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Abstract:

Aims:  The main mechanism behind caffeine’s ergogenicity lies in its 
tendency to bind to adenosine A1 and A2A receptors.  However, other 
mechanisms might contribute to caffeine’s ergogenicity.  The aim of this 
investigation was to analyze the effects of caffeine on muscle oxygen 
saturation during exercise of increasing intensity. Methods: Thirteen 
healthy and active individuals volunteered to participate in a 
randomized, double blind, placebo-controlled crossover trial.  During two 
different trials, participants either ingested a placebo (cellulose) or 3 
mg/kg of caffeine.  After waiting for 60 min to absorb the substances, 
participants underwent a maximal ramp cycle ergometer test (25 
W/min). Near infrared spectrometers were positioned on each leg’s 
vastus lateralis to monitor tissue O2 saturation.  Blood lactate 
concentration was measured 1 min after the end of the exercise test. 
Results:  In comparison to the placebo, the ingestion of caffeine 
improved the maximal wattage (258±50 vs 271±54 W, respectively, P < 
0.001) and blood lactate concentration (11.9±3.8 vs 13.7±3.5 mmol/L, 
P = 0.029) at the end of the test.  Caffeine increased muscle oxygen 
saturation at several exercise workloads with a main effect found in 
respect to the placebo (F = 6.28, P = 0.029).  Peak pulmonary 
ventilation (124±29 vs 129±23 L/min, P=0.035) and VO2peak 
(3.18±0.70 vs 3.33±0.88 L/min, P=0.032) were also increased with 
caffeine.  Conclusion:  Acute ingestion of 3 mg/kg of caffeine improved 
peak aerobic performance while caffeine-induced changes seen in muscle 
oxygen saturation, pulmonary ventilation, and blood lactate 
accumulation suggest that these mechanisms might also contribute to 
caffeine’s ergogenic effect.
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1 ABSTRACT

2 Aims:  The main mechanism behind caffeine’s ergogenicity lies in its tendency to bind 

3 to adenosine A1 and A2A receptors.  However, other mechanisms might contribute to 

4 caffeine’s ergogenicity.  The aim of this investigation was to analyze the effects of 

5 caffeine on muscle oxygen saturation during exercise of increasing intensity. Methods: 

6 Thirteen healthy and active individuals volunteered to participate in a randomized, double 

7 blind, placebo-controlled crossover trial.  During two different trials, participants either 

8 ingested a placebo (cellulose) or 3 mg/kg of caffeine.  After waiting for 60 min to absorb 

9 the substances, participants underwent a maximal ramp cycle ergometer test (25 W/min). 

10 Near infrared spectrometers were positioned on each leg’s vastus lateralis to monitor 

11 tissue O2 saturation.  Blood lactate concentration was measured 1 min after the end of the 

12 exercise test. Results:  In comparison to the placebo, the ingestion of caffeine improved 

13 the maximal wattage (258±50 vs 271±54 W, respectively, P < 0.001) and blood lactate 

14 concentration (11.9±3.8 vs 13.7±3.5 mmol/L, P = 0.029) at the end of the test.  Caffeine 

15 increased muscle oxygen saturation at several exercise workloads with a main effect 

16 found in respect to the placebo (F = 6.28, P = 0.029).  Peak pulmonary ventilation 

17 (124±29 vs 129±23 L/min, P=0.035) and VO2peak (3.18±0.70 vs 3.33±0.88 L/min, 

18 P=0.032) were also increased with caffeine.  Conclusion:  Acute ingestion of 3 mg/kg of 

19 caffeine improved peak aerobic performance while caffeine-induced changes seen in 

20 muscle oxygen saturation, pulmonary ventilation, and blood lactate accumulation suggest 

21 that these mechanisms might also contribute to caffeine’s ergogenic effect.

22 Keywords: near infrared spectroscopy, muscle oxygenation, high intensity exercise, 

23 VO2max, cycling. 
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24 WHAT IS KNOWN ABOUT THIS SUBJECT 

25  The main mechanism behind caffeine’s ergogenicity lies in its tendency to bind to 

26 adenosine A1 and A2A receptors 

27  However, caffeine is a xanthine which acts on a wide range of molecular targets.  

28 Therefore, other mechanisms might contribute to caffeine’s ergogenicity.

29  Caffeine augments endothelium-dependent vasodilation by way of increased nitric 

30 oxide production and thus and it might lead to increased tissue blood flow and 

31 oxygen supply to the exercising muscle during exercise.

32 WHAT THIS STUDY ADDS

33  The acute ingestion of 3 mg of caffeine per kg of body mass was effective in 

34 increasing the maximal wattage obtained in a graded cycling test. 

35  This ergogenic effect was accompanied by increased VO2peak, blood lactate 

36 concentration, and peak pulmonary ventilation.  

37  Furthermore, a higher caffeine-induced muscle oxygen saturation was found in low-

38 to-moderate workloads, which allowed the obtaining of the end-point for muscle 

39 oxygen saturation associated to fatigue at higher exercise intensity.  This outcome 

40 indicates caffeine’s ability to enhance oxygen availability in the exercising muscle.

41

42
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43 INTRODUCTION

44 Caffeine (1,3,7-trimethylxanthine) is a substance naturally found in coffee, tea, and 

45 cocoa.  However, its potent ability to enhance physical performance and wakefulness has 

46 favored the inclusion of this stimulant in several over-the-counter medications and dietary 

47 supplements [1].  Caffeine has the capacity to improve performance in a wide-variety of 

48 exercise activities when ingested at low-to-moderate doses (3-9 mg/kg body mass [2,3]). 

49 Perhaps, this is the reason why caffeine is ingested by ~80% of competitive athletes [4].  While 

50 the ergogenic effect of caffeine to enhance sports performance is well-recognized [5], the 

51 physiological origin of caffeine’s ergogenicity is poorly understood.  The hydrophobic nature 

52 of caffeine results in a post-absorption distribution of the substance to all tissues of the body, 

53 making it difficult to accurately quantify its key mechanism of action during exercise [6].  

54 There is a consensus about caffeine antagonism of the adenosine receptors as the main 

55 mechanism behind the performance-enhancing effect of this substance [7].  Briefly, evidence 

56 in animal [8] and human models [9] supports the ability of caffeine to act as an adenosine A1 

57 and A2A receptor antagonist, reducing the adenosine-induced effect on neurotransmission and 

58 creating a greater dopaminergic drive [7].  However, the influence of caffeine on exercise 

59 performance cannot be only explained by its effects on the brain, as several other central and 

60 peripheral mechanisms can aid in producing a more potent ergogenic effect.  Other 

61 mechanisms, such as reduced muscle pain and perceived exertion [10], central stimulation of 

62 the respiratory medullary complex [11], fatty acid mobilization and oxidation [12], and local 

63 changes within the exercising muscle such as potassium ion attenuation in the interstitium and 

64 calcium iron release from the sarcoplasmic reticulum [6,13], have also been proposed to 

65 explain caffeine effects on physical performance.  

66 Caffeine also produces an indirect increase in serum adenosine concentration by 

67 competitively blocking adenosine receptors [14].  The increased availability of adenosine 
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68 causes a generalized stimulation of chemoreceptors distributed throughout circulation and 

69 creates an increase in the sympathetic tone and the upsurge of circulating catecholamines [15].  

70 Although the direct effects of adenosine on the different vascular systems depend on the type 

71 of receptor that is stimulated [16], the main vascular effect of adenosine is vasodilation of the 

72 different blood beds via A2A stimulation.  In addition, acute administration of caffeine 

73 augments endothelium-dependent vasodilation by way of increased nitric oxide production 

74 [17].  Thus, caffeine might directly and indirectly produce vasodilation in the endothelium 

75 and in the vascular smooth muscle cells, which leads to increased tissue blood flow and 

76 oxygen supply to the exercising muscle during exercise.  To the best of our knowledge, there 

77 are no investigations that have measured the effect of caffeine on tissue oxygen saturation 

78 during exercise.  Thus, the aim of the current investigation was to analyze the effects of 

79 caffeine on oxygen saturation of the vastus lateralis during cycling of increasing intensity.  

80

81 MATERIALS AND METHODS

82 Participants. Thirteen healthy and active (>4 days of training per week; > 45 min per 

83 day) individuals volunteered to participate in this investigation. They had a mean ± standard 

84 deviation (SD) age of 32.5 ± 6.5 yr, height of 171 ± 8 cm, weight of 65.2 ± 11.4 kg, and peak 

85 oxygen uptake (VO2peak) of 49.7 ± 8.5 mL/kg/min. There were seven women in the sample 

86 who participated in the entire experiment in their luteal phase. All the participants were light 

87 caffeine consumers (< 50 mg of caffeine per day), non-smokers, and did not report any 

88 previous history of cardiopulmonary diseases nor musculoskeletal injuries reported in the 

89 previous three months. One week prior to the study, the participants were fully informed of 

90 the experimental procedures and gave their informed written consent to participate in the 

91 investigation.  The study was approved by the Camilo José Cela University Research Ethics 

92 Committee.
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93 Experimental design. A randomized, double blind, placebo-controlled and 

94 crossover experimental design was used in this study. Each participant took part in 2 

95 identical trials that were conducted 48 h apart to allow time for recovery and substance 

96 elimination.  The participants were randomly assigned to ingest an unidentifiable capsule 

97 either filled with 3 mg of caffeine per kg of body mass (Bulk Powders, United Kingdom) or 

98 with the same amount of cellulose as a placebo (Guinama, Spain).  The assigned capsule for 

99 each trial was administered with 150 mL of tap water 60 min before the onset of the 

100 experimental trials.  Each trial consisted of a graded maximal exercise test on a cycle 

101 ergometer (SNT Medical, Cardgirus, Spain) until volitional fatigue.  Ventilatory variables, 

102 heart rate, and muscle oxygen saturation were continuously measured during exercise to 

103 assess the effect of caffeine on these variables.  An alphanumeric code was assigned to each 

104 trial by an individual who was not involved in the study.  Investigators and participants were 

105 not aware of the assignment of the trials nor the substances under investigation. All trials 

106 were performed in a laboratory with constant ambient conditions (21.5 ± 0.3 ºC and 45 ± 2% 

107 relative humidity). 

108 Experimental protocol. A week prior to the onset of the experiments, participants were 

109 familiarized with all the research protocols twice and their body mass was measured (±50 g, 

110 Radwag, Poland) to calculate proper caffeine dosage.  During the familiarization protocols, 

111 skinfold thickness (Holtain Ltd, Bryberian, Crymmych, Pembrokeshire) was measured in the 

112 biceps, triceps and subscapular and supra-iliac areas to calculate body fatn [18] and on the 

113 vastus lateralis of both legs (right limb = 5.7 ± 2.5 mm, left limb = 5.6 ± 2.0 mm).  The day 

114 before each experimental trial, participants refrained from all sources of dietary caffeine, from 

115 strenuous exercise and alcohol, and adopted a standardized diet and fluid intake. All these 

116 standardizations were recorded in a diary during the first trial and later replicated in the second 

117 trial. 
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118 On the day of the trials, participants arrived to the laboratory at 9.00 in a fed state (at 

119 least 3 hours have passed after their last meal) and the assigned experimental capsule was 

120 provided in an unidentifiable bag.  They immediately ingested the capsule with water. Then, 

121 they changed into a T-shirt, shorts and cleated shoes, and had a heart rate belt (Wearlink, 

122 Polar, Finland) attached to their chest.  At this time, a near infrared spectrometer (Moxy®, 

123 Fortiori Design LLC, Minnesota, USA) was positioned longitudinally on the musculus vastus 

124 lateralis of each lower limb, halfway between the greater trochanter and lateral epicondyle of 

125 the femur, to monitor tissue O2 saturation.  This device has been shown to be reliable in 

126 measuring local oxygen saturation during exercise (intraclass correlation coefficient of 0.77 

127 to 0.99; [19]).  The position of each spectrometer was marked with an indelible marking pen 

128 to assure inter-day positioning. In addition, the spectrometers were firmly attached to the skin 

129 with an elastic tubular net bandage positioned around the thigh (Vendafix, Favesam, Spain).  

130 The lack of spectrometer movement was tested during the warm-up.  The vastus lateralis was 

131 chosen as the location for the spectrometers because it is a part of the knee extensor group, 

132 which is the primary contributor to force production during the down stroke of the pedal [20] 

133 and it is a typical location used to assess muscle oxygenation during incremental cycling 

134 exercise [21].  After this step, the participants rested on a stretcher in a supine position for 60 

135 min to allow for the experimental substance to be absorbed.

136 After the resting period, participants performed a 10-min standardized warm-up on the 

137 cycle ergometer at 50 W and then exercise intensity was progressively increased by 25 W/min 

138 (ramp test) until volitional fatigue.  The pedaling frequency was individually chosen (between 

139 75 and 90 rpm) but maintained during the whole graded exercise test and replicated in both 

140 experimental trials.  The seat and handlebar positions on the cycle ergometer were chosen in 

141 the familiarization trials and replicated for each individual in both experimental trials.  
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142 Standardized encouragement and feedback were given to the participants in all trials by the 

143 same researcher who was blinded to the treatments.  

144 During the exercise test, pulmonary ventilation, end-tidal oxygen partial pressure and 

145 oxygen uptake (VO2), and heart rate were continuously measured and recorded by means of 

146 a breath-by-breath analyzer (Metalyzer 3B, Cortex, Germany). Certified calibration gases 

147 (16.0% O2; 5.0% CO2, Cortex, Germany) and a 3-L syringe were used to calibrate the gas 

148 analyzer and the flow meter before each trial.  In the graded exercise test, maximal wattage 

149 (Wmax) was recorded as the exercise load on the cycle ergometer at the moment that 

150 participants abruptly stopped pedaling or when an individual’s pedaling frequency was 

151 lower than 50 rpm.  VO2peak was defined as the highest VO2 value obtained during the test.  

152 The absolute value of VO2peak in the placebo trial was used to normalize the exercise 

153 intensity that represented each workload.  For this normalization, the VO2 of each workload 

154 was divided by the individual VO2peak in the placebo trial, and the relative load (i.e., % of 

155 placebo VO2peak) was then allocated to the nearest load by using 5% intervals.  At each 

156 workload, all variables were averaged every 15 s and the last 15 s of each stage were used as 

157 a representative value of the workload.  The exercise test was considered maximal and valid 

158 when the following end criteria were reached at the end of the test: VO2 stabilized despite 

159 increases in ergometric power, the respiratory exchange ratio was higher than 1.10, 

160 participant’s rating of perceived exertion (6-to-20 point Borg scale) was higher than 19 

161 points, and peak heart rate was greater than 80% of the age-adjusted estimate of maximal 

162 heart rate [22].  One minute after the end of the graded test, a blood sample was obtained 

163 from a participants’ fingertip to analyze blood lactate concentration (Lactate Pro 2, Arkay, 

164 Japan).  

165 Statistical Analysis.  The results of each trial were blindly introduced into the statistical 

166 package SPSS v 20.0 for later analysis.  Differences between the caffeine vs. placebo protocols 
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167 were determined by a two-way analysis of variance (substance × workload) with repeated 

168 measures.  After a significant F test (Geisser-Greenhouse correction for the assumption of 

169 sphericity), differences between the means were identified using Tukey’s HSD post hoc.  The 

170 difference in peak values of caffeine vs. placebo for all variables was identified with the 

171 Student’s T test for paired samples.  The significance level was set at P < 0.05 and all data 

172 were presented as means ± SD.  

173

174 RESULTS 

175 In comparison to the placebo, the ingestion of caffeine improved Wmax at the end of 

176 the ramp test by 5.2 ± 3.8% (258 ± 50 vs 271 ± 54 W, respectively, P < 0.001).  In addition, 

177 1 min after the end of the ramp test, blood lactate concentration was increased by 14.3 ± 3.6% 

178 with the ingestion of caffeine (11.9 ± 3.8 vs 13.7 ± 3.5 mmol/L, P = 0.029).  However, the 

179 rating of perceived exertion at the end of exercise was very similar very similar, regardless of 

180 whether a placebo or caffeine was ingested (19.3 ± 0.9 vs 19.2± 1.0, P = 0.800).  

181 During exercise, there was a main effect of caffeine on muscle oxygen saturation (F = 

182 6.28, P = 0.029) while the pairwise comparison detected differences between caffeine and 

183 placebo at 29 ± 3, 39 ± 3, 51 ± 2 and 61 ± 3% of placebo VO2peak (Figure 1).  Nevertheless, 

184 the lowest value of muscle oxygen saturation, obtained at the end of exercise, was not different 

185 between treatments (26.8 ± 14.5 vs 26.9 ± 14.5%, P = 0.295).  In pulmonary ventilation, a 

186 main effect of caffeine was not detected (F = 0.60, P = 0.460) but peak pulmonary ventilation 

187 was higher with caffeine by 6.1 ± 8.5% (124 ± 29 vs 129 ± 23 L/min, P = 0.035).  In end-tidal 

188 O2 partial pressure, there was no main effect of caffeine found (F = 0.10, P = 0.759) and peak 

189 O2 partial pressure remained unchanged with caffeine (115 ± 5 vs 115 ± 4 mmHg, P = 0.278).  

190 In VO2, there was no detected main effect of caffeine (F = 0.31, P = 0.589) but VO2peak was 
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191 increased by 4.5 ± 10.6% with caffeine (3.18 ± 0.70 vs 3.33 ± 0.88 L/min, P = 0.032).  In 

192 regards to heart rate, there was no main effect of caffeine (F = 3.77, P = 0.110) and peak heart 

193 rate remained unchanged with caffeine (173 ± 11 vs 173 ±11 beats/min, P = 0.403).  

194

195 DISCUSSION

196 The aim of the investigation was to analyze the effects of caffeine on muscle oxygen 

197 saturation during a graded maximal cycling test in healthy individuals.  This aim was designed 

198 to ascertain whether caffeine’s ergogenicity during endurance exercise is produced, at least in 

199 part, via increased oxygen supply to the exercising muscle, in addition to the well-contrasted 

200 mechanism via blockade of adenosine receptors in the brain [7].  The main outcomes of this 

201 investigation indicate that caffeine increased Wmax while also enhancing muscle oxygen 

202 saturation at 30-60% of VO2peak.  Although the caffeine-placebo comparison did not show 

203 an effect on muscle oxygen saturation at the highest workloads, the end-point value for muscle 

204 oxygen saturation, which characterizes muscle fatigue during cycling [21], was later obtained 

205 and at a higher exercise intensity with caffeine (i.e., 104.5% of placebo VO2peak, Figure 1).  

206 The acute ingestion of caffeine also increased VO2peak, peak pulmonary ventilation, and post-

207 exercise blood lactate concentration, suggesting that the ergogenic effect of caffeine was also 

208 driven by respiratory and metabolic pathways.  These results suggest that caffeine’s 

209 ergogenicity during an incremental cycling exercise relies on the multiple effects of this 

210 substance on body tissues and likely explain why caffeine has the capacity to increase 

211 performance in such a wide range of endurance exercise activities [1,23].  

212 The benefits of caffeine ingestion on high-intensity endurance cycling tests have been 

213 reported in the literature through original investigations [24–26] and meta-analysis [1,23,27].  

214 The magnitude of caffeine’s ergogenicity is typically higher in investigations that used time-
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215 to-exhaustion endurance protocols than in maximal graded or time trials [1,27].  Furthermore, 

216 it seems that the effect of caffeine on endurance performance is of similar magnitude in men 

217 and women [24] and may last for up to fifteen days  when the substance is ingested daily [26].  

218 Despite the consistency in the investigations that have reported an ergogenic effect of acute 

219 caffeine intake on endurance activities, there is a disparity of findings regarding the 

220 mechanism(s) behind the effects of caffeine.  Shen et al., [1], through a meta-analysis of 40 

221 articles, have reported that caffeine’s ergogenicity increases along with exercise duration.  

222 This finding is consistent with that of Silveira et al., [25], who indicated that caffeine effects 

223 on endurance performance might be linked to an enhanced maintenance of maximal metabolic 

224 oxidative pathways.  However, other investigations have found caffeine-induced effects on 

225 several variables associated with anaerobic energy systems [28–30] and a direct effect of 

226 caffeine on ventilation [11].  In the majority of these investigations, caffeine-induced changes 

227 have been related to an effect on the central nervous system via the direct competitive 

228 blockade of the adenosine receptors in the brain that inhibits the deleterious effects of 

229 adenosine and permits more external work [8].  Alternatively, caffeine has also been related 

230 to a direct effect on increasing muscle force production by way of an calcium release from the 

231 sarcoplasmic reticulum during muscle contractions and delayed potassium accumulation [6].  

232 The current manuscript presents an additional mechanism of action that might help to 

233 understand the ergogenic effect of caffeine on endurance exercise.  In the caffeine trial, muscle 

234 oxygen saturation was enhanced with caffeine at 30-60% of VO2peak.  Although the statistical 

235 significance of this effect disappeared at higher workloads, there was a main effect of caffeine 

236 on muscle oxygen saturation in the caffeine trial that indicated higher oxygen availability in 

237 the exercising muscle.  While endurance training habitually yields enhanced oxygen 

238 utilisation within the muscle, which is translated into lower muscle oxygen saturation [31], 

239 the ingestion of caffeine produced higher muscle oxygen saturation, which reflected enhanced 
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240 blood oxygen supply to the exercising muscle.  Interestingly, the end-point of muscle oxygen 

241 saturation, obtained in the moment of volitional fatigue, was similar in caffeine and placebo 

242 trials despite the workload was significantly higher with caffeine, suggesting that the “margin” 

243 of improved tissue oxygenation due to caffeine allowed participants to cycle longer and at a 

244 higher exercise intensity in the caffeine trial.  Although the causes for the higher muscle 

245 oxygen saturation with caffeine are not evident from our data, the unchanged values of 

246 pulmonary ventilation, end-tidal oxygen partial pressure, and VO2 at submaximal workloads 

247 suggest that the load of oxygen at the alveolar level and the oxidative capacity of the 

248 exercising muscles were not modified with this stimulant.  If these two factors were likely 

249 unchanged with caffeine ingestion, the alternative hypothesis for the physiological process 

250 that induced higher muscle oxygen saturation might be related to an improved blood flow to 

251 the muscle.  In fact, this theory has scientific support due to the potential vasodilation effects 

252 of caffeine at the endothelial level [17] and on smooth muscle cells [16], or indirectly through 

253 the increased concentration of adenosine once caffeine blocks its receptors in the brain [32].  

254 This is the first investigation that shows an effect of caffeine on muscle oxygenation during 

255 exercise and requires further investigation.  

256 The current investigation presents some limitations, which should be discussed in 

257 order to understand the practical application of the results.  First, we used a ramp exercise test 

258 to determine the effect of caffeine on muscle oxygen saturation during endurance exercise.  

259 However, this protocol of increasing exercise intensity is not representative of any endurance 

260 competition.  Thus, the efficacy of caffeine in increasing tissue oxygen saturation should be 

261 confirmed by using exercise routines more applicable to sports before this mechanism is used 

262 to explain the ergogenic effect of caffeine in endurance sports.  Second, we placed the near-

263 infrared spectrometers on the vastus lateralis, which only represents a small portion of the 

264 muscles involved in pedaling.  To assure the effect of caffeine on tissue oxygenation during 
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265 cycling, the measurement of muscle oxygen content should be made in other leg muscles.  

266 Although the spectrometer used in this investigation is a valid and reliable tool for assessing 

267 local oxygen saturation, it has been found that its reliability is reduced along with exercise 

268 intensity [19].  This lower reliability at higher exercise intensities might explain the lack of 

269 effect of caffeine on this variable at exercise intensities > 60% VO2peak.  Last, we used only 

270 a dose of caffeine (i.e., 3 mg/kg) and thus, we are unable to determine whether there is a dose-

271 response effect of caffeine on muscle oxygen saturation.  Despite these limitations, this 

272 investigation is innovative and can be used to further the understanding caffeine’s ergogenic 

273 effect on endurance exercise performance.   

274 In summary, the results of this investigation indicate that the acute ingestion of 3 mg 

275 of caffeine per kg of body mass was effective in increasing the maximal wattage obtained in 

276 a graded cycling test by 5.2 ± 3.8%.  This ergogenic effect was accompanied by increased 

277 VO2peak, blood lactate concentration, and peak pulmonary ventilation, which represent 

278 effects found in previous investigations [26,33], and suggest that caffeine’s ergogenicity seen 

279 in maximal intensity exercise is, at least in part, driven by these changes.  Furthermore, a 

280 higher caffeine-induced muscle oxygen saturation was found in low-to-moderate workloads, 

281 which allowed the obtaining of the end-point for muscle oxygen saturation associated to 

282 fatigue at higher exercise intensity.  This outcome indicates caffeine’s ability to enhance 

283 oxygen availability in the exercising muscle, which serves as another potential explanation 

284 for the well-evidenced ergogenic effect of caffeine on endurance performance.  Further 

285 investigation is necessary to determine whether this effect of caffeine is present during 

286 endurance exercise sports or in high-intensity intermittent disciplines.

287

Page 14 of 23

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

11

288 Acknowledgments

289 The authors wish to thank the subjects for their invaluable contribution to the study. 

290

291 Conflict of interest

292 The authors of this study have not received any support from any organizations for the 

293 submitted work. They do not have any financial relationships with any organizations that 

294 might have had an interest in the submitted work in the last three years. Lastly, the authors 

295 have not been involved in any relationships or activities that could seem to have influenced 

296 the submitted work. 

297

298 Financial disclosure

299 This investigation did not receive any funding.  

300

301 Data availability statement

302 The data that support the findings of this study are available from the corresponding author 

303 upon reasonable request.

304

305

Page 15 of 23

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

12

306 REFERENCES

307 1. Shen JG, Brooks MB, Cincotta J, Manjourides JD. Establishing a relationship 

308 between the effect of caffeine and duration of endurance athletic time trial events: A 

309 systematic review and meta-analysis. J Sci Med Sport. 2019;22(2):232-238. 

310 doi:10.1016/j.jsams.2018.07.022

311 2. Salinero JJ, Lara B, Del Coso J. Effects of acute ingestion of caffeine on team sports 

312 performance: a systematic review and meta-analysis. Res Sport Med. 2019;27(2):238-

313 256. doi:10.1080/15438627.2018.1552146

314 3. Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z. The Influence of Caffeine 

315 Supplementation on Resistance Exercise: A Review. Sport Med. 2019;49(1):17-30. 

316 doi:10.1007/s40279-018-0997-y

317 4. Aguilar-Navarro M, Muñoz G, Salinero JJ, et al. Urine Caffeine Concentration in 

318 Doping Control Samples from 2004 to 2015. Nutrients. 2019;11(2):286. 

319 doi:10.3390/nu11020286

320 5. Maughan RJ, Burke LM, Dvorak J, et al. IOC consensus statement: dietary 

321 supplements and the high-performance athlete. Br J Sports Med. 2018;52(7):439 LP - 

322 455. doi:10.1136/bjsports-2018-099027

323 6. Tallis J, Duncan MJ, James RS. What can isolated skeletal muscle experiments tell us 

324 about the effects of caffeine on exercise performance? Br J Pharmacol. 

325 2015;172(15):3703-3713. doi:10.1111/bph.13187

326 7. Meeusen R, Roelands B, Spriet LL. Caffeine, Exercise and the Brain. In: Nestle 

327 Nutrition Institute Workshop Series. Vol 76. ; 2013:1-12. doi:10.1159/000350223

328 8. Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system 

Page 16 of 23

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

13

329 effects of caffeine and adenosine on fatigue. Am J Physiol Integr Comp Physiol. 

330 2003;284(2):R399-R404. doi:10.1152/ajpregu.00386.2002

331 9. Elmenhorst D, Meyer PT, Matusch A, Winz OH, Bauer A. Caffeine occupancy of 

332 human cerebral A1 adenosine receptors: in vivo quantification with 18F-CPFPX and 

333 PET. J Nucl Med. 2012;53(11):1723-1729. doi:10.2967/jnumed.112.105114

334 10. Glaister M, Gissane C. Caffeine and Physiological Responses to Submaximal 

335 Exercise: A Meta-Analysis. Int J Sports Physiol Perform. 2018;13(4):402-411. 

336 doi:10.1123/ijspp.2017-0312

337 11. Chapman RF, Stager JM. Caffeine stimulates ventilation in athletes with exercise-

338 induced hypoxemia. Med Sci Sports Exerc. 2008;40(6):1080-1086. 

339 doi:10.1249/MSS.0b013e3181667421

340 12. Gutiérrez-Hellín J, Del Coso J. Effects of p-Synephrine and Caffeine Ingestion on 

341 Substrate Oxidation during Exercise. Med Sci Sport Exerc. 2018;50(9):1899-1906. 

342 doi:10.1249/MSS.0000000000001653

343 13. Davis JK, Green JM. Caffeine and anaerobic performance: Ergogenic value and 

344 mechanisms of action. Sport Med. 2009. doi:10.2165/11317770-000000000-00000

345 14. Conlay LA, Conant JA, deBros F, Wurtman R. Caffeine alters plasma adenosine 

346 levels. Nature. 1997;389(6647):136-136. doi:10.1038/38160

347 15. Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular 

348 and respiratory effects of adenosine in conscious man. Evidence for chemoreceptor 

349 activation. Circ Res. 1987;61(6):779-786. 

350 http://www.ncbi.nlm.nih.gov/pubmed/3677336. Accessed June 19, 2019.

351 16. Echeverri D, Montes FR, Cabrera M, Galán A, Prieto A. Caffeine’s vascular 

Page 17 of 23

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

14

352 mechanisms of action. Int J Vasc Med. 2010. doi:10.1155/2010/834060

353 17. Umemura T, Ueda K, Nishioka K, et al. Effects of Acute Administration of Caffeine 

354 on Vascular Function. Am J Cardiol. 2006;98(11):1538-1541. 

355 doi:10.1016/j.amjcard.2006.06.058

356 18. Stewart A, Marfell-Jones M, International Society for Advancement of 

357 Kinanthropometry. International Standards for Anthropometric Assessment. Rev. 

358 2006. Potchefstroom  South Africa: International Society for the Advancement of 

359 Kinanthropometry; 2011. https://www.worldcat.org/title/international-standards-for-

360 anthropometric-assessment/oclc/869687146. Accessed June 18, 2019.

361 19. Crum EM, O’Connor WJ, Van Loo L, Valckx M, Stannard SR. Validity and 

362 reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur J 

363 Sport Sci. 2017;17(8):1037-1043. doi:10.1080/17461391.2017.1330899

364 20. Raasch CC, Zajac FE, Ma B, Levine WS. Muscle coordination of maximum-speed 

365 pedaling. J Biomech. 1997;30(6):595-602.

366 21. Racinais S, Buchheit M, Girard O. Breakpoints in ventilation, cerebral and muscle 

367 oxygenation, and muscle activity during an incremental cycling exercise. Front 

368 Physiol. 2014;5:142. doi:10.3389/fphys.2014.00142

369 22. Edvardsen E, Hem E, Anderssen SA. End criteria for reaching maximal oxygen 

370 uptake must be strict and adjusted to sex and age: A cross-sectional study. PLoS One. 

371 2014. doi:10.1371/journal.pone.0085276

372 23. Southward K, Rutherfurd-Markwick KJ, Ali A. The Effect of Acute Caffeine 

373 Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis. 

374 Sport Med. 2018;48(8):1913-1928. doi:10.1007/s40279-018-0939-8

Page 18 of 23

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

15

375 24. Skinner TL, Desbrow B, Arapova J, et al. Women Experience the Same Ergogenic 

376 Response to Caffeine as Men. Med Sci Sport Exerc. January 2019:1. 

377 doi:10.1249/MSS.0000000000001885

378 25. Silveira R, Andrade-Souza VA, Arcoverde L, et al. Caffeine Increases Work Done 

379 above Critical Power, but Not Anaerobic Work. Med Sci Sport Exerc. 

380 2018;50(1):131-140. doi:10.1249/MSS.0000000000001408

381 26. Lara B, Ruiz-Moreno C, Salinero JJ, Del Coso J. Time course of tolerance to the 

382 performance benefits of caffeine. Sandbakk Ø, ed. PLoS One. 2019;14(1):e0210275. 

383 doi:10.1371/journal.pone.0210275

384 27. Doherty M, Smith PM. Effects of caffeine ingestion on exercise testing: a meta-

385 analysis. Int J Sport Nutr Exerc Metab. 2004;14(6):626-646. 

386 http://www.ncbi.nlm.nih.gov/pubmed/15657469. Accessed June 20, 2019.

387 28. Doherty M. The effects of caffeine on the maximal accumulated oxygen deficit and 

388 short-term running performance. Int J Sport Nutr. 1998;8(2):95-104. 

389 http://www.ncbi.nlm.nih.gov/pubmed/9637189. Accessed June 20, 2019.

390 29. Simmonds MJ, Minahan CL, Sabapathy S. Caffeine improves supramaximal cycling 

391 but not the rate of anaerobic energy release. Eur J Appl Physiol. 2010;109(2):287-

392 295. doi:10.1007/s00421-009-1351-8

393 30. Lara B, Ruiz-Vicente D, Areces F, et al. Acute consumption of a caffeinated energy 

394 drink enhances aspects of performance in sprint swimmers. Br J Nutr. 

395 2015;114(06):908-914. doi:10.1017/S0007114515002573

396 31. Kime R, Niwayama M, Kaneko Y, et al. Muscle Deoxygenation and Its 

397 Heterogeneity Changes After Endurance Training. In: Advances in Experimental 

Page 19 of 23

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

16

398 Medicine and Biology. Vol 923. ; 2016:275-281. doi:10.1007/978-3-319-38810-6_37

399 32. Ballard HJ. ATP and adenosine in the regulation of skeletal muscle blood flow during 

400 exercise. Acta Physiol Sin. 2014;66(1):67-78.

401 33. Chapman RF, Mickleborough TD. The effects of caffeine on ventilation and 

402 pulmonary function during exercise: An often-overlooked response. Physician Sport 

403 Med. 2009. doi:10.3810/psm.2009.12.1747

404

405

406

Page 20 of 23

British Pharmacological Society

British Journal of Clinical Pharmacology



British Journal of Clinical Pharm
acology

17
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408 of 3 mg·kg -1 of caffeine or a placebo.  Data are mean ± standard deviation for 13 healthy and 

409 active individuals.

410 (*) Caffeine different from placebo at P < 0.05. 
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413 Figure 2.  Pulmonary ventilation, end-tidal O2 partial pressure, and O2 uptake during a 

414 maximal graded cycling test after the ingestion of 3 mg·kg -1 of caffeine or a placebo.  Data 

415 are mean ± standard deviation for 13 healthy and active individuals. 

416 (†) Peak value with caffeine different from peak value with placebo at P < 0.05. 

417
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