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ABSTRACT 

 

This paper deals with the analysis of the relationship between CO2 emissions and 

temperatures. For this purpose, global CO2 emissions and four measures of global 

temperatures (land, land and ocean, northern and southern temperatures) are used. We 

used techniques based on fractional integration and cointegration. The results indicate 

first that the orders of integration differ in the two variables. Thus, while emissions are 

I(1) or I(d) with d higher than 1, temperatures display orders of integration strictly 

smaller than 1 and thus invalidating the hypothesis of cointegration between the two 

variables. Due to this, another approach is conducted where we suppose that the 

emissions are weakly exogenous in relation to the temperatures. The results using this 

approach show a significantly positive relationship between the two variables with a 

long memory pattern. 
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1. Introduction 

 

Concern about global warming and climate change around the world is increasing. 

According to Nicholls et al. (1996), Jones and Wigley (2010), Folland et al. (2018), 

among others, the temperature on the Earth’s surface has raised significantly over the 

last 100 years. This has been caused by industrialization and the effect of burning and 

emissions of fossil fuel, greenhouse gas concentration that affects the atmosphere 

(Anderegg et al. 2010; Beckage et al. 2018; etc.), but also by the innate variability of the 

climate system (e.g. solar irradiance) or by the combination of the two. 

The most noticable aspect is the strong correspondence between temperature and 

the concentration of carbon dioxide in the atmosphere (see McMillan and Wohar, 2013; 

Zickfeld et al., 2012; Zickfeld et al., 2016). According to the National Oceanic and 

Atmospheric Administration (NOAA), carbon dioxide concentration and temperatures 

have the same behavior and they move in a similar way. This is also supported by 

authors such as Laat and Maurellis (2004), Hansen et al. (2010); Cahill et al., (2015) 

and Sanz-Pérez, et al. (2016).  

It is also true that the world has experienced changes in weather patterns. These 

changing patterns have provided a foundation to those who argue that the increase in 

CO2 emissions has increased the average temperatures. Thus, in recent years, there has 

been a growing interest in investigating the stochastic processes and trends in the global 

temperatures on the one hand (see, e.g., Bloomfield, 1992; Bloomfield and Nychka, 

1992; Galbraith and Green, 1992; Woodward and Gray, 1993, 1995; Koenker and 

Schorfheide, 1994; Zhang and Basher, 1999; Harvey and Mills, 2001; Gil-Alana, 2003; 

Mills, 2006, 2010; Gay-García et al., 2009; Hendry and Pretis, 2013; Kauffmann et al., 

2006, 2010, 2013; Estrada et al., 2013; Chang et al., 2016, etc.), and the emissions on 

the other hand. Aldy (2006) and Lee and Chang (2009) show the convergence of the 
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CO2 emissions series of both industrialized and developing countries. Ezcurra (2007), 

Panopoulou and Pantelidis (2009), Chang and Lee (2008), Romero-Ávila (2008), Lee et 

al. (2008), Yavuz and Yilanci (2013), Ahmed et al. (2016) are among the few papers 

that have investigated the stationarity properties of the CO2 emissions. Most of this 

literature, however, tends to focus on the two variables separately, i.e., temperatures and 

CO2, and little research has been dedicated to the analysis of the relationwhip betwen 

the two variables. 

The existing literature in recent years is based on developing tests to analyze 

trend behavior. Fomby and Vogelsang (2003) investigated general forms of trending 

patterns using autocorrelation in the errors of seven global temperature series to detect if 

the errors are stationary or have a unit root, finding strong evidence of positive 

deterministic trends. On the other hand, Volgelsang and Franses (2005) employed a 

regression model to examine global, northern and southern hemispheres temperatures 

and concluded that there has been a significant worldwide temperature increase. Other 

authors have claimed the existence of memory or persistence across different regimes in 

the climate system. Gil-Alana (2003) analyzed Central England Temperatures (CET) 

using fractional integration techniques to conclude that the increase in the temperatures 

is about 0.23 ºC per 100 years in recent history. Subsequent work by the same author 

(Gil-Alana, 2005, 2008a,b) used similar techniques in the analysis of global tempertures 

allowing for potential breaks in the data.  Other authors including Eichner et al. (2003), 

Mills (2007), Lennartz and Bunde (2009), Bunde et al. (2014), Yuan et al. (2015), 

Ludescher et al. (2016), Massah and Kantz (2016), Bunde (2017) among others also 

found persistence and evidence of long memory in the temperatures. In the context of 

CO2 emissions, authors such as Sun and Wang (1996), Slottje et al. (2001), Nourry 

(2009), Christidou et al. (2013) Tiwari et al. (2016), Gil-Alana and Solarin (2018) and 
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Gil-Alana and Trani (2018) to name just a few have examined the stationarity of the 

emissions. Among the few papers relating temperatures and emissions, McMillan and 

Wohar (2013) investigated jointly and individually the two variables using unit root 

tests and others autorregression models, concluding that CO2 has a weak relationship 

with temperature, not finding evidence of a trending pattern. Zhang et al. (2019), using a 

multilayer and multivariable network method, analyzed the dynamics of the upper air on 

the temporal variability of surface air pollution for the case of China and United States, 

finding that the association between the two variables was related to the dynamics of 

planetary Rossby waves that affect air pollution fluctuation through the development of 

cyclone and anticyclone systems and further affect the local stability of the air and the 

winds. Finally, Ying et al. (2020) carried out their research assuming that the CO2 

concentration and its spatial distribution, detected by the various satellites, is uneven. 

To do so, they used a multilayer climate network approach to identify their relations 

using satellite data. Their findings showed that the probability density function of 

degrees, weighted degrees, and link lengths follows power‐law distributions. 

This research paper considers global annual temperatures (land temperatures, 

land and ocean temperatures and Northern and Southern hemispheres temperatures) and 

global annual CO2 emissions1 from 1880 to 2015. It extends the above mentioned 

literature with advanced methodologies based on fractional integration to analyze the 

 
1 Watson and Noble (2002) argued that each year 120 gigatons (Gt) carbon are exchanged between the 

atmosphere and terrestrial ecosystems and 90 Gt between the atmosphere and the oceans. 6Gt were 

related to fossil fuel burning, and half of this amount was observed as an increase of the atmospheric CO2 

concentration. On the other hand, and according to Intergovernmental Panel for Climate Change (2007) 

the oceans and terrestrial system showed a net uptake of carbon.  

Knowing that the air-CO2 provides a tool to quantify the contribution of different components to 

ecosystem exchange and thanks to the contribution done by Ghosh and Brand (2003) in their study of 

contemporary isotopic change of natural compartments, we can deduct that the amount of CO2 we put 

into the atmosphere could be a causality fact with the amount of CO2 that remains in the atmosphere. 

Also, following Ghosh and Brand (2003), from the point of view of the carbon atoms, carbon 12 has 6 

neutrons, carbon 13 has 7 neutrons. If plants have a lower C13/C12 ratio that in the atmosphere and the 

CO2 comes from fossil fuels, the ratio should be falling, and this is what is occurring. So, the trend of 

atmospheric CO2 correlates with the trend in global emissions. For this reason, we use CO2 emissions 

instead of CO2 concentration. 
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properties of the series (time trends, persistence and seasonality), which have not been 

jointly studied so far in this context. In fact, this is one of the contributions of this work, 

which is methodological, using techniques that have not been used so far and that 

employ fractional degrees of differentiation unlike the classical methods and that are 

based exclusively on integer orders of integration, i.e., stationary I(0) or nonstationary 

I(1) processes. 

The paper is organized as follows: Section 2 briefly describes the techniques 

used in the paper, while Section 3 presents the dataset and Section 4 contains the 

empirical results. Finally, Section 5 concludes the paper. 

 

 

2. Methodology 

 

For the analysis of the individual series we use techniques based on long memory and 

fractional integration. For this purpose we define an integrated process of order 0 or I(0) 

as a covariance (or second order) stationary process with the infinite sum of the 

autocovariances assumed to be finite. There exists an alternatively definition based on 

the frequency domain, which says that an I(0) process is a process with a spectral 

density function that is positive and finite at the zero frequency. These two are very 

broad definitions that include not only the white noise model but also weakly 

autocorrelated structures such as the one produced by the stationary and invertible 

AutoRegressive Moving Average (ARMA) type of models. On the other extreme, we 

can have nonstationary processes, with a unit root and also named integrated of order 1, 

i.e., I(1), which, in its simplest form, is the random walk model of the form: 

,...,2,1,)1( ==− tuxB tt    (1) 

where B is the backshift operator (Bxt =xt-1) and ut is white noise. Note that if ut is an 

ARMA(p, q) process in (1), xt is then an ARIMA(p, 1 , q) process. However, the 
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stationary I(0) and the nonstationary I(1) cases are both particular cases within a more 

flexible type of model known as fractionally integrated or I(d) where d can be any real 

value. Thus, we may consider a model of the form: 

,...,2,1,)1( ==− tuxB tt
d

   (2) 

where ut is I(0) and d can be 0, a value between 0 and 1, 1, or even above 1.1 

Processes such as (2) with d > 0 belong to a broader category named long 

memory, which is characterized because the infinite sum of the autocorrelation is 

infinite, or, alternatively, in the frequency domain, because the spectral density function 

has a pole or singularity at the smallest, i.e., zero, frequency. They were originally 

proposed by Granger (1980, 1981), Granger and Joyeux (1980) and Hosking (1981), 

based on the observation that many aggregated series presented an extremely large 

value in the estimated spectrum at the smallest frequency, consistent with first 

differentiation, but once the series were differenced, the estimated spectrum displayed a 

value close to zero at the zero frequency, which was a clear indication of 

overdifferentation. The I(d) models with fractional values of d became very popular in 

the late nineties throughout the works of authors such as Baillie (1996), Gil-Alana and 

Robinson (1997), Silverberg and Verspagen (1999) and others, and they have been 

widely employed in the analysis of global and local temperatures and also in the 

analysis of CO2 emissions and other contaminants. 

In this paper we estimate the differencing parameter d using a method that uses 

the Whittle function in the frequency domain as proposed in Dahlhaus (1989), and we 

implement it through the tests of Robinson (1994), which is very convenient in the 

context of nonstationary data as those used in this work. Note that the estimation of d is 

crucial. Thus, for example, xt is covariance stationary if d is smaller than 0.5. However, 

 
1 See, Gil-Alana and Hualde (2009) for a review of these models and its applications in time series. 
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as long as d departs from 0.5 it becomes more nonstationary in the sense that the 

variance of the partial sums increases with d. Also, if d is smaller than 1, shocks will 

have a transitory nature and their effects will disappear by themselves in the long run, 

contrary to what happens if d ≥ 1 where shocks are not mean reverting and persist 

forever. Thus, d can be viewed as an indicator of the degree of persistence, the higher its 

value is, the higher the degree of persistence is in the data. 

The multivariate representation of fractional integration is fractional 

cointegration, initially examined by Peter Robinson and his coauthors (Robinson and 

Yajima, 2002, Robinson and Marinucci, 2003; Robinson and Hualde, 2003; Hualde and 

Robinson, 2007; etc.) and later extended to the fractional CVAR (FCVAR) model by 

Johansen and Nielsen (2010, 2012) and others. However, in a bivariate context, as is the 

case in this paper, a necessary condition for cointegration is tha the two individual series 

must display the same degree of integration, and this condition is not satisfied in the 

empirical application carried in Section 5. Therefore, as an alternative approach in this 

multivariate setting, we employ a version of the tests of Robinson (1994) which uses a 

regression model where the regressor (CO2 emissions) is taken as weakly exogenous, 

and the regression errors are supposed to be I(d) where d can be potentially fractional.2 

  

4. Data 

 

The data examined in this paper are the global annual temperature anomalies computed 

using data from meteorological stations; global annual temperature anomalies computed 

from land and ocean; and global annual temperature anomalies for the northern and 

southern hemispheres computed using land and ocean data.3 We also use data of the 

 
2 This methodology has been used for example in Gil-Alana and Henry (2003) and Gil-Alana et al. 

(2008). 
3 https://cdiac.ess-dive.lbl.gov/trends/temp/hansen/data.html 
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global CO2 emissions originated by fossil fuel burning.4 The dataset was obtained from 

the Carbon Dioxide Information Analysis Center (CDIAC) that is the U.S. Department 

of Energy’s (DOE) Environmental System Science Data Infrastructure for a Virtual 

Ecosystem. 

 [Insert Figure 1 here]  

Figure 1 plots the original data of the global fossil fuel CO2 emissions and the 

four annual anomalies in the temperature series mentioned above. We observe an 

increasing trend in the analyzed period from 1880 to 2015. 

 

 

5. Results 

We start this section by presenting the univariate results for each of the series under 

investigation, and the first thing we do is to examine the order of integration of each 

series from a fractional viewpoint. In order to allow for potential linear trends, and 

following Bhargava (1986), Schmidt and Phillips (1992) and others on the 

parameterization of unit root models, we consider the following specification, 

,...,2,1,)1(,10 ==−++= tuxBxty tt
d

tt
o     (3) 

where yt refers to each of the individual series, i.e., CO2 emissions and its logged 

values, and each of the four temperature series; β0 and β1 are the coefficients referring 

respectively to an intercept and a linear time trend, and d is the potentially fractional 

differencing parameter. 

 We estimate the differencing parameter d along with the remaining coefficients 

in (3) under three different set-ups: i) with no deterministic components, i.e., imposing 

β0 = β1 = 0 in (3); with a constant/intercept, i.e., β1 = 0; and with a linear time trend, i.e., 

β0 and β1 both freely estimated from the data, and we report in bold in the tables the 

 
4 https://cdiac.ess-dive.lbl.gov/trends/emis/tre_glob_2014.html 
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relevant cases for each series according to the corresponding t-values of these 

deterministic terms. 

 In Table 1 we assume that ut in (3) is a white noise process, so no autocorrelation 

is permitted. The first thing we observe is that the time trend coefficient is required in 

all series, though the estimated values of d are very different in the two variables. Thus, 

for the global CO2 emissions, we see in Table 2 that the estimated values of d are 1.30 

and 0.97 respectively for the unlogged and logged emissions, and the I(1) hypothesis 

cannot be rejected for the latter case. However, for the global temperatures, the values 

are much smaller ranging between 0.48 (land temperatures) and 0.60 (land + ocean 

temperatures), and a mean-reverting long memory pattern (i.e., 0 < d < 1) is found in the 

four series, which is consistent with the results obtained in other studies with the same 

or similar data (see Gil-Alana 2003, 2005 and 2008a,b). 

[Insert Tables 1 and 2 about here] 

 In Tables 3 and 4 we allow for autocorrelation in the error term. However, 

instead of imposing a particular ARMA-type model we use a non-parametric approach 

developed by Bloomfield (1973) which accommodates extremely well in the context of 

the methods used in this paper and based on Robinson’s (1994) tests. Using this 

approach, we observe that the time trend coefficients are once more statistically 

significantly positive (Table 4) in all cases, and the orders of integration, though smaller 

than in the previous case, qualitatively are very similar to those reported for the case of 

uncorrelated errors. Thus, as a conclusion of this univariate work, we can say that the 

order of integration is equal to or higher than 1 for the emissions, and strictly smaller 

than 1 for the temperatures. Thus, our results indicate that the two variables differ in 

relation with their orders of integration and this is a serious caveat in the sense that it 

invalidates any analysis of cointegration between the two variables. Note that a 
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necessary condition for cointegration in a bivariate case is that the two individual series 

must display the same degree of integration, and this is clearly not satisfied in our case. 

  Due to this empirical feature in the data, we have to think of an alternative 

approach and the one that we propose in this work is to assume that the actual and past 

values of emissions (in logs) are weakly exogenous in relation to the temperatures. For 

this purpose, we use again the tests of Robinson (1994) since they are specified in a way 

that allows us to consider the following model, 

,)1(,)1(, 12
tttt

d
tt

T
t xBzuxBxzy  =−=−+=   (4) 

where zt is a (kx1) vector of weakly exogenous (or deterministic) regressors. In our 

case, we choose zt = (1, log EMt-k)
T where EM refers to CO2 emissions, for k = 0, 1, 2, 

3, 4 and 5; thus, β = (β0, β1)
T and φ is the seasonal (monthly) AR coefficient. The results 

in terms of the estimated coefficients are reported across Tables 5 – 8 for the four 

temperature series. 

[Insert Tables 5 – 8 about here] 

Several features are observed in these tables. First, the slope coefficient is 

statistically significantly positive in all cases, implying a positive relationship between 

global CO2 emissions and global temperatures, and the highest coefficients correspond 

in all cases to the regressions with land temperatures, following by land and ocean 

temperatures. For the hemispheres, the values are smaller, being substantially higher in 

case of the northern temperatures. We do not observe any significant pattern in 

connection with the lags (k). With regard to d, all values once more suggest fractional 

integration and a long memory pattern, with d constrained in all cases between 0 and 1. 

This value is about 0.66 for the southern hemisphere temperatures; slightly higher for 

the land and ocean temperatures; and much smaller for northern hemisphere and land 

temperatues.  
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6. Conclusions 

In this paper we have related global CO2 emissions with the global temperatures by 

using a long memory model. We used this approach based on the overwhelming 

evidence supporting the existence of this feature in the data. 

 We start by conducting the univariate analysis of each series, which are global 

CO2 emissions and four temperature series corresponding to land, land and ocean, 

northern and southern temperature anomalies. The univariate results indicate that the 

CO2 emissions are not mean reverting with the estimated value of d (the differencing 

parameter) being equal to or higher than 1 in all cases. This implies that the series is 

highly persistent with shocks having permanent effects on the series. For the 

temperatures, the estimates of the differencing parameters are much smaller, ranging in 

the interval (0, 1) and thus supporting long memory and mean reversion behavior. Thus, 

shocks here will be transitory though with long lasting effects. As a consequence of this 

different pattern in the behavior of the two variables, we impose the assumption that the 

emissions are (weakly) exogenous, and including this feature in a long memory 

regression model, the results indicate that the emissions produce a significant positive 

effect in the tempertures, which is consistent with the works of McMillan and Wohar 

(2013), Zickfeld et al. (2012), Zickfeld et al. (2016), and others, and at the same time 

displaying a significant degree of persistent with shocks having long lasting effects. 

Thus, a shock in the emissions affecting the tempertures will be persistent though 

transitory and disappearing in the very long run. 

 This work could be extended in several directions. Thus, for example, CO2 

concentration could have been taken into account instead of CO2 emissions when 

looking at a long run relationship between pollution and temperatures. Also, the 
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analysis could be conducted with data based on different locations to check if the same 

conclusions hold with specific-located data. Other approaches allowing, for instance, for 

non-linear deterministic or even stochastic terms can also be explored in the analysis of 

these and other data. Future work will also examine the relationship of the temperatures 

with other contaminants. 
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Figure 1: Global Fossil-Fuel CO2 Emissions vs Annual Anomaly in 
Temperatures
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Table 1: Testing the integration order under the hypothesis of no autocorrelation 

Series No terms An intercept A linear time trend 

CO2 Emissions 1.26   (1.19,   1.38) 1.27   (1.19,   1.39) 1.30   (1.22,   1.41) 

Log CO2 emissions 0.97   (0.87,   1.11) 0.96   (0.86,   1.12) 0.97   (0.87,   1.11) 

    Land temp. 0.63   (0.57,   0.72) 0.59   (0.53,   0.66) 0.48   (0.39,   0.59) 

Land ocean temp. 0.67   (0.60,   0.76) 0.65   (0.58,   0.75) 0.60   (0.50,   0.72) 

Northern hem. temp. 0.62   (0.55,   0.71) 0.59   (0.53,   0.69) 0.54   (0.45,   0.66) 

Southern hem. temp. 0.69   (0.62,   0.79) 0.68   (0.61,   0.78) 0.64   (0.55,   0.76) 

In bold the significant cases according to the deterministic terms. In parenthesis the 95% confidence 

bands for the values of d. 

 

 

 

Table 2: Estimated coeficients under the hypothesis of no autocorrelation 

Series d Intercept A linear time trend 

CO2 Emissions 1.30   (1.22,   1.41) 196.390   (2.16) 64.729   (2.15) 

Log CO2 emissions 0.97   (0.87,   1.11) 5.437   (108.17) 0.0278   (7.35) 

    Land temp. 0.48   (0.39,   0.59) -0.5145   (-6.04) 0.0090   (7.29) 

Land ocean temp. 0.60   (0.50,   0.72) -0.2571   (-3.13) 0.0062   (4.08) 

Northern hem. temp. 0.54   (0.45,   0.66) -0.3803   (-3.83) 0.0077   (4.80) 

Southern hem. temp. 0.64   (0.55,   0.76) -0.1249   (-1.50) 0.0046   (2.65) 

The values in parenthesis in the 3rd and 4th columns are the associated t-values. 
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Table 3: Testing the integration order under the hypothesis of weak 

autocorrelation 

Series No terms An intercept A linear time trend 

CO2 Emissions 1.24   (1.13,   1.40) 1.23   (1.12,   1.39) 1.27   (1.15,   1.44) 

Log CO2 emissions 0.93   (0.76,   1.18) 0.87   (0.76,   1.14) 0.89   (0.74,   1.11) 

    Land temp. 0.69   (0.59,   0.81) 0.63   (0.53,   0.73) 0.48   (0.37,   0.64) 

Land ocean temp. 0.68   (0.59,   0.81) 0.65   (0.54,   0.77) 0.55   (0.41,   0.72) 

Northern hem. temp. 0.66   (0.56,   0.80) 0.62   (0.53,   0.75) 0.56   (0.41,   0.71) 

Southern hem. temp. 0.68   (0.59,   0.84) 0.68   (0.58,   0.81) 0.59   (0.42,   0.79) 

In bold the significant cases according to the deterministic terms. In parenthesis the 95% confidence 

bands for the values of d. 

 

 

 

Table 4: Estimated coeficients under the hypothesis of weak autocorrelation 

Series d Intercept A linear time trend 

CO2 Emissions 1.27   (1.15,   1.44) 194.564   (2.14) 66.743   (2.51) 

Log CO2 emissions 0.89   (0.74,   1.11) 5.4413   (109.38) 0.0278   (10.53) 

    Land temp. 0.48   (0.37,   0.64) -0.5145   (-6.05) 0.0090   (7.29) 

Land ocean temp. 0.55   (0.41,   0.72) -0.2759   (-3.60) 0.0062   (4.92) 

Northern hem. temp. 0.56   (0.41,   0.71) -0.3752   (-3.67) 0.0077   (4.47) 

Southern hem. temp. 0.59   (0.42,   0.79) -0.1486   (-1.90) 0.0046   (3.26) 

The values in parenthesis in the 3rd and 4th columns are the associated t-values. 
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Table 5: Estimated coefficients in a regression with I(d) errors 

 (Land temperatues /  Log emissions) 

Tland / Lem d (95% conf. band) β0 (t-value) β1 (t-value) 

k  =  0 0.53    (0.45,  0.64) -1.9057   (-5.56) 0.2644   (5.03) 

k  =  1 0.54    (0.46,  0.65) -2.1185   (-6.15) 0.3001   (5.63) 

k  =  2 0.52    (0.44,  0.64) -1.9956   (-5.97) 0.2821   (5.53) 

k  =  3 0.52    (0.44,  0.64) -2.1075   (-6.30) 0.2965   (5.80) 

k  =  4 0.52    (0.43,  0.63) -2.2566   (-6.72) 0.3099   (6.03) 

k  =  5 0.52    (0.44,  0.64) -2.1320   (-6.28) 0.2960   (5.69) 
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Table 6: Estimated coefficients in a regression with I(d) errors  

(Land-Ocean temperatures /  Log emissions) 

Tland / Lem d (95% conf. band) β0 (t-value) β1 (t-value) 

k  =  0 0.64    (0.56,  0.75) -1.0457   (-2.85) 0.1519   (2.51) 

k  =  1 0.65    (0.56,  0.77) -1.3402   (-3.61) 0.2090   (3.38) 

k  =  2 0.63    (0.54,  0.74) -1.1981   (-3.35) 0.1825   (3.11) 

k  =  3 0.62    (0.53,  0.74) -1.3361   (-3.85) 0.1956   (3.45) 

k  =  4 0.61    (0.53,  0.73) -1.2640   (-3.67) 0.1779   (3.18) 

k  =  5 0.62    (0.53,  0.74) -1.3756   (-3.88) 0.1946   (3.35) 

 

 

 

Table 7: Estimated coefficients in a regression with I(d) errors  

(Northern Land-Ocean temperatures /  Log emissions) 

NTland / Lem d (95% conf. band) β0 (t-value) β1 (t-value) 

k  =  0 0.59    (0.50,  0.69) -1.4224   (-3.38) 0.2003   (2.98) 

k  =  1 0.58    (0.50,  0.69) -1.3925   (-3.40) 0.1949   (3.00) 

k  =  2 0.58    (0.50,  0.69) -1.3844   (-3.36) 0.1935   (2.95) 

k  =  3 0.58    (0.49,  0.69) -1.3660   (-3.29) 0.1904   (2.88) 

k  =  4 0.58    (0.50,  0.70) -1.3929   (-3.33) 0.1949   (2.92) 

k  =  5 0.58    (0.49,  0.69) -1.3273   (-3.17) 0.1837   (2.75) 

 

 

Table 8: Estimated coefficients in a regression with I(d) errors  

(Southern Land-Oceanic temperatures /  Log emissions) 

STland / Lem d (95% conf. band) β0 (t-value) β1 (t-value) 

k  =  0 0.66    (0.56,  0.78) -0.7252   (-1.95) 0.1145   (1.84) 

k  =  1 0.66    (0.57,  0.78) -0.7080   (-1.90) 0.1115   (1.79) 

k  =  2 0.66    (0.57,  0.78) -0.6871   (-1.83) 0.1078   (1.72) 

k  =  3 0.66    (0.57,  0.78) -0.6869   (-1.81) 0.1077   (1.70) 

k  =  4 0.66    (0.57,  0.78) -0.7020   (-1.84) 0.1104   (1.73) 

k  =  5 0.66    (0.57,  0.78) -0.6972   (-1.81) 0.1095   (1.70) 

 

 


