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A stochastic generative model of 
the World trade network
Javier García-Algarra  1*, Mary Luz Mouronte-López2 & Javier Galeano  3

The World Trade Network (WTN) is a network of exchange flows among countries whose topological 
and statistical properties are a valuable source of information. Degree and strength (weighted degree) 
are key magnitudes to understand its structure and generative mechanisms. in this work, we describe 
a stochastic model that yields synthetic networks that closely mimic the properties of annual empirical 
data. the model combines two popular mechanisms of network generation: preferential attachment 
and multiplicative process. Agreement between empirical and synthetic networks is checked using the 
available series from 1962 to 2017.

International trade is the circulatory system of global economy. The flow of goods and services may be modelled 
as a bipartite network with two classes on nodes: exporters and importers. These nodes are tied by the existence 
and intensity of exchanges.

The study of the statistical and topological properties of the global trade as a network has been an active 
research topic in recent years. In these studies, degree and strength are two key connectivity properties of each 
node. Degree is the number of links to nodes of the opposite class, while strength is the sum of weights of those 
links. For WTN nodes, degree is the number of countries they trade with. Each link is weighted by the trade volume  
between both nodes. Strength accounts for the total ammount of trade of a particular node and equates the sum 
of weights ot its links. Probability distributions of degree and strength shed light on the network properties1. If 
the network is scale-free, these distributions follow a power-law2, also known as Pareto’s law in Economics. Trying 
to fit empirical data to a power-law has been a common procedure in network analysis, despite the fact that this 
behavior is not universal3.

The log-normal distribution is a second possible choice in many fields, but specially in Economics4. The 
discussion about the best model has run for a long time, because both may fit the long tail of some empiri-
cal series5. The hypothesis of log-normality dates back to the end of the XIXth Century, but it was the Dutch 
astronomer Cornelius Kapteyn who first described its pervasive presence and proposed a generative model6. 
He used the growth of plants and animals to explain the multiplicative process that lies behind the emergence 
of log-normality. Three decades later, Robert Gibrat wrote about the law of proportional effect, that stated that 
the average and variance of growth rates for many industrial processes are nearly constant7 and by virtue of 
the Central Limit Theorem the distribution tends towards log-normality. Fitting empirical data to a log-normal 
distribution to test Gibrat’s hypothesis was a recurrent research topic, in special working with the size of firms8, 
despite the fact that “the upper tail resembles the Pareto’s distribution” in the own words of the classical work of 
Ijiri and Simon9. Stanley et al. found that the distribution of logarithmic annual growth rates was better described 
by an exponential10.

The discussion about the validity of Gibrat’s law to describe empirical distributions appears in different fields 
of Economics, with examples supporting11,12 and rejecting it13,14 on statistical grounds. Depending on the particu-
lar series, the study may be inconclusive, as in the particular case of Italian hospitality industry15.

The dilemma between power-law and log-normal distribution to describe empirical trade volume series13 
has also been a recurrent topic of the World Trade Network analysis. WTN degree and strength distributions 
do not show a power-law pattern (see Supplementary Information, Fig. S1) but over the skewed right tails. So, 
Garlaschelli and Loffredo showed16 that WTN cumulative degree distribution is not a power-law as claimed in 
a precedent work17, but that WTN is scale-free using the cumulative GDP distribution as a hidden variable18. 
Batthacarya et al. confirmed the power-law relationship between trade volume and GDP while supporting that 
the strength distribution is log-normal19. Kali and Reyes, found that the number of trade relationships among 
countries follow the 80/20 rule, reproducing at global scale the distribution inequality that was in the basis of 
Pareto’s original research20. Ward et al. rejected the degree power-law hypothesis using the gravity model21. De 

1Department of Engineering, Centro Universitario de Tecnología y Arte Digital, Las Rozas, Spain. 2Higher Polytechnic 
School, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain. 3Complex Systems Group, Universidad 
Politécnica de Madrid, Madrid, Spain. *email: javier.algarra@u-tad.com

open

https://doi.org/10.1038/s41598-019-54979-1
http://orcid.org/0000-0003-1505-7053
http://orcid.org/0000-0003-0706-4317
mailto:javier.algarra@u-tad.com


2Scientific RepoRtS |         (2019) 9:18539  | https://doi.org/10.1038/s41598-019-54979-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Benedictis et al., hold the view that the in-degree and out-degree right tail distributions follow a power-law over 
a wide range of values22. On the other hand, log-normality seems a good choice to describe degree and strength 
distributions for Fagiolo et al.23 and Barigozzi et al.24.

Empirical degree or strength data follow neither pure log-normal distributions, nor sharp power-law over all 
the range of values. A possible explanation is that the statistical properties of the WTN matrixes could be driven 
by two processes of different nature acting at different time scales, the first driving a fast network build-up, and 
the second one over a much longer period.

We have designed our model inspired by two precedents, Ijiri and Simon principles to explain log-normality 
in the size distribution of firms9 and the generative approach to a well-known class of bipartite networks in a quite 
different field, Ecology.

Ijiri and Simon proposed a stochastic model to emulate the size growth of firms using two basic principles: 
the probability that a new business chance is captured by an existing company is proportional to its size and the 
probability of arrival of a new company is constant over time. This model was well-suited for a unipartite network 
that acts on a long-term scale.

In Ecology, mutualistic networks work on the principle of mutual benefit for both classes of nodes, like plants 
and pollinators. In a different way of human trade they also exchange goods (pollen, nectar) and services (fecun-
dation, protection). For this kind of networks, there has been a long discussion on the best generative model to 
explain why their degree and strength distributions follow a power-law or a truncated power-law (see a review by 
Guimaraes et al.25). Field data sampling in Ecology is a hard task, and empirical data may consist of just one cam-
paign. Generative models in this walk of research try to reproduce the main statistical parameters of the recorded 
adjacency matrix, from a pure phenomenological point of view. In this work, we adopt the same approach to work 
with the historical world trade series, with the advantage that the series spans 56 years.

For our study the WTN is a set with two different guilds of nodes: Exporters and Importers. There exists a 
directed link from country A as exporter to country B as importer (ExporterA → ImporterB), when ExporterA 
sells merchandises to ImporterB. The weight of the link is the volume they trade during that year. Any country 
may be both exporter and importer, so the opposite flow from B to A happens between a different pair of nodes 
(ExporterB → ImporterA) and with a different weight. Exporter nodes may link to any Importer, but never among 
them (and viceversa), and the weight of the relationship is the trade volume flowing from the Exporter to the 
Importer. Under these circumstances, the WTN is a weighted bipartite network26. The adjacency matrix has as 
many rows as exporters and as many columns as importers. There is one empirical matrix per year that stores the 
flow from Exporteri to Importerj ∀ i, j. The number of nodes and links changes from year to year, due to geopoliti-
cal events and the non-stationary nature of trade itself.

Our approach takes into account two observations: dominant countries, both as exporters or importers, 
attract with high probability new trade chances and global yearly degree and volume trade distributions are 
approximately log-normal. In this paper, we describe a generative stochastic synthetic model of trade (Synthrade) 
that mixes two processes, preferential attachment and proportional effect, to mimic the properties of the weighted 
matrixes of WTN historical data series. The first one works during a very short period of simulation time and 
yields a scale-free heterogeneous distribution of trade volume for exporter and importer guilds. The second, acts 
on a much larger time scale and by its multiplicative effect makes the yearly trade distributions log-normal.

The term growth is pervasive in Economics and Network Science, but not always with the same meaning. In 
this paper it makes reference to both possible acceptations, it is mandatory to explain how we use it. When Gibrat 
writes about firms’ growth, it is clear that he refers to the yearly increase of some proxy variable of its size, like 
income or number of employees. If a researcher analyzes the world trade volume evolution over the last century, 
growth means a rate of change of that magnitude. On the other hand, a network is usually a dynamic entity that 
experiments growth, by the addition of new nodes, links or the increase of the weight of links. When dealing with 
the synthetic World Trade Network model, network growth is not the same than growth rate of trade volume. In 
fact, the model does not deal with the second meaning, but just with network growth.

Results
Model. The model of the international trade network is created from scratch and computed year by year. 
Nodes arrive during a very short period of simulation time, at a decreasing pace, and they attach to nodes of the 
opposite guild with a probability that is proportional to the volume traded by those countries.

An important difference with Ijiri and Simon approach is that we do not try to model trade volume evolution 
over a long span of time but just the statistical properties of each annual empirical data, using as parameters just 
three data of the original set as we explain in this section.

A weighted bipartite network tW ( )EI
i j, , represents the trade, where the value of each cell i, j is the aggregated 

volume between Exporteri and Importerj at simulation instant t. The strength of Exporteri is defined as 
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The model simulates the build-up of the network as two simultaneous processes with different time scales: the 
aggregation of new nodes (we call it node aggregation regime) and the increase of trade volumes (weight aggrega-
tion regime). At t = 0, the network is just a tiny seed of connected nodes.

The first process drives the aggregation of nodes of both guilds under the hypothesis of neutrality. That means 
that the birth probability depends only on the number of nodes of the same guild. Each new node joins the 
network with a probability that is inverse proportional to the number of nodes in its guild, Nγ. A new node may 
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appear with probability Pbirthγ(t), where γ stands for Exporters or Importers. This value must decrease as the 
number of nodes raises, and for the sake of simplicity we use the following form:

γ
λ

= γ

γ
P t

N k
( )

( ) (1)
birth

where λγ is an intrinsic birth rate parameter of guild γ and Nγ(t) is the number of nodes at simulation step t 
(Fig. 1a). Under these assumptions, the time interval between the birth of two consecutive nodes is ∆ =

λ
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. We set the condition that birth probabilities equal to 1 when the formation pro-
cess starts. At that time there exists a connected seed of σ × σ nodes (3 of each class in our practical 
implementation).
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So, the parameter τγ depends on the final number of nodes of the network. It changes from year to year for the 
historical data series, and we perform each simulation experiment using the empirical number of nodes.

The number of nodes is not the same for both guilds due to the applied filtering (see Data Preprocessing sec-
tion), although figures are quite similar. The formation times of each guild would be different.
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In our model we choose for both guilds the maximum value of τE and τI. This choice has very little impact in 
the numerical simulation but sets a sharp boundary between both regimes.

During the first, that we call node aggregation regime, the number of nodes grows up. Each new node joins the 
network with a preferential mechanism. Let tW ( )EI

i j,  be the weighted matrix at simulation instant t. When an 
importer [exporter] node appears the probability of attachment to any of the exporter [importer] nodes is tP ( )E

i  
[ tP ( )I

j ], as defined above. If the Bernouilli trial is successful, a link with weight 1 will connect both nodes (Fig. 1b). 
We call this quantum of trade a token, and is the minimum possible value of any non-empty cell of the network. 
The newborn node may tie to more than one existing node of the opposite class, although it is unlikely according 
to the procedure.

Figure 1. Network formation. (a) Weight matrix of a toy network at an early simulation step (t < tF). Dot 
areas are proportional to the global trade of each node, while square areas are proportional to the trade 
Exporteri → Importerj. (b) Node aggregation regime. Importer number 5 appears because of the birth process 
driven by parameter λI. It may attach to the existing exporter nodes with a probability proportional to the global 
trade that each exporter handles at that instant. For this example, the set of Bernouilli experiments yields a 
new link Exporter2 → Importer5 (green square). Its weight is the minimum possible trade volume that we call 
token. (c) The weight aggregation regime happens from the initial step to the end of the simulation, we have 
represented it just after the aggregation of Importer5 for simplicity. A new token attaches to the matrix attracted 
by a probability that is proportional to the product of the marginal probabilities of Exporteri and Importerj. 
Probability is nonzero even for empty cells, this the mechanism that allows the birth of new links. Anyway, most 
tokens are attracted towards main trade associations, such as the pair Exporter1 and Importer1 (red square).
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The weight aggregation regime starts at t = 0 and explains network weight growth. Each token may be seen as a 
trade chance. At each simulation step a set of new trade chances adds to the tW ( )EI

i j,  matrix, running Bernouilli 
trials for each cell with probabilities tP ( )EI

i j, .
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. In case of success one token adds to that cell. By definition, 

the sum of the elements of tP ( )EI
i j,  is one, so, in average the global trade raises one token per simulation step. Note 

that an empty cell has a small probability of capturing a trade chance, and by this mechanism the number of links 
keep on growing even after the network formation instant (from now on, tF, see Fig. 1c). Most trade chances go to 
existing links, and the time interval between the appearance of new links becomes longer. Eventually, the syn-
thetic matrix reaches the number of links of the empirical matrix and simulation stops at that moment, that we 
call tT. This aggregation process lasts much longer than the node aggregation regime t t( )T F .

Finally, as a result of both processes, we obtain the synthetic trade matrix, whose statistical properties may be 
compared to those of the empirical one (see Fig. 2 and Supplementary Fig. S2c,d). Note that for each year, only 
three parameters of the empirical network set the final configuration of the synthetic matrix: number of nodes of 
each guild and number of links of the network.

network formation dynamics. As tP ( )EI
i j,  is normalized, the average number of successes of the 

NExp(t)NImp(t) Bernouilli trials is just 1, and the number of tokens equates the number of simulation steps. This 
result is straightforward after the formation instant, when the size of the matrix is constant (see Supplementary 
Information, Fig. S2).

During the node aggregation regime the relationship is more complex, as newborn nodes add new links. This 
figure is of the order of magnitude of NExp(tF), less than a 10% of the number of tokens at the formation instant 

Figure 2. Empirical and synthetic matrixes for year 2015. Normalized weight matrices 
∑

W
W
EI

ij EI
: (a) empirical and 

(b) synthetic at the final instant of the simulation. Below, probability matrices PEI: (c) empirical and (d) 
synthetic. Empirical matrixes are plotted using the Observatory of Economic Complexity raw data. Each dot 
represents a link between one exporter and one importer. Color is assigned according to the normalized weight 
of that particular yearly trade flow, probabilities are computed as a product of the marginal distributions as 
explained in the text. Synthetic matrixes are the result of running one simulation experiment with the model, 
setting just the number of nodes per guild and the number of links equal to those of the empirical matrix.
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and irrelevant compared to the final number of tokens. So, we can make the assumption that at each simulation 
step the total trade volume grows up by one token, and the number of tokens equates simulation time.

The number of links follows a quadratic law over time. A new link appears when the token falls in an empty 
cell of WEI

i j, , otherwise the overall strength increases but the number of links remains constant. The probability of 
this event is = ∑ −| − =P t tP( ) ( 1)empty ij t EI

i j
W ( 1) 0

,
EI
i j, , while the token falls in a non-empty cell with probability 

Pfull(t) = 1 − Pempty(t).
Probabilities are not constant over the simulation spain. Figure 3a shows some interesting properties to sim-

plify the analysis. The maximum value of tP ( )EI
i j,  corresponds to the strongest trade flow of the matrix. This 

Exporter/Importer pair attracts the majority of tokens and the probability remains almost constant over time. As 
trade volume tends to attach to existing links, the sum of probabilities of the set of empty cells decreases, an so the 
minimum value of the matrix. Two interesting values are those of the probability of the cell where the last link of 
the simulation appeared before any given simulation instant and the median of the probability matrix. The plot 
shows a sharp contrast before and after tF. During the node aggregation regime, each attached node comes with 
new empty cells that will have low probability values in contrast with those of populated cells. After tT, matrix size 
is fixed, no new empty cells may appear, they only may evolve to populated cells. The probability of the last filled 
cell remains almost constant for the last two thirds of the simulation time, as well. The probability matrix tP ( )EI

i j,  
plays in Synthrade the same role of the growth distribution in Ijiri and Simon’s model, as ict acts as the network 
growth driver. It is strongly right-skewed, but the median remains almost constant, and this property yields 
log-normality in synthetic trade degree and strentgth.

As a consequence of this evolution, time between arrival of new links does not grow linearly. Assume that 
the global strength value is m, and the number of links l, when the first link appears after tF. As the variation of 
Pempty(t) is so slow, the addition of new links may be viewed as a Bernouilli process. The mean time between the 
appearance of link l and link l + 1 is 1/Pempty(t). During that interval, the non-empty cells attract a quantity m of 
tokens, plus the token that falls in the empty cell, so tl+1 − tl = m + 1. To add a second link, the network adds m + 1 
tokens to the non-empty cells, plus the token of the new link, so tl+2 − tl+1 = m + 2. The time to add L links is given 
by the formula:

∑− = + =
+ + +

=
+ +

+
=

t t m j L m m L L m L( ) ( 1 )
2

(2 1)
2 (6)

l L l
j

L
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So, for a linear growth of L links, the strength obeys a quadratic law, and the simulation time is O(n2) (see 
Supplementary Information, Fig. S2a). During the node aggregation regime, the matrix size is not constant and the 
hypothesis of almost stationary probabilities is not longer valid. Anyway, the number of links and nodes of both 
guilds follow quadratic patterns as well (see Supplementary Fig. S2b).

Figure 3. Evolution of the values of the synthetic probability matrix for year 2008. (a) Minimum and maximum 
values of tP ( )EI

i j,  and its median over the simulation time. In addition, we plot the sum of probabilities of all 
empty weight cells Pempty(t), that means all possible combinations Exporter/Importer without trade at that 
instant. Finally, we add the probability value for the last cell where a new link has appeared, (LastLink in the 
legend). The dashed blue line marks the formation instant. (b,c) Marginal probability distributions PE(t) and 
PI(t) at tF and tT. Note that their shapes evolve towards log-normality.
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Strength and degree distributions. The plots of empirical networks suggested that strength and degree 
follow a power law s ∝ kβ (see Supplementary Information, Fig. S4). To estimate the slope β, we use the cumulative 
distribution27 and fit a log-log regression line to get β + 1.

∫ ∫ β
′ ′ = ′ =

+
β β′ +s k dk Ck dk C k( )

1 (7)

k k

0 0

1

As Barrat et al. showed28, in the lack of correlations between the weight of the links and the degree of the 
nodes, the strength of a node is simply proportional to its degree, yielding an exponent 1, consequently, strength 
and degree provide the same information on the system. In our study, the values of β are always above 1 for 
empirical and synthetic networks (Fig. 4 and Supplementary Information, Fig. S3). The strength of the most 
connected nodes tends to have a value higher than the corresponding to a random process of weights. In other 
terms, main exporters (importers) attract more volume than if trade flow were just proportional to the number 
of countries they trade with.

The distribution of the empirical weight matrices tends towards a log-normal, and the synthetic ones closely 
follow their shapes. To test this hypothesis we perform a goodness of fit analysis of the logarithmic values of the 
empirical strength distributions of both Exporters and Importers, with the Lilliefors test. Setting a p-value of 0.05, 
the hypothesis of non-normality is rejected for 8 out of 56 importer distributions and none of exporter distribu-
tions (Fig. 5a,b, see Supplementary Information, Table S1).

To measure the shape similarity between the normalized empirical strength distributions and their synthetic 
counterparts we set the following procedure. For each year, we build 30 synthetic networks, running 30 independ-
ent experiments with the same three model parameters values (number of importers and exporters and number 

Figure 4. Strength vs Degree slope. (a) Distributions of β exponent for 56 empirical networks and 1680 
synthetic networks. (b,c) Estimation for an individual simulation of year 1998 using linear regression.

Figure 5. Goodness of fit tests. (a,c) Normality test of WEI empirical networks. The green lines are located at 
p = 0.05. (b,d) Kolmogorov-Smirnov distance test among WEI empirical and synthetic networks. Each whisker 
plot represents the p-values of the K-S distances between the empirical network and each one of the 30 synthetic 
WEI(tT) matrixes we build for that particular year.
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of links) of the empirical network. Then, we perform a Kolmogorov-Smirnov distance test between the empir-
ical matrix and each one of the synthetic matrixes. According to these results the model mimics quite well the 
exporter distributions. Boxplots in Fig. 5c,d are the set of K-S test values for the marginal exporter and importers 
distributions of each year. The horizontal green line, is set at p = 0.05. For this test, the null hypothesis is that the 
empirical and the synthetic distributions are different. The hypothesis may be rejected for almost all exporter 
distributions. On the other hand, the null hypothesis of dissimilarity can’t be rejected for importers during the 
1990’s, when connectance dropped in the aftermath of the dissolution of the Soviet Union. Figure 6 shows, as a 
typical example, a visual comparison of degree and strength distributions for year 1986.

Marginal probability distributions PE(t) and PI(t) are strongly right-skewed at tT (Fig. 3b,c). Their shape tends 
towards log-normality as the simulation enters the weight aggregation regime and network size remains constant. 
The explanation is that empty cells have more choices over time of being populated, and from that instant on, they 
join the multiplicative process. Despite the fact that their strength is small, the distribution is more even because 
of the increase of the fraction of non-empty cells. The same pattern is observed for the probability matrix PEI.

Log-normality of the strength and degree distributions is a result of the multiplicative process29. Let W t( )E
j

F  be 
the strength of exporter j at tF, we write it W (0)E

j  for the sake of simplicity. One simulation step later 
= +W W X(1) (0)(1 (0))E

j
E
j

E
j  where X (0)E

j  is a Bernouilli random variable with probability P (0)E
j . After m simula-

tion steps the strength will be:

= + + … +W m W X X X m( ) (0)(1 (0))(1 (1)) (1 ( )) (8)E
j

E
j

E
j

E
j

E
j

Taking natural logarithms, the expression becomes:

∑= + +
=

log W m log W log X k( ( )) ( (0)) (1 ( ))
(9)E

j
E
j

k

m

E
j

0

Variables +log X k(1 ( ))E
j  are independent, as each token addition experiment only depends on the values of 

PEI at simulation step t. As the average value of X k( ) 1E
j , then +log X k(1 ( ))E

j  is also quite smaller than 1. The 
standard deviation of a sum of independent random variables is the sum of the standard deviations, and so, the 
value of Var log W m( ( ( )))E

j  is greater than 1 and finite. It holds also that + Var log X k Var log W m( (1 ( ))) ( ( ( )))E
j

E
j . 

The Lindeberg–Levy conditions are met and the distribution of WE approaches a log-normal.

Figure 6. Density plots for year 1986. (a,c) Degree distributions. (b,d) Normalized strength distributions.
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Discussion
In this work we have proposed a generative model (that we call Synthrade) to build synthetic bipartite networks 
that closely resemble the statistical properties of size distributions of the historical series. The bipartite hypoth-
esis is a valid alternative to the time-evolving directed network model16 and more expressive than unidirected 
representations17,26.

Although the World Trade Network is a very complex system that emerges from the aggregation of multi-
ple choices at different levels (individuals, companies, regulatory bodies, and so on) Synthrade reproduces the 
statistical properties of the recorded annual trade data working on two principles: preferential attachment and 
network strength growth by product of probabilities. Trade flows are driven by the relative strength of exporter 
and importer nodes, any new trade chance attaches to a cell of the bipartite trade matrix with a probability that is 
the product of the marginal probabilities of both edges.

Network strength grows by probability, though, this fact does not explain initial network formation. The pref-
erential attachment mechanism that acts before tF is the basis of the observed strength heterogeneity in empirical 
data. Synthrade is naive in the sense that it loses memory from year to year and trade agreements and contracts do 
not work like that. The explanation on how this relates to real world trade could be the following. Node aggrega-
tion is a very fast process compared to the total simulation time. Nodes that arrive early enjoy higher probability 
of capturing new trade chances. In addition, aggregation speed decreases over simulation time, so first comer 
nodes will be the main trade attractors, while minor players will enter the network later. The parameter λ governs 
that speed. Simulation time should not be regarded as a proxy of real time. Simulation steps only represent the 
arrival of a new trade token. With this idea in mind, the node aggregation regime is not some small period of each 
January, but an almost instantaneous and convenient mechanism to generate heterogeneity.

Furthermore, the relationship degree-strength of the synthetic networks follows a power-law, as it happens in 
the empirical series. Any incoming node connects to major sellers (or buyers) as a first choice and links appear 
as time goes by during the network build-up period, but at a diminishing pace. Once the network has reached 
its maximum size, incoming trade chances are the only mechanism to create new links. As noted by Garlaschelli  
et al.16, the WTN may be explained by the network fitness model18 using GDP as the hidden variable. In Synthrade, 
the force that fosters the birth of new links through mutual benefit is proportional to the product of the strengths 
of both nodes. As new trade opportunities tend to join the main flows Exporter-Importer, dominant nodes attract 
more and more volume. The exponent of the degree-strength distribution shows that they are over-trading, while 
smaller countries strive to play their role in this global network28.

As trade chances (tokens) have a small and constant weight, their power to modify the underlying proba-
bility matrix weakens over time. Weight and probability matrixes tend towards quasi-stationary states and the 
long-term effect of this behaviour is a multiplicative growth process that pushes the strength and degree distribu-
tions towards a log-normal.

Synthrade is a remarkable simple model that does not take into account many constraints, as distance, trade 
agreements, tariffs or competitive advantages30. In particular, it ignores factors such as distance or some GDP 
proxy, unlike the family of gravity bilateral trade models21,31. It works on a global scale trying to reproduce the 
network degree sequences that are highly informative instead1. On the other hand, it does not require to know in 
advance that a trade link exist between a pair of countries. A recent advance by Almog, Squartini and Garlaschelli 
has reconciled the accuracy of gravity models to estimate the intensity of trade flows with its inability to discover 
network topology, using GDP as a fitness parameter32. Synthrade does not include macroeconomic information, 
just the interaction matrixes data because they are enough to reach its goal of reproducing trade volume topolog-
ical properties.

This set of simplifications opens the way to further improvements. The node aggregation regime could benefit 
of the addition of rules of affinity or prohibitions33. Similarly, the probability matrix might include some modula-
tion function to model geographical distance34,35. Finally, it would be interesting to check if degree and strength 
follow similar patterns when trade is restricted to some particular good or category of goods, and if so, the bipar-
tite WTN shows fractal properties36.

Methods
Data preprocessing. We work with the historical data series from 1962 to 2017, available at The Observatory 
of Economic Complexity37. For each year there is one file that holds per line the ISO code of the exporter country, 
the ISO code of the importer, a category key of the traded merchandise and the yearly amount in dollars. For this 
paper we have worked with global trade, just adding the monetary value of all exchanged goods between each pair 
Exporter/Importer. With this information we build the empirical weight matrix (Fig. 2a).

Quality issues arise from two different product classification systems (SITC and HC), two different statistical 
sources (from 1962 to 200038 and from 2001 to 201739), two different harmonization approaches38,40 and geopo-
litical events41,42 during such a long span. In addition, trade networks are strongly meshed (average connectance 
is 0.49) because of the existence of very weak links. To overcome these problems we apply two mild mitigation 
strategies.

There is a step decrease of connectance (ratio of existing links over total possible links) after 1983, because 
of the inclusion of 38 new country codes. Almost all of them are island countries, their data were aggregated in 
supranational entities before that year. As their contribution to the global trade volume is tiny, we drop those 
nodes for our analysis from 1983 to 2017.

After 1991, the reshape of the political maps of Eastern Europe and Central Asia produced a second fall of 
connectance event. It is impossible to follow the same approach because in this case the resulting political entities 
are as relevant as the Russian Federation. We keep former and new countries as separated entities for the global 
analysis (see Supplementary Information, Fig. S6).
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To avoid the strongly meshed condition, a common solution is removing those links that account for a small 
fraction of the global trade22,43. We just drop those that fall within the lower 0.1% of total trade distribution for 
each year. The effect of the filtering is irrelevant for weight, as 99.9% of trade volume is kept, but not for degree44,45, 
because many tiny interactions are lost. As we are studying the aggregated figures of trade, we think this informa-
tion loss is not critical for our analysis, but it is important to inform the reader about this issue.

After these preprocessing steps we create the weighted interaction matrix. It has one row per exporter country 
and one column per importer. We fill each cell with the global trade from exporter to importer or set it zero if 
there were no recorded trade or the volume falls below the filtering threshold. From this matrix, we obtain the 
number of exporters an importers and the number of links, the parameters that govern the synthetic network 
dynamics.

R packages. The statistical analyzes and their respective graphs have been carried out with different R pack-
age: Lilliefors and Kolmogorov-Smirnov tests with nortest46 and densities estimation are plotted with the 
ggplot247 (geom_density() with bandwith adjustment = 2).

code and Data Availability
Code and data are available at https://zenodo.org/badge/latestdoi/120930457. Reproducibility instructions are 
detailed in the README.md file.
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