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ABSTRACT 

Cornelia de Lange syndrome (CdLS) is a heterogeneous developmental disorder where 70% 

of clinically diagnosed patients harbor a mutation in one of five CdLS associated cohesin 

proteins. Around 500 mutations have been identified to cause CdLS, however only eight 

different alterations are identified in RAD21, encoding the RAD21 cohesin protein that 

constitute the link between SMC1A and SMC3 within the cohesin ring. We report a 15-

month-old boy presenting with developmental delay, distinct CdLS facial features, 

gastrointestinal reflux in early infancy, testis retention fetal pads and diaphragmatic hernia. 

Exome sequencing revealed a novel RAD21 variant, c.1774_1776del; p.(Gln592del), 

suggestive of CdLS type 4. Segregation analysis of the two healthy parents confirmed the 

variant as de novo and bioinformatic analysis predicted the variant as disease-causing. 

Functional assessment by in silico structural model predicted that the p.Gln592del variant 

results in a discontinued contact between RAD21-Lys591 and the SMC1A residues Glu1191 

and Glu1192, causing changes in the RAD21-SMC1A interface. In conclusion, we report a 

novel RAD21 p.(Glu592del) variant that expands the clinical description of CdLS type 4 and 

validate the pathogenicity of the variant by in silico structural modeling that displayed 

disturbed RAD21-SMC1A interface.  
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INTRODUCTION 

Cornelia de Lange syndrome (CdLS) is characterized by cognitive impairment, growth 

deficiency, skeletal malformations, distinct facial features such as long eyelashes and arched 

eyebrows, and other major system deficiencies like gastrointestinal reflux. The patient group 

is heterogeneous with great variety in clinical manifestations and severity, primarily 

depending on which of the five CdLS associated cohesin proteins that are affected and the 

type of variant. Around 60% of clinically diagnosed patients with CdLS harbor a Nipped B-

like (NIPBL) variant, which results in a sever CdLS phenotype. Approximately 5% are 

diagnosed with a Structural maintenance of chromosomes 1a (SMC1A) variant, 5% with a 

Histone deacetylase 8 (HDAC8) variant and less then 1% harbor a mutation in Structural 

maintenance of chromosome 3 (SMC3) or RAD21. About 500 mutations affecting the cohesin 

complex have been associated to CdLS. However, 30 % of CdLS patients are without a 

genetic diagnosis (Boyle et al., 2015) and so far, only eight different alterations in RAD21 

have been identified in CdLS type 4 patients (MIM #614701). 

RAD21 (MIM 606462) was first associated to CdLS type 4 in four unrelated CdLS 

patients (Deardorff et al., 2012). Two patients had de novo deletions spanning RAD21 (P1 and 

P4 in Figure 1D) and two patients had de novo RAD21 missense mutations (c.1127C>G; 

p.Pro376Arg and c.1753T>C; p.Cys585Arg). Two previously reported patients diagnosed 

with Langer-Giedion syndrome were also highlighted as their clinical features overlapped 

with CdLS type 4 and they had deletions spanning RAD21 (McBrien et al., 2008; Wuyts et al., 

2002). In 2014, Minor et al. reported two patients, one with a de novo frameshift mutation 

(c.592_593dupAG; p.(Ser198Argfs*6)) of unknown origin and one patient with a maternally 

inherited deletion spanning exon 13. The mother displayed very mild CdLS features (Minor et 

al., 2014). Ansari et al. also reported a familial case where an unaffected father had passed on 

a splice donor mutation (c.274+1G>A) to his affected daughter (Ansari et al., 2014). In 2017, 
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Boyle et al. report a frameshift mutation, c.704delG; p.(Ser235Ilefs*19), in four female 

family members (Boyle et al., 2017) and Martínez et al. identified a de novo c.68G>A; 

p.(Trp23Ter) variant in a boy (Martinez et al., 2017) (Figure 1E). The RAD21 protein form 

the cohesin ring by linking the SMC1A and SMC3 head domains, that preserve the sister 

chromatids connected during cell division (Nasmyth and Haering, 2009). The cohesin ring is 

disrupted during anaphase by cleavage of RAD21 with active separase, allowing separation of 

the chromatids (Figure 1C) (Lin et al., 2016). Thus, the cohesin complex also serves an 

important function during transcriptional control and DNA-repair (Nasmyth and Haering, 

2009).  

Herein, we expand the clinical description of CdLS type 4 by reporting the clinical 

features of a 15-month-old boy with a novel mutation in RAD21. We also highlight the 

molecular effect of the variant by in silico structural modeling. 

 

CLINICAL REPORT 

The boy was born with normal birthweight (3460 g) into a family of two healthy parents and 

three healthy siblings. The boy presented with distinct facial morphology, microcephaly, 

developmental delay, growth delay, testicular retention and diaphragmatic hernia (which was 

surgically treated), as well as gastroesophageal reflux disease during infancy (Figure 1A; 

Table 1). No hearing impairment or malformations of distal limbs were noted but he 

displayed fetal pads on all fingers.  
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METHODS 

Ethical consent 

The study was performed according to the Declaration of Helsinki guidelines after approval 

by the local ethics committee, Uppsala (Dnr 2012/321) and collection of informed consent. 

Whole-exome sequencing and segregation analysis 

Clinical whole-exome sequencing (WES) and analysis protocols, developed by the Clinical 

genomics facility in Uppsala, were adapted as a clinical WES test at the Department of 

Clinical Genetics, Uppsala University Hospital, Sweden. Briefly, genomic DNA from the trio 

was extracted from peripheral blood using automated systems (EZ1 and QIAsymphony, 

QIAGEN) according to standard protocols. 250 ng of DNA was used for library preparation 

with Clinical Research Exome and SureSelectQXT Target Enrichment System (Agilent 

Technologies, Santa Clara, CA, USA). Sequencing was performed with 150 base pair long 

paired-end reads on a NextSeq500 sequencer (Illumina, San Diego, CA). Alignment of raw 

data to the human reference genome (GRCh37/hg19) was performed using BWA 0.7.10 and 

variant calling was performed with GATK haplotype caller (GATK framework 3.2.4, 

GenomeAnalysisTK 3.2.2) by using the Bcbio-Nextgen pipeline v 0.8.9 

(https://github.com/chapmanb/bcbio-nextgen). Quality control parameters were calculated 

using FastQC 0.11.2, Picard HsMetrics 1.96 (http://broadinstitute.github.io/picard/) and 

GATK Depth of Coverage (GATK framework 3.2.4, GenomeAnalysisTK 3.2.2). For filtering 

of variants BenchLab NGS (Agilent Technologies, Inc.) was used. The allelic variants 

identified were classified according to the American College of Medical Genetics and 

Genomics and the Association for Molecular Pathology (Richards et al., 2015). 
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 The selected variant was confirmed by Sanger sequencing of the family trio according to 

standard protocols (available upon request).  

Three-dimensional structure modeling   

The template structure was a stabilized model of human RAD21-Cterminal domain linked to 

the head domains of human SMC1A/SMC3 heterodimer, which was based on the structure of 

the C-terminal domain of yeast Scc1 protein (RAD21 in human) bound to yeast Smc1 

homodimer (Protein Data Bank ID: 1W1W) (Haering et al., 2004), as previously described by 

Marcos-Alcalde et al. (Marcos-Alcalde et al., 2017). Model coordinates were built using the 

SWISS-MODEL server (http://swissmodel.expasy.org) and their structural quality was within 

the range of those accepted for homology-based structure (Anolea/Gromos/QMEAN4) 

(Benkert et al., 2011). To optimize geometries, the model was energy minimized using the 

GROMOS 43B1 force field implemented in DeepView (http://spdbv.vital-it.ch/), using 500 

steps of steepest descent minimization followed by 500 steps of conjugate-gradient 

minimization. Figures were generated using the Pymol Molecular Graphics System 

(Schrödinger, LLC). Multiple sequence alignment of proteins from the RAD21 family was 

generated using TCOFFEE (http://www.tcoffee.org/) (Notredame et al., 2000). 

 

RESULTS 

Whole-exome sequencing revealed a novel RAD21 c. 1774_1776del; p.(Gln592del) 

variant 

Whole-exome sequencing was performed on the family trio with 93% of the reads mapping to 

the reference genome, at an average read depth of 159x and >10x for 97% of the exome in the 

index patient. Filtering of trio variants revealed heterozygosity for a novel RAD21 variant, 

c.1774_1776del; p.(Gln592del), chr8:117859859_117859861delTTG (NM_006265) that was 
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confirmed de novo in the index patient (Figure 1B). The variant is not reported in the 

population of ExAC, GnomAD or SweGen databases (Ameur et al., 2017; Lek et al., 2016). 

ExAC database revealed that the level of observed missense variants in RAD21 is lower than 

expected (ExAC: z=2.76). Further, there is only one homozygous missense variant reported 

(p.Asp414Glu; rs75160167, n=3), and no homozygous loss-of-function variants reported in 

the population databases (GnomAD, ExAC and SweGen). 

In silico modelling displayed changes in the p.Gln592del RAD21-SMC1A interface 

The p.Gln592del variant is located in the C-terminal of the last exon (14/14) within the 

SMC1A binding domain of RAD21 (Figure 1E; p.558-628). The three-nucleotide position of 

the variant is conserved (PhyloP score 4.2; Figure 2A) and the deletion is predicted to be 

deleterious (PROVEAN: -11.124) and disease causing (MutationTaster). Amino acids 

Gln592, Arg590 and Lys591 are located in a positively charged environment in close contact 

to the negatively charged residues Glu119 and Glu1192 from the head domain of SMC1A 

(Figure 2B, left). Deletion of Gln592 results in rearrangement of the surrounding residues. In 

particular, the structural model predicts a significant positional change of Lys591, now 

located in the space previously occupied by Gln592. As a result, the previous contact between 

Lys591 and the SMC1A residues Glu1191 and Glu1192 is discontinued, causing significant 

changes in the RAD21-SMC1A interface (Figure 2B, right). 

Residues Arg590, Lys591 and Gln592 are located in the same alpha helix as Lys605 

(Figure 2C, right). Lys605 is a key residue for the ATPase activity of the active site 1 of the 

cohesin ring, as it stabilizes the position of the SMC1A residues Asn35 and Gly35 in contact 

to ATP and the catalytic water molecule (Marcos-Alcalde et al., 2017). The changed 

interaction between RAD21 positive, and SMC1A negative, patches is suspected to generate a 

local disorganization of the interface, thus affecting p.Lys605 and subsequently the ATPase-

dependent functionality of the cohesin head (Figure 2C, left). 
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DISCUSSION 

We report clinical and genetic findings of a patient with CdLS type 4, a syndrome of which 

clinical features of only 13 patients have been described in the literature before (Table 1). The 

index patient presented with classical CdLS features as well as diaphragmatic hernia, which 

has been reported in about 1% of CdLS patients (Cunniff et al., 1993; Fryns, 1987; Jelsema et 

al., 1993; Marino et al., 2002; Pankau and Janig, 1993) but not in CdLS type 4 patients. 

Notably, the index patient presented with fetal pads that has been reported in a patient with a 

deletion spanning RAD21 (McBrien et al., 2008) that shared clinical features with CdLS type 

4 but was diagnosed with Langer-Giedion syndrome (Deardorff et al., 2012). In this report, 

we highlight that exostoses is most likely not associated to CdLS type 4 and RAD21 

mutations but caused by EXTI deletions. Exostoses has recurrently been associated to 

heterozygous stop and missense mutations in EXT1 (MIM #133700) and has been reported in 

three CdLS patients (Deardorff et al., 2012; Pereza et al., 2015) with micro deletions spanning 

EXT1 (Figure 1D). 

The index patients was diagnosed with a novel de novo RAD21 c.1774_1776, 

p.(Gln592del) variant. The affected p.Gln592 residue is conserved and the deletion is 

predicted as deleterious and disease-causing. Further, the p.Gln592del variant is not reported 

in publically available databases and missense variants in RAD21 in the normal population are 

underrepresented, suggesting that variants in RAD21 might be disease-causing. The lack of 

homozygous loss-of function variants in the normal population suggests that complete loss of 

RAD21 is lethal. Previously, eight unique heterozygous alterations of RAD21 variants have 

been reported in patients affected with CdLS type 4; three missense mutations (Deardorff et 

al., 2012; Martinez et al., 2017), two frameshift mutations (Boyle et al., 2017; Minor et al., 

2014), one in-frame deletion including exon 13 of RAD21, one splice donor mutation (Ansari 
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et al., 2014) and deletions spanning whole RAD21 (Deardorff et al., 2012; Pereza et al., 2015). 

Deardorff et al. has also highlighted two previously published patients, with deletions 

spanning RAD21, diagnosed with Langer-Giedion syndrome but with clinical symptoms 

overlapping CdLS type 4 (McBrien et al., 2008; Wuyts et al., 2002).  

The RAD21 cohesin complex protein serves an important function during the cell 

cycle as the cohesin ring keeps sister chromatids connected during S-phase, and cleavage of 

RAD21 during anaphase allows their separation. Deletion of RAD21 has been shown to result 

in haploinsufficiency (reduced RAD21 RNA and protein levels) but a p.Pro376Arg variant 

did not affect the expression levels notably (Deardorff et al., 2012). Hence, different RAD21 

disease-causing variants suggestively act through different pathogenic mechanisms. It is clear 

that RAD21 is sensitive to alterations and that variants can cause CdLS type 4, but there are 

also reports of heterozygous missense RAD21 variants associated to CIPO (p.Ala622Thr) 

(Bonora et al., 2015) and autism spectrum disorder (p.(Phe114Leu)) (Yuen et al., 2015). The 

one-amino-acid deletion reported in this study is located in the N-terminal of RAD21 at the 

site responsible for coupling to the SMC1A-head (Haering et al., 2004). Functional analysis 

performed in this study by in silico modeling of RAD21 p.592del, display a clear structural 

change in residue Lys591 and, to a lesser extent, Arg590, which is predicted to affect the 

interface to SMC1A-head (Glu1191 and Glu1192). The p.592del variant is also suggested to 

influence RAD21 p.Lys605/Lys604 that facilitate a crucial function in ATP induced 

hydrolysis that is responsible for the opening of the cohesin molecule (Marcos-Alcalde et al., 

2017). Therefore, we suggest that the function of the cohesin ring, and specifically the 

binding to SMC1A is altered, causing the phenotype observed in the patient.  

In summary, we present a novel RAD21 c.1774_1776del; p.(592del) variant, giving 

rise to CdLS type 4 in a 15-month-old boy. Segregation analysis, bioinformatic analysis, 

population data and in silico structural modeling vindicate the pathogenicity of the novel 
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variant. This report summarizes previously reported clinical manifestations of CdLS type 4 

but also highlights new clinical symptoms, which will aid correct counseling of future CdLS 

type 4 patients. 
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FIGURE TITLES AND LEGENDS 

Figure 1: Overview of patient features and RAD21 properties. (A) The index patient 

presented with typical Cornelia de Lange syndrome phenotype. Parents and the three older 

siblings are healthy. (B) A novel de novo RAD21 p.(592del) variant was confirmed. (C) 

RAD21 (blue) serves as a link between SMC3 (green) and SMC1A (yellow) that form the 

cohesin ring, responsible for adhesion of the sister chromatids during cell division. The ring is 

disrupted during anaphase by cleavage of RAD21. The position of the p.Gln592del variant is 

indicated by a red arrow. (D) Three studies report deletions spanning RAD21 in patients with 

Cornelia de Lange syndrome type 4 (black bars). Two patients with deletions spanning 

RAD21 have been reported with Lager-Giedion syndrome (brown bars). (E) RAD21 is 631 

amino acid long with three binding domains: SMC3 (green; p.1-103), STAG1/2 (purple; 

p.362-403) and SMC1A (yellow; p.558-628). Previously reported intragenic variants are 

marked as well as the novel p.(Gln592del) variant identified in the index patient (bold). 

Figure 2: In silico modeling of Gln592del mutant. (A) Multiple sequence alignment display 

conservation of the C-terminal domain of RAD21 (colored according to BLOSUM62 score). 

Dots indicate RAD21 residues connecting with SMC1A (blue) and the position of the 

deletion, p.Gln592 (red). (B) Surface of the structure model for wild-type RAD21-Cterminal 

domain (left) and for RAD21-Cterminal domain with p.Gln592del (right) colored according 

to electrostatic characteristics (red: negative; blue: positive; white: neutral). Positively 

charged amino acid Arg590, interacting with SMC1A residue Glu1198, is affected by the 

p.Gln592 deletion. Lys591 has lost its connection to SMC1A residues Glu1191 and Glu1192. 

(C) Structure model for wild-type RAD21-Cterminal domain (left) and for RAD21-

Ceterminal domain with p.Gln592del (right) with residues Arg590, Lys591, Gln592 and 

Lys605/Lys604* labeled. Lys591 residue have repositioned to the space previously occupied 

by the deleted Gln592 residue. 
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TABLES 

Table 1: Clinical features reported in the index patient and/or >2 previously described 

Cornelia de Lange type 4 patients. 

Clinical anomalies reported in >2 patients of 

different families, or in the index patient 

Index 

patient 

Previously reported 

patients (tot 13†) 

CdLS classical facial features 
  

synphrys - 9 

arched/thick/long eyebrows + 12 

long eyelashes + 6 

short nose with anteverted nostrils + 9 

broad or depressed nasal bridge + 6 

long philtrum - 10 

thin lips, down-turned corners - 8 

macrotia + 7 

ptosis + 3 

high or cleft palate + 3 

low set or/and posteriorly ears + 3 

micrognathia + 2 

developmental delay/ intellectual disability + 13 

microcephaly/ low occipitofrontal circumference + 11 

gastroesophageal reflux disease + 7 

sparse/fine/thin hair + 3 

short stature + 3 

genital abnormalities + 2 

fetal pads + this report 

diaphragmatic hernia + this report 

malformations of hand or fingers - 10 

5th finger clinodactyly - 8 

low birth weight/ decreased body weight - 5 

dislocated elbow/ abnormal extension - 4 

toe syndactyly - 3 

exostoses‡ - 3 

 

+ Observed in the index patient, II:1. – Not observed in the index patient. †Patient clinical 

features reported in >2 patients with different mutations ‡Suggestively associated to EXT1 

deletions and not RAD21 variants.   
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