonal polynomials can be foun&jn9] and
[10]. Now Chebyshev polynomials are briefly intradd as
they are the base of all the approximation techesgand an
essential element in the content of this paper.
Chebyshev polynomials [11], [12] of the first spEciare
defined by:

T, (u) = cos[n. arccos(u)]

1)

and fulfil the property of being orthogonal regaiglthe weight
function wu)= 1-u2)™* in the interval [-1,1].

The independent variable has to work, usually, iffeent
orthogonality intervals[a, b], for instance, in dynamic
systems, the variable is tinteand will vary between the
simulation's initial time and final timtin, tfin]; then the
following transformation will have to be performed:

tzbm_l_cztﬁn_tin m+tfin+tin )
2 2
The first Chebyshev polynomials are the following
-1 - — - — 92 _1 -
Tu)=1; T(u=u; T2(u)—2u 1; 3)

T3(u) =4u3-3u ; T4(u) =gut-8u?+1 etc.

tHdey can be computed and manipulated using MAPLE's
Orthopoly library. In [11] formulae to obtain integs,
derivatives and products of Chebyshev polynomias be
found.



B) Approximation of a Function
Polynomials

The continuous-infinite expansion of a functiordhebyshev
series is as follows [11]:
[ee]
fuy= % 'a T,U) (4)
n=0

where the single quote mark of the summation indahe
first term must be divided by two. The coefficieméke the
value: 2
a, = ;jfl(l— u*)™ f(u)T, (u)du (5)
When truncating the series at tNedegree, an approximation
to the function is obtained, the more accurategtieater is.
The truncation at a degree N-1 is the best appratkim to the
N degree Chebyshev Polynomial. This is called esopation
and it will used at Table IV several times.
If f(u) is a polynomial, then a closed form solution fbe t
integral (5) can be found. This will allow to comv@ormal
polynomials to Chebyshev polynomials. It is an etiom, as
usually for other non polynomial functioriqu), quadrature
formula must be used. In this cases, a Chebyshswraie
expansion can be used as seen in [13], for exaappked to
the approximation of the involute function in [14].

C) Rational Functions

Rational functions are essential when approximdtimgtions
with areas of sudden changes, for instance, thmseaaing in
tyre models. In this case, the direct expansiofebyshev
series does not converge properly and it is necgtisa use of
rational functions. That is the reason why theyiactuded in
this section, as they are an essential elemerteirptoposed
methodology. A rational functior(x) with a N degree looks
this way

_p(X) _ pgt px+---+ ppx”
r(x) =22 = 3
ax)  do+ X+ QX

(6)

through Chebyshevn [18] and [19], the theory of orthogonal ratiofahctions can

be found, which allows the expansion of functiamséries of
rational functions. The authors of this articleyééound a very
efficient approximation of the magic formula tyreodel

expanding that formula in series of Jacobi polyradmiof

ORF’s, (see Il.LE.1).

D) Series of Jacobi Polynomials

Within the families of classic orthogonal polynoisigenerated
from the Sturm-Liouville differential equation, fro which
Chebyshev polynomials also derive, Jacobi polyntsrita(x)
are now consideredee [10]. They are orthogonal in the interval
[-1,1]. The weight function in this type of polynomial iset
following:

w(x) = (L= x)°.(1+x)";
where 0 and y > -1

)

The two parameterd andy allow choosing the area of a best
approximation at the orthogonality interval. Thiglallow us
to improve the adjustment of the error at any afethe curve,
for instance, to obtain a cero error at the orafithe interval or
at the end.

Jacobi polynomials can also be computed and maatgull
using the MAPLE Orthopoly library.

The expansion of a function in series of Jacobympaials
uses the same expression (4), but using a Jacoightve
function this time. The integral must be programrbedause
a library for expansions of functions in Jacobiieris not
available.

E) Application examples
1.- Example 1.- An efficient tyre model.

Tyre behavior is a major factor of influence iniaetsafety,
see for example [20], [21] and [22]. Besides, adiogy to [6],
more than a 50% of the computing time in a vehilgleamic
simulation is due to tyre modelling. A lot of tymedels can be
found in bibliography. One of the most accurate andely

Wherep(x) andq(x) are the polynomials whose degrees add'S€d is the the well known model of Bakker, Nybary

N = n + m A rational approximation of degree N at the’@cejka, see

numerator and M in the denominator will Benoted as
[N, M].

Padé rational approximations [9] allow the achiegamof
rational expressions with numerator
developed in power series.

[23], [24] and [25], is a semi-empiie model
based on the so called “magic” formula:
Y = D.sin[C.arctan(BX—E.[BX-arctan(BX)])] (8)

The shape of the curve is controlled by the fouapeetersB,

and denominator

The Chebyshev-Padé developments allow to obtainemdr: D @ndE. The equation can calculate:

compact and exact rational expressions with Chehysh
polynomials both at the numerator and the denomingtey

get good approximations but not those of a minimum

maximum error (the so-called minimax). In ordefita them,
the Remez algorithm is used [15], [16] and [13]jchhstems
from the Chebyshev-Padé approximation and tunesethgt
using numerical iterations converging in betterragpnation
for both rational and polynomial functions. Thetjfisation
and theoretical basic principles of these methaashbe found
in any book on the theory of approximation [17]isSTRemez
algorithm is implemented in MAPLE's Numapprox lityra
with theminimaxfunction.

Longitudinal force Fy and lateral forceFx as a
function of longitudinal sligK (in %) and slip angle
of the tyrea, (in degrees) respectively.
Self-aligning torqueMz also as a function of slip
anglea.

B, C, DandE constants describe: the inclination of the curve
at the origin BCD), the peak valuel)), the curvatureH) and
the basic form ¢) for each case (lateral, braking or self-
aligning torque).



In [26], rational approximations and approximations in Jacobi
series of ORF’s to this magic formula have been presented.
They are degree 3 polynomials and they simplify the model
drastically with very low errors, < 1%, allowing the calculation
of both longitudinal and lateral forces in a computing time that
divides by 20 those of the original formula (a 95% computing
time saving); the resulting final model is:

X X

)+Co(——)2 +Ca(——)  (9)

f(x)=C, +C
() 0 l(x+b Xx+b x+b

The optimal factobin each case varies willz. As an example

it is mentioned the original formulation in the goatation of
the longitudinal forces:

Fx=1122.7.sin(1.65.arctan(0.0644.x+0.536.arctat@3 x)))

And the approximation obtained through expansion in ORFs
Jacobi polynomial series:

Fxap= 0.07759+ (1238.28+(3235.35- 3866.727.v).v).v
being v=x/(x+5.5)

which is an outstanding effective processing pofgiab with
a maximum error < 1% regarding the original equatias it
can be seen in Fig. 3, where the curves practioatylap. Fig
4, shows the error between both models. Obvioutig,
polynomial model

easily and the abscissa of maximum value can beuoted
with no difficulties.

Longitudinal
Force (N)

10004

$00

600

Magic Formula tyre model
400

Polynomial aproximation
2004

Longitudinal slip (%)

0

0 20 40 60 80 100

Fig. 3. Jacobi aproximation of the magic
formula tyre model.

In the real time simulation, as explained in settip the

has highly advantageous analytic
properties: they can be evaluated, derivated aediated very T

Absolute error (N)
6 E

Longitudinal slip (%)

20 10 60 50 100

'
)
L

-6

Fig.4. Absolute error in the aproximation of
the magic formula tyre model (N).

2.- Example 2. Approximation of the Ackermann Gedme
Condition of a Steering Mechanism

The well known Ackermann condition relates the steering
angle of the two interior and exterior wheels so that the

rpendicular to the median plane of the wheel passes exactly
through the same point Iy, the instantaneous centre of rotation.
he difference of the cotangents of both angles has to be the
equal to the quotient between the track v, and the wheelbase of
the vehicle b.

Ccotglont — COtGSips = % =7 (10)
Given a steering angle value 8int, the exterior angle is
calculated with the expression:
Soxs = arctan(—lnt) (11)

1+Z.tan(8int)

Expanding the previous equation in Jacobi polynomials [1,1]
of rational functions, the following approximations can be
obtained:

Sint
a;+a,.0ine

Sext = (12)
As a numeric example, the data of a vehicle with a maximum
turn of 40° are shown, with the following values of wheelbase
and track: b=2700 mm; v= 1515 mm; Z=0.561; a’1=2.1547;
a’2=2.21; d=-1/2;y=-1 and a relative maximum error Ere]
max=2.5 % and an absolute maximum error Eagbs max=15 E-4
rad= 0.0859°=0° 5,15".

Fig. 5 shows both curves, Ackerman's exact and approximate
which almost overlap, altogether with the bisector
corresponding to the parallel steering.

Evidently, as a’; and a’, are similar, it could be assumed that
they are the same, generating the following ultra-compact

computing time can be reduced drastically usings thfXpression:

polynomial model (95% of saving) obtained by series

expansion of the original Magic Formula, giving mdree
time for data acquisition, simulation, risk evaloat or
decision making on real time.

’
a18int Sint

ar1+8ine  1+az.Sine

(13)

Bext =

a'1 =a'»=1.949; a=1/a’1=0.513; d=-1/2; y=-1,
Erel max:085 % andgabs max_-44 E'4 rad = 0252:00 15,12’



Bex Rad

] O..:=6;
ext mt //

Parallel steering

0.5+
0.4
037 ol Ackermann and
] Approximate
023 steering.
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Fig. 5. Approximation of the steering
angles.

These errors can be assumed or not depending on the
application. As the quotient Z=0.561 of this vehicle is a very
common value, it can be accepted that these approximations
are valid for a wide set of cars.

Obviously, these approximated expressions have a much more
efficient processing than the original formulation. The time
loops tested show a processing 140 times faster than the initial
Ackermann equation.

Chebyshev rational expansion in series [1,1] generates lower
absolute errors than Jacobi's; it is the particular case of d=y =-
1/2; but it does not have a null error at the origin, which would
imply that in the straight line the inner wheel has a zero angle,
but the exterior one is turned permanently 12E-4 rad=0°4,12¢,
which cannot be assumed conceptually.

5 0.0010538 + 0.838219. &,
¥t 0.866565 + 0.38226. 5,

Chebyshev expansion in series [2,0] does not pass either
through the origin and has an absolute error of euss mar= 24E-4
rad, (the double of a rational one).

Expanding in Jacobi series [2,0] with a null error at the origin,
the maximum error is &ups max=32E-4 rad, more than the double
than Jacobi rational [1,1] with the same number of parameters,
2.

The Taylor series expansion converges very slowly and, in its
2 degree expansion, presents an absolute error €ups max= 950E-
4 rad = 5° 26.4° absolutely inadmissible, and in the 3 degree
ONE an error  &€abs max=127E-4 rad = 0° 43.65” , which is still
around 10 times greater than the Jacobi rational expansion of
degree [1,1].

Of course, the Chebyshev rational expansion [2,2] generates
much lower errors: €ps max= 17.5E-6 rad = 0° 0’ 3.6”, but with
a bit more of computation.

Table 2 shows a summary of the previous approximations,
indicating the error and the number of Floating Point
Operations (FLOP). The ORF’s [1,1] Jacobi expansion in
series is the one generating the fastest convergence and the
most compact expressions with the most reduced errors, the
error passes through the origin.

TABLE Il.
APPROXIMATIONS OF THE ACKERMAN’S CONDITION

Absolute error Rad x

Expansion 10E-4 (grad) FLOP
Taylor 2
950 (26,4 3
é‘(-zxt ~ ‘Sint —K. ‘Siznt ( )
Taylor 3 ,
Spus ~ —K.82, + K253, 127 (043,65) 8
Chebyshev [2,0] .
24 (08,24 5
6ext ~ az + a4-6int + as. ‘Siznt ( )
Jacobi [2,0] ,
32 (11 4
Oext ® A4-Oine + a5-6i2m ( )
Chebyshev [1,1]
P s ay-Oine 12 (04,12 5
ext ~ T | o
a; +a;. 6,
Jacobi [1,1] s 15 (05,15) 3
int ’
Bexc = ay + ay. 8y
int ,
~ 44 (@ 15,12 3
Bext 1+ az. 8t ( )
Chebyshev [2,2]
+ az. i + 4. 82
S w2 Do Tl | 017 (00'367) | 11
as + Q6.6 + 7.4,

The use of those formulae can also save time during the car
simulation, as explained in section I (the computing time is
divided by 140). Starting from the steering wheel angle, we
must obtain both angles in the inner and outer wheels related
by the Ackermann condition to use them as inputs for
simulation.

Some additional uses of those formulae can be done in other
environments, for example to simplify the equations governing
the Ackerman steering robots, for real time situations, see for
example [27].

Once analysed the expansion of functions in Chebyshev series,
the expansion of differential equations is introduced.

. APPROXIMATION OF DIFFERENTIAL
EQUATIONS

A) Expansion of a Differential Equation in Power Serie

Although expansions in power series converge in a slower way
than Chebyshev's or Fourier's, the authors of this article
explored their application to active safety allowing to calculate
the stopping distance and braking force required to stop the car
in a given distance using very compact expressions and
avoiding numerical simulations, see [28]. On the other hand,
as the composing of differential equations in power series is
the same as in Chebyshev series, it is shown as an example of
the technique used. The power series method to resolve a
differential equation consists of substituting the power series:

y = Zm: c,Xx"
n=0

in the differential equation, previously derivatéa determine
later the coefficient values, ¢, &,..., equating the expansion
term by term so that the power series fulfils tligecential
equation. When truncating the series at a certagret (for

(14)



instance, 4) a certain error is generated. Theresipa degree
can be reduced by economization (see I1.B).

Before substituting the power series (14) in a differential
equation, derivatives y’, y”...can be calculated with a simple
procedure consisting of writing the addition of the derivatives
of the individual terms in the series for y.

B) Expanding a Differential Equation (DE) in Chebyghe
Series.

The same methodology used in the development of power
series can be applied now, but first it should be changed the
domain from ¢ to u, which works in the interval [-1,1], as seen
in (2), and modify the DE accordingly. Expanding in terms of

the speed, we get: N

X'(u) =Y 'CiT(u)

i=0

(15)

expressions of x ”(u) and x(u), can be obtained integrating and
deriving the expression of x’(u).

Now the differential equation can be composed, expanding
each Chebyshev polynomial and collecting it in powers of u
according to the identity principle. In order to fulfil the equality
all the coefficients of the expansion in #’ must be identically
null, which generates a system of equations whose solution
calculates the coefficients of the three expansions x (1), x '(u)
and x(u). It can be improved a lot the accuracy of those
solutions, for the same degree of polynomial, using the so
called perturbation methods, as follows:

C) Perturbation of differential systems.

This theory was initially developed by Lanczos, 24 and

[11] for applications. This theory states that fifetfinite

expansion of an equation in Chebyshev series appataly

fulfils the integrated equation of an ODE, it isspible to find

a small perturbation term of that equation, sotthaexpansion

of y(u) exactly fulfils the perturbed dynamic equation.eTh

number of perturbation terms depends on the nurabeon

fulfiled equations resulting from the truncationtbé series at

N degree when equalling term by term the resulthgbyshev
series coefficients of the complete assembly ofdjeamic
equations. Using perturbation terms, the degreethef
expansion, or the error for the same degree casirbagly
reduced (see Fig. 7-8).

D) Application examples

1.- Example 3.- Expanding the Vertical 1 DOF Modtel
Chebyshev Series.

The 10 DOF model mentioned in section | includendpled
vertical suspension submodels; for that reasondéweupled
1 DOF model is expanded in Chebyshev series.

In the simplest case of the 1 DOF vertical modse(Fig.6),
when expanding in Chebyshev series the differeatjahtion,
the set of perturbed equations is the following:

YW=Y'G.TW ; yu)=[yu).du ;
i=0 (16)

y'(u)= %) i Pert(U)= 7, Ty_o(U)+ 7,. Ty_y(U)

%y"(u)+ R y'(u)+ K b. y(u)+ Pert(u)+ Exqu) =0

Sprung m
mass

A
Suspension LJE R E K | Y

A

aexct

Ground 7222720 00
Fig. 6. 1 DOF suspension model.

For example, assuming=12.000 N/m, R=800 Ns/nand
m=300 kg with the initial conditionsy=0.1, w=0.1, tn=1.5
s and the following excitatiorExc=2.h.t/a%+3.h.t%a?, with
a=3 andh=2000, with an expansion of degree ,Ifigures 7
and 8 show the difference between applying or rat t
perturbation terms:

y'(©) (m/s)

0.1
Time (s)

0.3 15

0

Fig. 7. Vertical speed y’(t) in the vertical
1 DOF model without perturbation terms.

y'(t)
(m/s)
Time (s)

15

0

-0.1

Fig. 8. Vertical speed y’(t) in the vertical
1 DOF model with perturbation terms.

The solution of this vertical model, for exampldtwan
expansion of degree 5 in terms of u is:



v(u) = CTO +C,T,(u)+C,T,(u) +C,Ty(u) + 17)
C,4T4(u) +CsTs(u)

y’ (D) (m/s)

Time (s)

The maximum errors in this case are 0.05 m/s withou 02 o 05 o8 1 12

perturbation terms and 0.00002 m/s with perturlpatio

Converting the expansion (17) in a normal polyndmia o

substituting the Chebyshev Polynomiaia) for its values, see
(3), a polynomial solution of the vertical spesdobtained.

Some interesting applications can be found if thtues of

some parameters are not assigned, let's see it.

E) Partially symbolic solutions

If some of the values of the different model parters initial
conditions or the excitation are not assigned, chixepartially
symbolic solutions can be obtained. The numeriea pf the
solution is pre-calculated off-line and the symbatiart is
calculated on real time, in function of the inptdshe model,
measured on real time, let's see.

F) Solution of the vertical model with initial condins

Fig. 9. Vertical speed y’(t) in the vertical
1 DOF model with m approximated
from [6,6] to [2,0].

with a very low error (<1%). If the undefined parter is the
massm for example, maximum and minimum values for
have to be defined, that is 250 kg and 400 kg dmfl e
Chebyshev polynomials to the orthogonality intefval.1] as
explained in equation (2).

(Yo,v0), excitation and parameters (m, K or R) not define This method, inserts the theory of approximatidno the series

If the vertical force of excitation is a cubic sy
Exc=Cio+Ci.t+Crp.t>+Crs.t3, being knownK, mandR, the
coefficients of the Chebyshev series representingystem
response have the following form:

Ci = Pyoi- Vo + Pyoi- Yo + Prxcio- Cro +
+Pgxcit- Cr1 + Pexciz- Cr2 + Pexcis- Crs (18)
WherePyoi, Pyoi, Pexcij are numerical coefficients.

In [30] it is fully explained the development in €dyshev
series the suspension model of 2 DOF of a quafi@wehicle,

obtaining very compact polynomial solutions regagdihe

initial conditions and excitation, (being known athe

parameters of the model). The expression of thergéterm

is presented and it is also shown the enormousoimepnent in

the computational efficiency obtained by means lof t
method, with low frequency vertical excitations.

But this paper goes a step beyond, leaving undgfime model
parameters too. This can be useful, particularlyhwhe

variation of the vehicle mass, which depends oridheé of the
vehicle and it is not a fixed parameter. It shdpédestimated
when the trip begins.

If, in addition to the excitatiofExc and initial conditions

resolution of the differential equation.

1.- Example 4.- Obtaining a pre-calculated respondea
vertical 1 DOF model in function of initial condtis,
excitation and mass.

Model of 1 DOF, forced vibration. Mass initial conditions
Yo, Wo and the excitatiokxc,are now undefined:

In this case, the initial conditionys, b can be measured in real
time using sensors of displacement in the suspenalso the
road profile (and its associated vertical excitatican be a
function of the car situation (obtained with a GBSexample)
or it can also be measured using laser sensow@l\sithe mass
depends on the load and it can be estimated wherrigh
begins, using the same displacement sensors. Thieave
response of the model is a pre-calculated polynlofuiection
of those variables, measured in real tymew m, andCs and
the final response can be calculated very fast kanma of
equations (17) and (18).

EXc = Go+C.t+Cp.t>+Ci.t3 being Co=0; Ci1=0;

Ci=3.h/&; Ci=-2.h/a® ; a=1.5; h=3000.

Expanding until ti» =1.2 s with a degree of the expansion
N=6, with R=800and K=1200Q

The coefficients Pyoi(m), Roi (M), and Pexcij(m) can be

(Yo, W), neither one of the three parameters (only ose) approximated using a Minimax-Remez [2,0] assgmi
definedK, morR, thenPyoi, Pyoi, Pexcij in (22) are not constant 250 kg< m< 400 kg.

anymore, but they are rational functions in the afimd

Fig. 9 shows the results in speed, for300, vo=0.1m.s! and

parameterrl, Kor R). The maximum degree of those rational=0.1m.The numerical calculation and the approximate one
functions is[N,N], depending on the order of the coefficientalmost overlap.
and on which parameter is undefinédis the degree of the The number of FLOP is 96, it can be consideredttieat

expansion.

Those rational functions can still be approximatedimple
polynomials of degree 2 or 3 at most, in functidnttoe
undefined parameter using the Minimax-Remez allyor;it

numerical integration of the Di.a(t)+R.v(t)+K.y(t)+Exc=0
using the most simple (and fast) integration mettiader),

with integration step = 0.025 s (40 steps per sé¢cand

tin=1.2 s, requires at least 9x48=432 FLOP. Using the 4-step



Runge-Kutta method, then number of FLOPS is X(O=%y+ [\t ;
approximately 4 times bigger (1728 FLOP).

Even though the preparation of the approximatiogs@nted v(t) v ——j(K
here is obviously more complex than the numeritaigration,

the real time execution is much faster. Beinghasmassnof Beingxo the initial condition of longitudinal displacemearid
a car changes only once every trip, ties(m), Roi(m),and v the initial longitudinal speed.

Pexcii(m) are constant and the number of FLOP is reduced The second approximation to the speed can be eotdiom
24 instead of 96. the previous:

Different areas of application could be exploreavad: X (1) =Xy +[ (Bt ;

- Diagnostics and parameter estimation; for example
leaving undefined the damping coefficient R, it dem V(=Yg *f(KaVl(t) + K1) + Ky + K, +Exqdt
easily obtained the expected response in functiéhand
compare it with the measured responses for giveuesa Taking N=3 initially. As in (21), the speed is squared, an
of mass and excitation, using Kalman filters anépproximation of degree 6 is obtained; it can lduced to
estimating in this way the state of the damper. degree 3 truncating the Chebyshev series, obtaiait§0%

- Control of semi-active suspension systems. Theoresp Symbolic solution.
of the suspension for different values of R, can b the final step (calculation ok{u)), the polynomial is raised
calculated extremely fast using (17) and (18), idgpt to degree 4 due to the integration.
to every excitation frequency and avoiding numérical 0 approximate the series, the independent variabig work

(20)
+K1xl(t)+K +K +ExQ dt

(21)

simulation.
G) Symbolic Solution of the longitudinal model

Now the longitudinal dynamics model of a vehiclamalysed,
performing an approximation of the whole model.
nonlinear equation describing the longitudinal dyies of a
car is the following:

2 2
d“x dx .
m[Edtzj"'Ka@dtj +K1X+KO+Kr+EXC_O )

(19)
_ 3
Exc-CfSt +Cf2t +Cflt+Cfo
Table Il shows the notation:
TABLE IIl

TERMSOF THELONGITUDINAL DYNAMIC EQUATION.

Vehicle mass equivalent,
m including the rotating masses
effect
1
K_==[C [A, [p Longitudinal aerodynamic drag
a 2 x f
C Longitudinal aerodynamic
X resistance coefficient
As Frontal area of the vehicle
yo, Air density
K, =miglf, Rolling resistance force
f; Rolling resistance coefficient
Plsin@) = Pltan)
d Gravitational force, assuming a
y— K X+ Ko road with parabolic profile
d

Braking force, as a
cubic splin

Exc=C;5 [ +Cy, 2 +C;y B +Cy

In order to find the approximate solution of theiatipn (19),
the most efficient approach is the use of symbsliccessive
approximations, with only one iteration. It prodsdew errors
(< 1%) for short intervals of time (2 or 3 s), wamumber of
operations quite reduced.

The first approximation to the speed is the follogi

The

in the domain of u [-1..1]. In the transformatieb.u+c, (see
(2)), it appears the Jacobian tebyrbecausealt=b.du.For that
reason, the equations (20) and (21) have to be fraddas
follows:

)&(u) =Xt tjv du= by, .u+>g0+bv0: iR’

vl(u):v mj(K n Kl >&(u) + K + K +Exc(u)du (22)
Xz(u) = (XZQJ + bJ‘ \{I_(U)ju), (23)
v2(u)=v2m—%j(K (u)2+bK 1% (W) + K+ K +Exou))du

As the values of the initial conditions are known=0, u=-1,
it happens that xq, # Xoq, ; Vioy # Vog, - Considering a

simulation betweerti,=0 andtsin =2, then b=c=1. We wiill
continue with those values to avoid drag them. dditoonal
assumption i%=0. Table IV shows the “cascade” code.
The term “cascade” means that every term in Takldsl
computed from the previous, following equations)@a2d (23)
in a descending work flow:

AOERICRVIE

VOERICEAORP = CO)E

X5 () = F(u vy(u) X50,);

Vo) = F (U %, (W), Vo V(W) K", Exdu))

Being K* the parameters of the modai, Ky, K1, Ko K;). The
calculation requires 186 FLOP.

The numerical integration of this nonlinear diffietial
equation, using the Euler method requires 18 FLG@P p
integration step, about 1440 FLOP fa=2s with 40 steps
every second. This method divides the computing tim 7.7,
saving the 87% of the calculation.

If N=4, then FLOP=221, obtaining an even better accuracy.
An important advantage of this method is that teé of
calculations shown at Table 1V is fully symbolio, the terms
that will not change can be pre-calculated andréise can be
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measured with sensors (braking actions, initialedpeslope As a particular case, the coefficients of the speddnction

etc.).
TABLE IV
APPROXIMATE CALCULATION OF V(t) USING SYMBOLIC
SUCCESSIVEAPPROXIMATIONS

Calculation FLOP
b, G b=(tsin-tin)/2 ; c=(tinttin)/2 ;
' tin=0 ; t;n=2: b=c=1; N=3; X,=0
o Vo2 =V % Ci=Cio+Cr1+Cpp+Cis
Auxiliary terms Roe=Crt Ko+K VoK og Ko Vo F=1/m 11
Xio. N (22) X10(U) = b\ +Xo= Vo
x(U) in(22) X1(U) = Vo.U+Vg
. Vioi= Vo -I.[2.(Ka.VoztCio +Ko + Kioa )
Viou in(22) K W+ Cu]/2 11
Vi =- 1.Crl4;
. Vi3 =~ r.( Cf2/3+Cf3);
vi(u) in (22
(u) (22) V2= - (1/2).(Ke.Vo+Ci+2.Ci+3.Cra); 25
V1= - I.Ro;
Vo= - I.(Craf3 + Cgld) + Vaoy;
Economization | Viz =Viai: Viz= Viai+Vial;
of Vl(U) from 4 V11= V111; Vi~ VioL - V14|_/8; 3
to 3 Vi(U)=Vig+ Vi1.Us Vio. WP+ V132
: Xz0~= I.[(20.K1+60.m).\4+20Cy+
Xeou 1N (23) +27.G:+25.Co-30.R}/60 14
Detail of next calculations ommited for clarity
X(U) in (23) - 4
Economization okq(u) from5 to 3 - 6
va(uy - 20
Economization of:(u)? from 6 to 3 - 11
Vaou in (23) - 21
Vo(u) in (23) R 34
Going back to the t domain [Qa} tin=2 26
TOTAL 186

Thus, the solution indicated in Table IV can bestcally
simplified if the goal is to represent the solutiarfunction of
one or two of its parameters for a more detailealyesis or fast
computing.

1.-Example 5Calculation of the speed and position of a car i

the following seconds in function of a constantkiorg and
initial speed.

Considering just a constant brakiegc=CGo from an initial

speed y, the resulting speedt) calculated in Table 1V is now

reduced to the code (24):

Vie= N Vo> +ni.vo?+ (. Cio+Nij).Vo

Vis= Njj.Vg* +(njj. Ciot+ nij).V02+nij.(Cfo"'nij)-(cfo"'nij)
Vo= Nij.ve*+ni w?+( nij +njj .Gio)-Vo

Va= Nj M2+ Nj.Ciotni Mo= Vo

V()= Vio+ Vig.t+ Vio. 2+ via 3+ v t?

(24)

Where n;j are numerical coefficients (all different and pre

calculated). This calculation requires only 42 R.O

It is supossed that all the other parameters &eel ficonstant

slope, constant mass, aerodynamic drag etc.).

4- Example 6Calculation of the speed and position of a car i3~ -2.85E-11 . @*-5.57E-7. G - 0.00092

the next 2 seconds in function of the initial spgieen a fixed
braking action.

of v, for a given fixed braking action, take the venyple
following form:

Vii=Nio+Niz.Vo+Niz.Vo?+Niz.Vo>+Nig. Vo* (25)

2.- Example 7Calculation of the speed and position of a car
in the next 2 seconds in function of the brakintoacfor a
fixed initial speed.

v(t) can be expressed in function@f, obtaining coefficients
which are polynomials of degree 2i=Cio+Ciz.Cio+Ciz.Cio® .

3.- Example 8. Calculation of the minimum brakimgcé
required to stop a car running at 20 m/s in 3 seon a
descending slope of 6 % under uncertain frictionditions.

In this example, the car n°2 is detected approgabim car (N°
1). In 3 seconds both trajectories could cut.

It could lead to a risky situation or not, depermgdan the next
trajectory and speed evolution of the car N°2. &letronic
driver of our car N°1 must be prepared for botmades, a
possible crash or not. It must know if a brakingueaaver could
stop the car in 3 seconds but the friction coedfitibetween
the road and tyres cannot be estimated in a venyrate way
(as usual). It is not raining, the friction coeféint u in a
normal road could take values between 0.6 andahigh, for
a normal passenger car, usually leads to maximilowed
decelerations betwedh6 gand0.9 gand maximum braking
forces (in the best case) betw&e6.M.gand0.9.M.g(between
10594 Nand15892 Nin our car)

Data:

Mass, m=1800 Kg. Measured when the trip beginsgutie
suspension displacement sensors.

Aerodynamic drag k=C«.As.p/2 = 0.5 obtained from constant
data of the vehicle (It could be tuned if a windigvopen).
Rolling resistance force K170 N (assumed constant).
Slope = - 6% obtained by means of the GPS whichtéscthe

"bxact situation of the car (assuming that the e@rjprofile of

the road is also in the data base). It can be iesiavith body
level sensors and suspension displacement sensors.
The equations (24) become:

Vie= 9.91E-11.4%-1.83E-9.y*+ (1.98E-10.Gy+1.34E-6).%

Vig= -7.1E-12.\0* +(-2.85E-11.Go-7.46E-7).%-
2.8E- 11.(G+17885).(Go+1229.5)

Vo= 7.7E-8.%>*-1.85E-9 .¥’+( 0.0027+1.54E-7.6).\o

vu= -0.00027 .$-0.00055.%-0.68 . o= Vo

V(t)= Vio+ Vin.t+ Vo P2+ Vg 3+ via t

(26)

These (26) are pre-calculated from the mass estimathen
the trip begins.

Running on real time, our electronic driver knoe turrent
speed of the cargw20 m/s, for this speed, the equations (26)
become:

vii= 3.96E-9 . +0.000027

(27)
Vo= 3.08E-6.Go+ 0.0558 .

Vii= -0.00055.Cf0-0.794 ; ¥ Vo

V()= Vig+ Vir.t+ Vi 124 via B3+ vyt



22 FLOP have been used to obtain the new equatits
In t=3, v becomes just a function of the constant brakingefor
Cro:

v(Cf0)= 18.09 - 0.0016.Cf0 — 7.71E-10.Ef0 (28)

20 additional FLOP have been used to obtain (34)setroot
is Go=10888.5 N which requires 6 additional FLOP plus
square root.

The result in this case indicates that the forcpired to stop
our car in 3 seconds (10888.5 N) is very closehtolowest
requirement of friction in the tyre-road contactgba(10594
N) or in other words, the braking required deceierawould

be 0.616 g=6.05 m%in the upper limit of moderate braking

manoeuvers. During normal driving conditions in epen

11

Accurate “enough” solutions, instead of “the most
accurate” solutions.

Solutions valid only within a limited range (of témof
values of the parameters, of frequencies, respoatsds
instead of general validity expressions. That mealapted
solutions for every situation and/or application.
“Cascade” symbolic code (see Table IV) with diffare
operations instead of
integration. That means a more complicated work of
preparation for the engineer, but finally less catagional
load for the computer.

Insertion of approximation theory within the prosesf

solving the differential equations.

=N

Using these techniques and methodologies, the violp

road, decelerations betwgeq 0 and 3%ars normaj, be_tween savings of computing time have been obtained irekzenples
3 and 6 m.2only appear in risk or unexpected situations angpqwn:

beyond 6 m:$3means that a high risk or accident situation is

happening (or a hard sport driving). A car with A& easily
reach such deceleration of 6 fian dry asphalt.

58 FLOP plus a square root have been used indottie real
time calculation, that means few microseconds iadanced
on board microcomputer with floating point operafo
capacity.

In just 0.1 seconds our electronic driver could fqren
hundreds of calculations like this one (of courspehding on
how fast the computer is), watching continuousby skkenario
and possible maneuvers and situations in the ngaref
evaluating the best possible decision to avoidcaidant.

Any numerical integrations have been performed, thet
solution of the nonlinear differential equation 1tas been
approximated by means of a series expansion.

Similar expressions for any other combination afapaeters,
excitation or initial conditions could be obtainedhese
analytic approximated solutions to the nonlinedfedéntial
equations, expressed in terms of initial conditjonsdel
parameters and excitation, can be integrated iot@momplex
models of vehicular dynamics.

IV CONCLUSION

In this article a methodology has been presentedbtain
approximate solutions to some of the equations ingnthe
vehicle dynamics through developments in serieses&h
approximate solutions show a very efficient compataand
they are adequate for real time calculation in tebedc
collision avoidance systems. In other words, thatgms of
the mechanic behaviour of a car have been adaptadaster
electronic computing.

Some of the approaches of this work to vehicle dyna
simulation are unusual:

Symbolic computing instead of numeric which istself,
an innovative approach.

nonlinear differential equations.

Pre-calculated solutions.

Systematic use of polynomial and rational solutiatéch
allows a very fast processing on real time.

Obtaining analytic solutions (approximated) everr fol4]

95 % in the tyre model

99.99 % in the steering geometry model
77 % in the vertical model (at least).

87 % in the longitudinal model (at least).

Some application examples have been presented.
Although some of the simulation models here prexkate not
very complex, the main contribution of this artickensists of
showing the use of theories, techniques and metludds
approximation of functions and differential equasdn this
field, as they have never been applied to vehigieachics
before.

This fast computing techniques presented here eapplied
in the set of strategies and algorithms of theairfvee car, in
which the speed of computing is a critical factspecially if
the electronic driver takes the control during\axafety and
accident avoidance manoeuvers.

As future follow-up for this research, the methadpl here
proposed can be used in more complex and integnatelels,
specifically it has to continue integration of thertical model
of half a vehicle (the bicycle model) to lateralndynics
models, to the integration of the tyre model wilte ttwo
previous ones and, finally, to the integration lie tomplete
model 10 GDL plus the tyre model, using the todkntified
in this article.
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