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Abstract: 

This paper deals with the analysis of volatility persistence in 12 main cryptocurrencies 

(Bitcoin, Bitshare, Bytecoin, Dash, Ether, Litecoin, Monero, Nem, Ripple, Siacoin, 

Stellar and Tether) taking into account the possibility of structural breaks. Using 

fractional integration methods, the results indicate that both absolute and squared returns 

display long memory features, with orders of integration confirming the long memory 

hypothesis. However, after accounting for structural breaks, we find a reduction in the 

degree of persistence in the cryptocurrency market. The evidence of persistence in 

volatility imply that market participants who want to make gains across trading scales 

need to factor the persistence properties of cryptocurrencies in their valuation and 

forecasting models since that will help improve long-term volatility market forecasts and 

optimal hedging decisions.  
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1. Introduction 

Recent advances in empirical finance research on cryptocurrencies,  leading to 

conclusions on them as a new class of financial assets (Bouri, Jalkh, Molnár, & Roubaud, 

2017; Brandvold, Molnár, Vagstad, & Valstad, 2015; Corbet, Meegan, Larkin, Lucey, & 

Yarovaya, 2018; Glaser, Haferkorn, Weber, & Zimmermann, 2014; Grinberg, 2012; 

Katsiampa, 2017; Nadarajah & Chu, 2017; Urquhart, 2016, 2017; Wu & Pandey, 2014; 

Giudici, Milne, & Vinogradov, 2020; Corbet, Lucey, Urquhart & Yarovaya, 2019; 

Aalborg, Molnar, & de Vries, 2019; Corbet, Larkin, Lucey, Meegan & Yarovaya, 2020; 

Platanakis, & Urquhart, 2019; Alexander & Dakos, 2020; Gil-Alana, Abakah, & Rojo, 

2020), offer new opportunities for further comprehensive investigation on various aspects 

of cryptocurrencies yet to be explored. Since the inception of cryptocurrencies in 2009, 

research into various aspects of them has experienced increased growth suggesting the 

significant role of cryptocurrencies to the global financial system. Thus, for example, 

some papers have focused on the characteristics of cryptocurrencies following different 

forms of money and other well-known assets (Barber, Boyen, Shi, & Uzun, 2012; Wu & 

Pandey, 2014; etc.). Other papers have concentrated on price formation of 

cryptocurrencies (Buchholz, Delaney, Warren, & Parker, 2012; Dyhrberg, 2016; van 

Wijk, 2013, among others) and interconnections between cryptocurrencies and traditional 

financial asset class (Corbet et al., 2018). In addition, Gil-Alana, Abakah, & Rojo (2020) 

recently provided new evidence on the linkages between cryptocurrencies and stock 

market indices by showing evidence of no cointegration between cryptocurrencies and 

stock market indices, which clearly leaves room for further research on cryptocurrencies 

since they emerged to be decoupled from mainstream finance and economic assets. 

Interestingly, in spite of the comprehensive emerging literature on cryptocurrencies, a key 



question that remains unanswered is whether they follow the random walk theory, thus 

whether the behaviour of cryptocurrencies is predictable (Fama, 1970).  

In finance and economic literature, a large stream of research modelling financial 

time series provides strong evidence of persistence in asset returns (Abuzayed, Al-

Fayoumi, & Molyneux, 2018; Baillie & Morana, 2009; Caporale, Gil-Alana, Plastun, & 

Makarenko, 2016; Charfeddine, 2016; Giraitis, Kokoszka, Leipus, & Teyssière, 2003; 

Greene & Fielitz, 1977). This implies that the market does not respond immediately to 

information arriving into the financial system, but reacts to it gradually over time. As a 

result, past price changes can be used to predict future price changes. In this context, 

shocks to the volatility process tend to have long-lasting effects, thus, providing negative 

evidence as well as a new perspective to the Efficient Market Hypothesis (EMH). 

Additionally, a strand of prior studies in economics and finance have focused on 

estimating time-varying volatility.  Indeed, an extensive literature has established the 

presence of non-constant and time dependent volatility in high-frequency asset returns. 

The main representatives of this class of model are the autoregressive conditional 

heteroscedasticity (ARCH) model (Engle, 1982) and its extensions including the 

generalised ARCH (Bollerslev, 1986) and the fractionally integrated generalised 

autoregressive conditional heteroscedasticity (FIGARCH) (Baillie, 1996; Baillie, 

Bollerslev, & Mikkelsen, 1996). These models explicitly recognise the difference 

between conditional and unconditional (or long run) variance, where the former is 

allowed to change over time and the latter remains constant.  

Clearly understanding volatility changes in cryptocurrencies is important because, 

changes in volatility can affect the risk exposure of investors. These changes may alter 

their respective investments in cryptocurrencies. Thus, understanding volatility dynamics 

is important for decisions regarding valuation, hedging and investments in physical 



capital tied to cryptocurrencies. Although volatility fluctuates over time, a key question 

is to determine how persistent these changes are in volatility in prices. This study tries to 

answer this question. If changes are very persistent, then they will have a major impact 

on prices of assets that are tied to the price of cryptocurrencies. On the other hand, if 

changes in volatility are short lived (or less persistent), they should have little or no impact 

on market variables. Poterba & Summers (1984) make this point with their asset-pricing 

model that explicitly shows that the amount of persistence in volatility directly affects the 

price of an asset. In the current study, we examine volatility persistence in the 

cryptocurrency market using 12 major CCs, these being Bitcoin, Bitshare, Bytecoin, 

Dash, Ether, Litecoin, Monero, Nem, Ripple, Siacoin, Stellar and Tether, from 28th April 

2013 until 29th March 2018 using fractional integration methods. However, following 

authors such as Diebold & Inoue (2001) who showed evidence that long memory and 

structural breaks are closely interrelated, and Granger & Hyung (2004) who found that 

long memory may be partially instigated by the presence of neglected breaks in the series, 

we additionally investigate the effects of structural breaks on volatility persistence in the 

12 cryptocurrencies. We examine the effects of structural breaks because failure to 

incorporate them may result in an overstatement of the degree of persistence of variance 

or in spurious estimation of long memory (Lamoureux & Lastrapes, 1990).   

The remaining part of the paper is organized as follows: Section 2 presents a brief 

overview of the cryptocurrency market along with a summary of the relevant empirical 

literature on cryptocurrencies. Section 3 describes the methodology adopted in the paper. 

Section 4 presents the data and the empirical findings, while Section 5 documents the 

concluding remarks and recommendations for further research.  

 

 

 



2. Literature review 

Cryptocurrencies have attracted a lot of attention since Bitcoin was first proposed by 

Nakamoto (2008). Unlike other financial assets, cryptocurrencies are not associated with 

any higher authority, are infinitely divisible, and their values are based on the security of 

an algorithm which is able to trace all transaction. The use of cryptocurrencies has grown 

dramatically in the last decade, mainly due to the low transaction costs, peer-to-peer 

system, and governmental free design, leading to a surge in trading volume, volatility and 

price of cryptocurrencies (Corbert et al., 2018). Although Bitcoin is the first decentralised 

digital currency and remains the cryptocurrency market leader, the number of them is still 

increasing, reaching 2864 cryptocurrencies traded in April 2020 with a market 

capitalization of $201 billion (www.investing.com). Therefore, research in these markets 

has increased rapidly in order to gain an understanding of several aspects which are key 

factors for investors to gauge the risks related to an investment in cryptocurrencies, such 

as, the dynamics of coin creation, competition and destruction in the cryptocurrency 

industry (Feder et al., 2018), price volatility (Dyhrberg, 2016; Katsiampa, 2017; 

Sovbetov, 2018), price clustering (Urquhart, 2017), speculation (Cheah and Fry, 2015 ; 

Yermack, 2015; Blau, 2017), transaction costs (Kim, 2017), the market efficiency 

(Urquhart, 2016; Nadarajah and Chu, 2017; Bariviera, 2017; Vidal-Tomás, Ibañez and 

Farinos, 2018), market returns and volatility (Omane-Adjepong et al., 2019), robustness 

(Charles and Darné, 2019), and persistence in the cryptocurrencies market (Caporale et 

al., 2018, Bouri, 2018).  

In particular, market efficiency of cryptocurrencies is a controversial issue. A 

market is said to be efficient with respect to an information set if the price would be 

unaffected by revealing the information set to all market participants (Malkiel, 1992). 

Economists consider investigating the efficiency of the cryptocurrency market in the 

http://www.investing.com/


sense of the Efficient Market Hypothesis (EMH), the classical definition due to Eugene 

Fama (1970), sorting the efficiency of the market into three segments: strong efficiency, 

semi-strong efficiency, and weak efficiency. Some authors support that cryptocurrency 

market, in particular Bitcoin market, is almost efficient (Urquhart (2016), Nadarajah & 

Chu (2017), Bariviera (2017), Khuntia & Pattanayak (2018), Tiwari (2018), Dimitrova 

(2019)), or inefficient depending on the sample size (Urquhart (2016). In contrast, other 

authors did not find conclusive evidence that the cryptocurrency market is inefficient, 

such as Caporale (2019) after examining the day of the week effect in the cryptocurrency 

market.  

On the other hand, some authors showed that their empirical results do not support 

the EMH for this market. Lo (2004) proposed an alternative to the static view of market 

efficiency, proposing that the efficiency evolves over time. This is denoted the Adaptive 

Market Hypothesis (AMH). Urquhart and Hudson (2013), Ito et al. (2014), Noda (2016), 

Ito et al. (2016), Urquhart and McGroarty (2016) and Yaya et al (2019) investigates the 

market efficiency with methods derived with the AMH. Furthermore, Chu et al. (2019) 

investigates the AMH for the two largest cryptocurrencies, and found evidence that 

supports the hypothesis of a time varying market efficiency. Two approaches to examine 

the AMH have been adopted in the literature. One is based on conventional statistical test 

under the split samples or the rolling-window method (Urquhart (2016), Nadarajah and 

Chu (2017), Khuntia and Pattanayak (2018), Kristoufek (2018), Chu et al. (2019), 

Dimitrova et al. (2019), and Vidal-Tomás et al. (2019). However, these methods have the 

underlying empirical problem of choosing an optimal window width for the test statistics. 

Unlike these methods, a Generalized Least Square (GLS)-based time-varying model is an 

approach to examining the AMH, and has the superior property that it does not depend 

on sample size. In this approach, the degree of market efficiency is measured together 



with its statistical inference. Noda (2020) investigated whether the cryptocurrency 

markets (Bitcoin and Ethereum) evolve over time, based on Lo’s (2004) AMH. The 

empirical results showed that cryptocurrency market efficiency varies with time, the 

market efficiency of the BTC is higher than that of the Ethereum in most periods, and the 

market has been evolving with high market liquidity. 

On the other hand, Cheah et al. (2018) model cross market Bitcoin prices as long-

memory processes and study dynamic interdependence in a fractionally cointegrated 

VAR framework. They find long memory in both the individual markets and the system 

of markets depicting non-homogeneous informational inefficiency. Moreover, Bitcoin 

markets are found to be fractionally cointegrated, where uncertainty negatively impacts 

this type of cointegration relationship. Caporale et al. (2018) employs two different long-

memory methods (R/S analysis and fractional integration) in the four main 

cryptocurrencies (Bitcoin, Litecoin, Ripple, Dash) and show that these markets exhibit 

persistence, and that its degree changes over time. Such predictability represents evidence 

of market inefficiency and that trend trading strategies may be used to generate abnormal 

profits in the cryptocurrency market. Most recently, Tran & Leivirk (2019) have construct 

a simple measure to quantify the level of market efficiency, called Adjusted Market 

Inefficiency Magnitude (AMIM). The AMIM increases as market efficiency decreases, 

and decreases as market efficiency increases. They apply this measure to investigate the 

level of market efficiency and analyze its variation over time showing that the inefficiency 

depends also on the period of time and the cryptocurrency (Tran & Leivirk (in press)). 

They found that before 2017, cryptocurrency markets are mostly inefficient, but they 

become more efficient over time in the period 2017–2019. Also, on average, Litecoin is 

the most efficient cryptocurrency, and Ripple being the least efficient cryptocurrency.  



A summary of the literature review on market efficiency of cryptocurrency is presented 

in Table 1. 



Table 1: Cryptocurrency Market Efficiency Research  

Authors (Year) Methodology Data source Frequency N Observation 

Urquhart and 

Hudson (2013) 

Several Linear and 

nonlinear test 

Not provided Daily >1500 - The linear dependence of 

stock returns varies over time but nonlinear 

dependence is strong throughout.  

- The AMH provides a better description of the 

behaviour of stock returns than the EMH 

Urquhart (2016) Hurst Exponent bitcoinavarage Daily >1200 - Bitcoin in an inefficient market but may be in the 

process of moving towards an efficient market. 

Nadarajah & Chu 

(2017)   

Ljung-Box and others Not provided Daily >2000 A power transformation of Bitcoin returns can be 

weakly efficient. 

Baur et al (2017) Means Test Kaggle.com Minutely 3045857 - No persistent patterns in returns. 

- Persistent patterns in volume, e.g. lower trading 

volume on weekends 

Álvarez-Ramirez et 

al. (2018) 

Detrended Fluctuation 

Analysis (DFA) 

coindesk.com Daily (2013 – 

2017) 

1435 - Bitcoin market exhibits periods of efficiency 

alternating with periods where the price dynamics 

are driven by anti-persistence. 

- Asymmetries and inefficiency are replicated over 

different time scales. 

Caporale et al. 

(2018) 

R/S analysis and 

fractional integration 

coinmarketcap Daily >1000 - Cryptocurrency market exhibits persistence (there 

is a positive correlation between its past and future 

values), and that its degree changes over time.  

- Evidence of market inefficiency 

Cheah et al. (2018) Two-step Exact Local 

Whittle (ELW) 

Estimator 

bitcoincharts Daily 1057 Bitcoin markets are moderate to highly inefficient 

Khuntia & 

Pattanayak (2018) 

Linear and nonlinear 

dependence checked 

using rolling-window 

approach 

coindesk.com Daily 2714 - Market efficiency evolves with time  

- Validates the adaptive market hypothesis (AMH) in 

bitcoin market 

Tiwari (2018)  Centred Moving 

Average 

coindesk.com Daily 2525 Bitcoin market is informational efficient 



Yonghonga (2018) Hurst Exponent bitcoinaverage Daily (2010-1017) 2551 - long-term memory exists in the Bitcoin market 

- high degree of inefficiency ratio 

- the Bitcoin market does not become more efficient 

over time 

Caporale (2019) Average Analysis, 

Student's t-test, 

ANOVA, the Kruskal–

Wallis test, and 

Regression Analysis 

coinmarketcap.com Daily >1500 - The market exhibits persistence (there is a positive 

correlation between its past and future values), and 

that its degree changes over time. 

- Evidence of market inefficiency 

 

Noda (2020) GLS-based time-varying 

autoregressive (TV-AR) 

coinmarketcap.com Daily 2346 (Bitcoin) 

1515(Ethereum) 

- The degree of market efficiency varies with time. 

- Bitcoin’s market efficiency level is higher than that 

of Ethereum  

Tran &Leirvik (in 

press) 

Adjusted Market 

Inefficiency Magnitude 

(AMIM) Model 

coinmarketcap.com Daily 2132 (Bicoin) 

607 (EOS) 

1301(Ethereum) 

2132 (Litecoin) 

2034 (Ripple) 

- The cryptocurrency-markets become more efficient 

over time in the period 2017–2019. 

- Litecoin is the most efficient cryptocurrency, and 

Ripple being the least efficient cryptocurrency. 
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In the context of long memory and volatility in the Bitcoin series, Bariviera et al. (2017) 

found that the price volatility, measured as the logarithmic difference between intraday high 

and low prices, exhibits long memory, what reflects a different underlying dynamic process 

generating prices and volatility. Similarly, Omane-Adjepong et al. (2019) evidenced high 

persistence in volatility, so that market forecasters are required to account for such persistence 

characteristics in their forecasting models. This clearly might improve long-term volatility 

market forecasts and optimal hedging decisions. Moreover, Charfeddine & Maouchi (2019) 

questioned the true nature (true versus spurious) of the Long Range Dependence (LRD) 

behavior observed in the returns and volatility series of four cryptocurrencies. Using a robust 

approach, they showed that the LRD behavior exhibited by the returns and volatility series of 

Bitcoin, Litecoin, and Ripple is a true behavior, and not a statistical artifact. As for Ethereum, 

the results show that the LRD is only supported for the volatility series. Their results confirm 

the inefficiency of all the considered markets, with the exception of Ethereum. Still on this 

strand of the literature that examines persistence in cryptocurrency market,  Yaya et al (2018) 

examined other popular alternative coins, by means of fractional integration to analyse 

persistence and also, using fractional cointegration in a VAR set-up to investigate dependency 

of the paired variables. Having segregated the series into periods before crash and those after 

the crash as determined by Bitcoin pricing, they document some interesting results. Thus, 

higher persistence of the shocks is observed after the crash due to speculation in the mind of 

cryptocurrency traders, and more evidence of non-mean reversion, implying chances of further 

price falls in cryptocurrencies. Cointegration analysis between Bitcoin and alternative coins 

exists during both periods, with weak correlation observed mostly in the post-crash period. In 

another recent study, Yaya et al (2019) investigated both market efficiency and volatility 

persistence in twelve cryptocurrencies during pre-crash and post-crash periods. Using robust 

fractional integration methods in linear and non-linear set-ups, they found that markets of 
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Bitcoin and most altcoins considered in their samples are efficient, and highly volatile, 

particularly in the post-crash sample. The different volatility methods mentioned in the 

introduction section are summarized in Table 2, and a brief summary of the volatility in 

cryptocurrency literature review, to the best of our knowledge, is summarized in Table 3. 

 

 

Table 2: Volatility methods 

Method Authors (Year) 

Autoregressive conditional heteroscedasticity (ARCH) 

model  

Engle (1982) 

Generalised ARCH (GARCH) Bollerslev (1986) 

Fractionally integrated generalised autoregressive 

conditional heteroscedasticity (FIGARCH) 

Baillie (1996);  

Baillie, Bollerslev, & Mikkelsen (1996). 

  

 

Table 3: Cryptocurrency Volatility Research  

Authors 

(Year) 

Methodology Data source Frequency N Observation 

Gronwald 

(2014) 

GARCH Mt. Gov. Daily >500 - Bitcoin prices are strongly 

characterised by extreme price 

movements 

Dyhrberg 

(2016) 

GARCH Coindesk.com Daily 1769 Most aspects of bitcoin are 

similar to gold as they 

react to similar variables in the 

GARCH model, possess similar 

hedging capabilities and react 

symmetrically to good and bad 

news. 

Bariviera 

(2017) 

Hurst 

Exponent by 

means of the 

Detrended 

Fluctuation 

Analysis 

bitcoincharts Daily  

(2011 - 

2017) 

1404 - Bitcoin presents large 

volatility, but it is reducing over 

time. 

- long range memory is not 

related to market liquidity 

- Until 2014 the time series had 

a persistent behavior (H > 0.5), 

whereas after such date, the 

Hurst exponent tended to move 

around 0.5. 

Lahmiri et 

al. (2018) 

GARCH bicoinity Daily >1300 Long-range memory in Bitcoin 

market volatility, irrespectively 

of distributional inference 

Omane-

Adjepong 

et al. 

(2019) 

ARFIMA-

FIGARCH 

 Daily >900 - Efficiency and volatility 

persistence are dependent on 

scale and data variations 
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Yaya et al. 

(2019) 

Fractional 

integration 

methods in 

linear and 

nonlinear set 

up 

coinmetrics.io Daily >1100 - Evidence of random walk in 

returns of most cryptocurrencies 

including Bitcoin. 

 

 

3.  Methodology  

In the paper we use long range dependence or long memory methods and in particular we focus 

on fractional integration. The idea that is behind this technique is that the number of differences 

required in a time series to convert it in stationary I(0) may be any real value, and thus, it may 

potentially include fractional numbers. 

In a classical paper by Nelson and Plosser (1982) and using ADF (Dickey and Fuller, 

1979) tests, these authors found that fourteen US macro series were integrated of order 1, or 

I(1), implying that first differences were required to convert them stationary I(0). However, 

fifteen years later, Gil-Alana and Robinson (1997) examined an updated version of the same 

dataset, and using fractional integration methods, they found that all except one of the series 

were in fact I(d) with the value of d constrained between 0 and 1. Since then, this technique 

has been widely employed in the analysis of aggregated economic and financial data (see, e.g., 

Lima and Xiao, 2010; Gil-Alana and Moreno, 2012; Mensi et al., 2014; Ben Nasr et al., 2016; 

Abbritti et al., 2016; Gil-Alana and Mudida, 2018; Merhrdoust and Fallah, 2020; etc.) 

 The estimation of the differencing parameter d is conducted by means of using a simple 

version of the tests of Robinson (1994). These tests are very general, including not only the 

standard case of fractional integration, but also allowing for seasonal and cyclical 

differentiation. The functional form of the version of the tests used in this work can be found 

in Gil-Alana and Robinson (1997). 
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4. Data and Empirical Results  

The data for over 1500 cryptocurrencies was downloaded from CoinMarketCap.com. We 

followed the conventional literature to select the coins used in the study (e.g., Kaiser, 2019). 

For the purposes of the study, we included coins that are representative of the cryptocurrency 

market. First we considered only coins whose market capitalisation was more than the average 

market value of the cryptocurrency market and had over 850 observations over the period  (i.e. 

the coin should have been in the market for at least for more than 2 years) to be included in the 

study. Aside, we further ensured the coins formed part of the top 20 cryptocurrencies by market 

capitalization as of March 31st 2018.  Descriptive statistics for the coins are given across Tables 4 

to 7.  

[Insert Tables 4 – 7] 

From Table 4 Bitcoin seems to be a determinant of the cryptocurrencies market since 

prices of the other cryptocurrencies peak after the BitCoin price. The standard deviation seems 

to be approximately twice the mean for most of them except Bytecoin and Tether. The mean 

returns are moderate for all them at 0.002 across the series. The series have more fat tails (the 

lowest kurtosis is Siacoin with 7.5 and Tether records the highest at 553). This shows that 

cryptocurrencies possess an element of heightened unexpected returns (positive/negative) 

when risk is involved. The best return given by Bitcoin in the market was 30%; Bytecoin 

however delivered the highest return at 160% (Table 2). The squared returns (Table 3) project 

a similar image 

 We start by estimating d for each cryptocurrency in the model given by 

            
,...,2,1,)1(;tty ==−+= tuxLx tt

d     (1) 

where yt is the series of interest (absolute and squared returns), α is an intercept, and xt is an 

I(d) process where d can be any real value. Thus, ut is I(0) and it will be specified as a white 
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noise process (in Table 7) and allowing for autocorrelation (in Table 8). In the latter case we 

use a non-parametric structure developed by Bloomfield (1973) that approximates ARMA 

models with very few parameters. 

Starting with the case of no autocorrelation we observe that all the estimated values of 

d are positive and in the interval (0, 0.5) displaying thus a long memory pattern. For the absolute 

returns, the values of d range between 0.16 (Siacoin) and 0.32 (Ether), and for the squared 

returns the values are between 0.11 (Dash) and 0.37 (Ether). 

[Insert Tables 7 and 8] 

If autocorrelation is permitted, generally the same conclusion holds in favor of long 

memory, though in some cases, we cannot reject the null hypothesis of I(0) or short memory 

behavior. Thus, for the absolute returns, the estimates of d are all strictly positive except for 

Ether (d = -0.01), and for the squared returns short memory is found in the cases of Monero, 

Nem and Stellar, while for Ether the results support the hypothesis of anti-persistence (d < 0). 

In all the remaining cases, the values of d are once more strictly positive and supporting the 

long memory hypothesis. 

Next we want to investigate if breaks are present in the data and if this is the case, if 

they have had any influence in the degree of persistence of the data. For this purpose, we use 

first the approach developed in Bai and Perron (2003) for detecting multiple breaks in time 

series, and then we also consider the methodology proposed in Gil-Alana (2008), which is 

basically an extension of Bai and Perron (2008) to the fractional case. The results were 

practically identical in the two cases the only difference being in the case of Bitshare with the 

squared returns where two breaks were detected with Bai and Perron (2003) and three with Gil-

Alana’s (2008) methodology. The number of breaks and the breaks dates for each case are 

presented in Table 9. 

[Insert Table 9] 
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We observe in Table 9 that for the absolute returns, three breaks take place in the cases 

of Litecoin, Monero, Nem, Siacoin and Stellar; two breaks for Bitcoin, Bitshare, Bytecoin and 

Ripple; a single break occurs in case of Dash and Ether and no breaks are detected for Tether. 

For the squared returns, three break dates occur for Bitcoin, Monero and Stellar; two breaks 

for Bitshare, Bytecoin; on break in case of Dash, Ether, Litecoin and Nem, and no breaks in 

the remaining three series (Ripple, Siacoin and Tether). With respect to the break dates. Most 

of them occur at similar dates, namely, the end of 2014 and/or the beginning of 2015; middle 

or end of 2015 and middle of 2017. 

 Once the break dates have been determined, we examine the degree of persistence 

associated with each subsample, and here, based on the shorter sample sizes, we also consider 

the possibility of a linear trend. Thus, the model examined is now: 

     
,...,1,0,)1(;tty ==−++= tuxLxt tt

d     (2) 

where α and β are the coefficients associated to the intercept and the linear time trend. We 

estimate d under three set-ups: i) when α and β are assumed to be 0 a priori, that is, imposing 

no deterministic terms in the model, ii) with β = 0 a priori, that is, allowing for an intercept, 

and iii) allowing for a linear time trend by estimating α and β freely from the data. The results 

in terms of the estimation of d for each of these three cases and each subsample are reported 

across Table 10 (absolute returns) and Table 11 (squared returns), and we have marked in bold 

in the tables the most adequate specification for each case according to the significance of the 

estimated coefficients of these deterministic terms. 

Starting with the absolute returns, we observe in Table 10 that the time trend is required 

in a number of cases such as in the first subsamples for Dash and Litecoin, but also in the last 

subsamples for Bytecoin, Litecoin and Siacoin. Nevertheless, in the majority of the cases the 

intercept is sufficient to describe the deterministic part. Table 11 summarizes the estimates of 

d for each cryptocurrency and each subsample, and we observe that for the majority of the 
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cases, there is a reduction in the degree of persistence as we move from one sample to another. 

This is noted in the cases of Bitcoin, Bytecoin, Dash, Ether, Ltecoin, Siacoin and Stellar; for 

Bitshare, Monero, Nem and Stellar, however, the degree of integration seems to be relatively 

stable, and only for Ripple do we observe an increase in the estimated value of d across the 

subsamples. 

[Insert Tables 10 – 13] 

 Table 12 refers to the squared returns. Once more the time trend is required in a number 

of cases, at the beginning of the sample in the cases of Bitshare, Dash and Litecoin, and during 

the last subsamples for Bytecoin and Litecoin, and focussing on the estimated values of d, in 

Table 13, we notice a similar reduction as in the previous case in the degree of persistence in 

the cases of Bitcoin, Bytecoin, Etter and Nem. However, in other cases such as Dash and 

Litecoin, we observe a slight increase in the value of d. 

 

5. Concluding comments 

This paper uses fractional integration long-memory techniques and an extended form of Bai 

and Perron (2003) using fractional integration techniques to investigate the degree of 

persistence under structural breaks in twelve main cryptocurrencies (Bitcoin, Bitshare, 

Bytecoin, Dash, Ether, Litecoin, Monero, Nem, Ripple, Siacoin, Stellar and Tether).  

Succinctly, results obtained under the assumption of no autocorrelation indicate that all the 

estimated values of d are positive. For the case of autocorrelation, we obtain similar findings 

suggesting that for all cases the values of d are strictly positive, which clearly supports the long 

memory hypothesis. This further indicates that the cryptocurrency market is still inefficient 

implying that abnormal returns could be obtained by investors in the cryptocurrency market 

through technical trading strategies. After documenting the presence of persistence in the 

cryptocurrency market, we run further tests to investigate whether structural breaks in the data 
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could have any effect on the extent of persistence, and provide some evidence indicating that 

the degree of persistence is somehow reduced when we take into account structural breaks. We 

recommend that further research must be carried out to consider the impact of non-linearity 

effects on the degree of persistence in the cryptocurrency market as expounded by prior studies 

that examined market efficiency in mainstream financial markets (see for instance, Masten, 

Coricelli and Masten, 2008; Clements, Franses and Swanson, 2004; Abakah, Alagidede, 

Mensah and Ohene-Asare, 2018). In fact, Robinson’s (1994) tests used in this work impose 

linearity in the specification of the regression model, and though there exist some extensions 

of this method allowing for nonlinearities (Cuestas and Gil-Alana, 2016; Yaya et al., 2019a,b) 

they will be examined in future papers along with other approaches including for example the 

analysis of cyclical patterns in the context of fractional integration. 

The findings documented in this study offer several implications for market 

participants, investors and policy markets as they seek to make gains, understand the long 

memory properties and regulate the cryptocurrency market respectively. First, our empirical 

findings surmise the significance of accounting for the long memory property in an empirical 

analysis that considers the economics and financial benefits of cryptocurrencies as optimal 

hedging estimation, risk portfolio management, and potential option valuation. Secondly, the 

evidence of high persistence in volatility suggests that, market analyst, participants and analysts 

who aim to make gains in the cryptocurrency market across trading scales need to factor the 

persistence properties of cryptocurrencies in their valuation and forecasting models since that 

will help improve long-term volatility market forecasts and optimal hedging decisions. Lastly, the 

findings also offer market participants and analysts an interesting opportunity to get benefits from the 

inefficiencies in the cryptocurrency market. As such, they can potentially improve the risk‐adjusted 

performance of their portfolios by using long memory‐based frameworks.  

  



19 
 

References 

 

Aalborg, H. A., Molnár, P., & de Vries, J. E. (2019). What can explain the price, volatility and  

trading volume of Bitcoin?. Finance Research Letters, 29, 255-265. 

 

Abakah, E. J. A., Alagidede, P., Mensah, L., & Ohene-Asare, K. (2018). Non-linear approach 

to Random Walk Test in selected African countries. International Journal of 

Managerial Finance, 14(3), 362-376. 

 

Abbritti, M., L.A. Gil-Alana, Y. Lovcha and A. Moreno (2016). Term structure persistence, 

Journal of Financial Econometrics 14, 2, 331-352. 

 

Abuzayed, B., Al-Fayoumi, N., & Molyneux, P. (2018). Diversification and bank stability in 

the GCC. Journal of International Financial Markets, Institutions and Money, 57, 17-

43.  

 

Alexander, C., & Dakos, M. (2020). A critical investigation of cryptocurrency data and  

analysis. Quantitative Finance, 20(2), 173-188. 

 

Alvarez-Ramirez, J., Rodriguez, E., & Ibarra-Valdez, C. (2018). Long-range correlations and 

asymmetry in the Bitcoin market. Physica A: Statistical Mechanics and its 

Applications, 492, 948-955. 

 

Alexander, C., & Dakos, M. (2020). A critical investigation of cryptocurrency data and  

analysis. Quantitative Finance, 20(2), 173-188. 

 

Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. 

Journal of Econometrics, 73(1), 5-59.  

 

Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized 

autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3-30.  

 

Baillie, R. T., & Morana, C. (2009). Modelling long memory and structural breaks in 

conditional variances: An adaptive FIGARCH approach. Journal of Economic 

Dynamics and Control, 33(8), 1577-1592.  

 

Barber, S., Boyen, X., Shi, E., & Uzun, E. (2012). Bitter to better—how to make bitcoin a better 

currency. Paper presented at the International Conference on Financial Cryptography 

and Data Security. 

 

Bariviera, A. F., Basgall, M. J., Hasperué, W., & Naiouf, M. (2017). Some stylized facts of the 

Bitcoin market. Physica A: Statistical Mechanics and its Applications, 484, 82-90.  

 

Baur, D. G., Hong, K. & Lee, A. D. (2018). Bitcoin: Medium of exchange or speculative 

assets?. Journal of International Financial Markets, Institutions and Money, 54, 177-

189. 



20 
 

Ben Nasr, A., T. Lux, A.N. Ajmi and R. Gupta, (2016), Forecasting the volatility of the Dow 

Jones Islamic Stock Market Index: Long memory vs. regime switching, International 

Review of Economics and Finance 45, 559-571 

 

Blau, B. M. (2017). Price dynamics and speculative trading in bitcoin. Research in 

International Business and Finance, 41, 493-499. 

 
Bloomfield, P. (1973) An exponential model in the spectrum of a scalar time series,  Biometrika, 60, 

217-226. https://doi.org/10.1093/biomet/60.2.217. 

 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of 

Econometrics, 31(3), 307-327.  

 

Bouri, E., Jalkh, N., Molnár, P., & Roubaud, D. (2017). Bitcoin for energy commodities before 

and after the December 2013 crash: diversifier, hedge or safe haven? Applied 

Economics, 49(50), 5063-5073.  

 

Bouri,  E.,  Lau,  C.  K.  M.,  Lucey, B.,  &  Roubaud,  D.  (2018).  Trading  volume  and  the 

predictability of return and volatility in the cryptocurrency market. Finance Research 

Letters. https://doi.org/10.1016/j.frl.2018.08.01. 

 

Brandvold, M., Molnár, P., Vagstad, K., & Valstad, O. C. A. (2015). Price discovery on Bitcoin 

exchanges. Journal of International Financial Markets, Institutions and Money, 36, 18-

35.  

 

Buchholz, M., Delaney, J., Warren, J., & Parker, J. (2012). Bits and bets, information, price 

volatility, and demand for Bitcoin. Economics, 312.  

 

Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018). Persistence in the cryptocurrency 

market. Research in International Business and Finance, 46, 141-148. 

 

Caporale, G. M., Gil-Alana, L., Plastun, A., & Makarenko, I. (2016). Long memory in the 

Ukrainian stock market and financial crises. Journal of Economics and Finance, 40(2), 

235-257. 

  

Caporale, G. M., & Plastun, A. (2019). The day of the week effect in the cryptocurrency market. 

Finance Research Letters, 31, 258-269. 

 

Charfeddine, L. (2016). Breaks or long range dependence in the energy futures volatility: Out-

of-sample forecasting and VaR analysis. Economic Modelling, 53, 354-374.  

 

Charfeddine, L., & Maouchi, Y. (2019). Are shocks on the returns and volatility of 

cryptocurrencies really persistent? Finance Research Letters, 28, 423-430.  

 

Charles, A., & Darné, O. (2019). Volatility estimation for cryptocurrencies: Further evidence 

with jumps and structural breaks. Economics Bulletin, 39(2), 954-968. 

 

Cheah,  E.  T.,  &  Fry,  J.  (2015).  Speculative  bubbles  in  Bitcoin markets?  An  empirical 

investigation   into   the   fundamental   value   of   Bitcoin. Economics Letters 130,   

32-36.https://doi.org/10.1016/j.econlet.2015.02.029 

https://www.sciencedirect.com/science/article/pii/S1059056016300739
https://www.sciencedirect.com/science/article/pii/S1059056016300739
https://www.sciencedirect.com/science/journal/10590560
https://www.sciencedirect.com/science/journal/10590560


21 
 

 

Cheah, E.-T., Mishra, T., Parhi, M., and Zhang, Z. (2018). Long Memory Interdependency and 

Inefficiency in Bitcoin Markets. Economics Letters, 167, 18–25. 

 

Chu, J., Zhang, Y., & Chan, S. (2019). The Adaptive Market Hypothesis in the High Frequency 

Cryptocurrency Market. International Review of Financial Analysis, 64, 221–231. 

 

Clements, M. P., Franses, P. H., & Swanson, N. R. (2004). Forecasting economic and financial 

time-series with non-linear models. International Journal of Forecasting, 20(2), 169-

183. 
 

Corbet, S., Larkin, C., Lucey, B., Meegan, A., & Yarovaya, L. (2020). Cryptocurrency reaction  

to FOMC announcements: evidence of heterogeneity based on blockchain stack 

position. Journal of Financial Stability, 46, 100706. 

 

Corbet, S., Lucey, B., Urquhart, A., & Yarovaya, L. (2019). Cryptocurrencies as a financial  

asset: A systematic analysis. International Review of Financial Analysis, 62, 182-199. 

 

Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic 

relationships between cryptocurrencies and other financial assets. Economics Letters, 

165, 28-34.  

 

Dickey, D.A and Fuller, W. A. (1979) Distributions of the estimators for autoregressive time 

series with a unit root, Journal of American Statistical Association, 74 (366), 427-481. 

 

Diebold, F. X., & Inoue, A. (2001). Long memory and regime switching. Journal of 

Econometrics, 105(1), 131-159.  

 

Dimitrova, V., Fernández-Martínez, M., Sánchez-Granero, M., & Trinidad Segovia, J. (2019). 

Some Comments on Bitcoin Market (in)Efficiency. PLOS ONE, 14. 

 

Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance 

Research Letters, 16, 85-92.  

 

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the 

variance of United Kingdom inflation. Econometrica: Journal of the Econometric 

Society, 987-1007.  

 

Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The 

Journal of Finance, 25(2), 383-417.  

 

Feder  A.,  Gandal  N., Hamrick  J.T.,  Moore  T.,  Vasek  M.  (2018).  The  Rise  and  Fall  of 

Cryptocurrencies, In Proc. of the Workshop on the Economics of Information Security 

(WEIS) (2018). 

 

Gil-Alana, L., Abakah, E. J. A, & Rojo, M.F.. (2020). Cryptocurrencies and stock markets  

indices. Are they related?. Research in International Business and Finance 

https://doi.org/10.1016/j.ribaf.2019.101063 

https://doi.org/10.1016/j.ribaf.2019.101063


22 
 

Gil-Alana, L.A. and A. Moreno (2012). Uncovering the U.S. term premium.An alternative 

route. Journal of Banking and Finance, 36, 1184-1193. 

 

Gil-Alana L.A. and R. Mudida (2018), “The Growth Series in Kenya: Evidence of Non-

Linearities and Factors Behind the Slow Growth,” International Journal of Finance 

and Economics 23, 2, 111-121. 

 

Gil-Alana, L.A. and P.M. Robinson, (1997), Testing of unit roots and other nonstationary 

hypothesis in macroeconomic time series, Journal of Econometrics 80, 2, 241-268. 

 

Giraitis, L., Kokoszka, P., Leipus, R., & Teyssière, G. (2003). Rescaled variance and related 

tests for long memory in volatility and levels. Journal of Econometrics, 112(2), 265-

294.  

 

Giudici, G., Milne, A., & Vinogradov, D. (2020). Cryptocurrencies: market analysis and  

perspectives. Journal of Industrial and Business Economics, 47(1), 1-18. 

 

Glaser, F., Haferkorn, M., Weber, M. C., & Zimmermann, K. (2014). How to price a digital 

currency? empirical insights on the influence of media coverage on the bitcoin bubble. 

Empirical Insights on the Influence of Media Coverage on the Bitcoin Bubble (April 

29, 2014). MKWI.  

 

Granger, C. W., & Hyung, N. (2004). Occasional structural breaks and long memory with an 

application to the S&P 500 absolute stock returns. Journal of Empirical Finance, 11(3), 

399-421.  

 

Greene, M. T., & Fielitz, B. D. (1977). Long-term dependence in common stock returns. 

Journal of Financial Economics, 4(3), 339-349.  

 

Grinberg, R. (2012). Bitcoin: An innovative alternative digital currency. Hastings Sci. & Tech. 

LJ, 4, 159.  

 

Gronwald, M. (2014). The economics of bitcoins–market characteristics and price jumps. 

CESifo Working Paper Series No. 5121. Available at SSRN: 

https://ssrn.com/abstract=2548999. 

 

Ito, M., Noda, A., & Wada, T. (2014). International Stock Market Efficiency: A NonBayesian  

Time-Varying Model Approach, Applied Economics, 46, 2744–2754. 

 

Ito, M., Noda, A., & Wada, T. (2014). The Evolution of Stock Market Efficiency in the US:  

A Non-Bayesian Time-Varying Model Approach,” Applied Economics, 48, 621–635. 

 

Kaiser, L. (2019). Seasonality in cryptocurrencies. Finance Research Letters, 31. 
 
Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. 

Economics Letters, 158, 3-6.  

 

Khuntia, S. & Pattanayak, J. K. (2018). Adaptive market hypothesis and evolving predictability 

of bitcoin. Economics Letters, 167, 26–28. 



23 
 

 

Kim, T. (2017). On the transaction cost of Bitcoin. Finance Research Letters, 23, 300-305. 

 

Kristoufek, L. (2018). On Bitcoin Markets (in)Efficiency and its Evolution. Physica A: 

Statistical Mechanics and its Applications, 503, 257–262. 

 

Lahmiri, S. & Bekiros S. (2018). Chaos, randomness and multi-fractality in Bitcoin market. 

Chaos, Solitons & Fractals, 106, 28–34. 

 

Lamoureux, C. G., & Lastrapes, W. D. (1990). Persistence in variance, structural change, and 

the GARCH model. Journal of Business & Economic Statistics, 8(2), 225-234.  

 

Lima, L.R. and Z. Xiao, (2010), Is there long memory in financial time series?, Applied Financial 
Economics 20, 6, 487-500. 

 

Lo, A. W. (2004). The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary 

Perspective. Journal of Portfolio Management, 30, 15–29. 

 

Malkiel B. (1992). Efficient Market Hypothesis, in Newman, P., M. Milgate, and J. Eatwell 

(eds), New Palgrave Dictionary of Money and Finance, Macmillan, London. 

 

Masten, A. B., Coricelli, F., & Masten, I. (2008). Non-linear growth effects of financial  

development: Does financial integration matter?. Journal of International Money and 

Finance, 27(2), 295-313. 
 

Mensi, W., S. Hammoudeh and S.M. Yoon (2014), Structural breaks and long memory in 

modeling and forecasting volatility of foreign exchange markets of oil exporters: The 

importance of scheduled and unscheduled news announcements, International Review 

of Economics and Finance 30, 101-119. 

 

Merhrdoust, F. and S. Fallah, (2020), Long memory version of stochastic volatility jump-

diffusion model with stochastic intensity, Estudios de Economia Aplicada 38, 2. 

 

Nadarajah, S., & Chu, J. (2017). On the inefficiency of Bitcoin. Economics Letters, 150, 6-9.  

 

 

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing  

list at https://metzdowd.com. 

 

Nelson, C.R. and C.I. Plosser, (1982), Trends and random walks in macroeconomic time series: 

Some evidence and implications, Journal of Monetary Economics 10, 2 139-162. 

 

Noda, A.  (2020). On the time-varying efficiency of cryptocurrency markets. arXiv preprint 

arXiv:1904.09403v3. 

 

Omane-Adjepong, M., Alagidede, P., & Akosah, N. K. (2019). Wavelet time-scale persistence 

analysis of cryptocurrency market returns and volatility. Physica A: Statistical 

Mechanics and its Applications, 514, 105-120.  

 

Platanakis, E., & Urquhart, A. (2019). Should investors include bitcoin in their portfolios? a  

https://www.sciencedirect.com/science/article/pii/S1059056013000968
https://www.sciencedirect.com/science/article/pii/S1059056013000968
https://www.sciencedirect.com/science/article/pii/S1059056013000968
https://metzdowd.com/


24 
 

portfolio theory approach. The British Accounting Review, 100837. 

 

 

Poterba, J. M., & Summers, L. H. (1984). The persistence of volatility and stock market 

fluctuations. In: National Bureau of Economic Research Cambridge, Mass., USA. 

 

Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from bitcoin, 

ethereum, dash, litcoin, and monero. Journal of Economics and Financial 

Analysis, 2(2), 1-27. 

 

Tiwari, A. K., Jana, R., Das, D., & Roubaud, D. (2018), Informational Efficiency of Bitcoin–

An Extension. Economics Letters, 163, 106–109. 

 

Tran,V.L., & Leirvik,T. (2019). A simple but powerful measure of market efficiency. Finance 

Research Letters, 29, 141–151. 

 

Tran,V.L., & Leirvik,T. (in press). Efficiency in the markets of crypto-currencies. Finance 

Research Letters.  

 

Urquhart, A. & Hudson, R. (2013). Efficient or adaptive markets? Evidence from major stock 

markets using very long run historic data. International Review of Financial Analysis, 

28,  130-142. 

 

Urquhart, A., & McGroarty, F. (2016). Are stock markets really efficient? Evidence of the 

adaptive market hypothesis. International Review of Financial Analysis, 47, 39-49. 

 

Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80-82.  

 

Urquhart, A. (2017). Price clustering in Bitcoin. Economics Letters, 159, 145-148.  

 

van Wijk, D. (2013). What can be expected from the BitCoin. Erasmus Universiteit Rotterdam.  

 

Vidal-Tomás, D., Ibáñez, A. M., & Farinós, J. E. (2019). Herding in the cryptocurrency market: 

CSSD and CSAD approaches. Finance Research Letters, 30, 181-186. 

 

Vidal-Tomás, D., Ibáñez, A. M., & Farinós, J. E. (2019). Weak Efficiency of the 

Cryptocurrency Market: a Market Portfolio Approach. Applied Economics Letters, 26, 

1627–1633. 

 

Wu, C. Y., & Pandey, V. K. (2014). The value of Bitcoin in enhancing the efficiency of an 

investor’s portfolio. Journal of Financial Planning, 27(9), 44-52.  

 

Yaya, O. S., Ogbonna, E. A., & Mudida, R. (2019). Market Efficiency and Volatility 

Persistence of Cryptocurrency during Pre-and Post-Crash Periods of Bitcoin: Evidence 

based on Fractional Integration.  MPRA Paper No. 91450, posted UNSPECIFIED. 

Online at https://mpra.ub.uni-muenchen.de/91450/1/MPRA_paper_91450.pdf 

 

Yaya, O. S., Ogbonna, E. A., & Olubusoye, O. E. (2018). How Persistent and Dependent are 

Pricing of Bitcoin to other Cryptocurrencies Before and After 2017/18 Crash?  MPRA 

https://mpra.ub.uni-muenchen.de/91450/1/MPRA_paper_91450.pdf


25 
 

Paper No. 91253, posted UNSPECIFIED. Online at https://mpra.ub.uni-

muenchen.de/91253/1/MPRA_paper_91253.pdf 

 

Yermack D. (2015), Is bitcoin a real currency? An economic appraisal, Handbook of Digital  

Currency, Bitcoin, Innovation, Financial Instruments and Big Data, p. 31-

43.https://doi.org/10.1016/B978-0-12-802117-0.00002-3 

 

Yonghong J., He, N., & Weihua, R. (2018). Time-varying long-term memory in Bitcoin 

market. Finance Research Letters, 25, 280-284. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Descriptive statistics on the cryptocurrencies 

Series 

Average 

market 

Price 

Highest Price Lowest Price 

St. dev Skew. Kurt. Amount Date(s) Amount Date(s) 

Bitcoin 1,649.011 19,497.400 2017-12-16 68.430 2013-07-05 3,142.134 3.092 12.590 

Ethereum 168.441 1,396.420 2018-01-13 0.435 2015-10-20 280.518 2.028 6.571 

https://mpra.ub.uni-muenchen.de/91253/1/MPRA_paper_91253.pdf
https://mpra.ub.uni-muenchen.de/91253/1/MPRA_paper_91253.pdf
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Ripple 0.114 3.380 2018-01-07 0.003 2014-07-06 0.334 5.121 35.356 

Litecoin 23.799 1.160 2017-12-18 358.340 2015-01-14 52.081 3.489 15.474 

Stellar 0.039 0.896 2018-01-03 0.001 2014-11-18 0.114 3.836 18.125 

Monero 39.515 469.200 2017-12-20 0.224 2015-01-14 87.622 2.779 10.045 

Dash 103.756 1,550.850 2017-12-20 0.315 2014-02-15 230.785 2.994 12.399 

tether 1.000 1.210 2015-02-26 0.606 2015-03-03 0.022 -9.513 215.963 

NEM 0.118 1.840 2018-01-07 0.000 2015-08-25 0.256 3.478 17.097 

Siacoin 0.039 0.094 2018-01-06 0.000 2015-12-28 0.011 3.802 21.584 

BitShares 0.056 0.892 2018-01-03 0.003 2016-01-08 0.120 3.544 17.633 

Bytecoin 0.056 0.017 2018-01-06 0.000 2015-01-03 0.002 3.934 23.644 
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Table 5:  Descriptive for the Absolute returns 

Series Start Size  Mean St. Dev. Skew. Kurt. Min. Max. 

Bitcoin 28-Apr-13 1796 0.002 0.045 -0.193 10.872 -0.266 0.357 

BitShare  21-Jul-14 1347 0.002 0.081 1.037 10.106 -0.392 0.520 

Ripple 4-Aug-13 1698 0.003 0.080 2.025 29.884 -0.616 1.027 

Bytecoin 17-Jun-14 1381 0.003 0.116 2.772 34.753 -0.629 1.598 

Dash 14-Feb-14 1504 0.005 0.085 3.036 43.402 -0.468 1.271 

Ethereum 7-Aug-15 965 0.005 0.084 -3.544 65.362 -1.302 0.412 

Litecoin 28-Apr-13 1796 0.002 0.070 1.798 28.080 -0.514 0.829 

Monero 21-May-14 1407 0.003 0.078 0.663 8.644 -0.378 0.585 

NEM 1-Apr-15 1093 0.006 0.094 1.868 18.151 -0.361 0.996 

Siacoin 26-Aug-15 945 0.006 0.114 0.943 7.519 -0.486 0.596 

Stellar 5-Aug-14 1332 0.003 0.085 1.989 17.378 -0.366 0.723 

Tether 25-Feb-15 1123 0.000 0.026 -10.147 553.236 -0.691 0.500 
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Table 6:  Descriptive for the Squared Returns  (daily) 

Series Mean Std. Dev. Skewness Kurtosis Minimum Maximum 

Bitcoin 0.002 0.006 8.807 121.281 0.000 0.128 

Bitshare 0.007 0.020 7.106 66.932 0.000 0.270 

Ripple 0.001 0.035 19.154 510.493 0.000 1.055 

Bytecoin 0.013 0.078 25.747 803.705 0.000 2.553 

Dash 0.007 0.048 27.018 871.275 0.000 1.614 

Ether 0.007 0.056 28.437 854.668 0.000 1.695 

Litecoin 0.005 0.025 16.490 365.954 0.000 0.687 

Monero 0.006 0.017 9.437 139.042 0.000 0.342 

Nem 0.009 0.037 18.247 446.673 0.000 0.991 

Siacoin 0.013 0.034 5.486 40.898 0.000 0.355 

Stellar 0.007 0.030 11.340 161.430 0.000 0.523 

Tether 0.001 0.016 26.563 740.428 0.000 0.477 
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Table 7: Estimates of d in a model under no autocorrelation 

ABSOLUTE returns SQUARED returns 

Series d   (95% band) Series d   (95% band) 

Bitcoin 0.21   (0.18,   0.25) Bitcoin 0.15   (0.12,   0.19) 

Bitshare 0.24   (0.21,   0.29) Bitshare 0.17   (0.14,   0.23) 

Bytecoin 0.20   (0.16,   0.25) Bytecoin 0.12   (0.08,   0.17) 

Dash 0.23   (0.20,   0.27) Dash 0.11   (0.07,   0.15) 

Ether 0.32   (0.24,   0.42) Ether 0.37   (0.27,   0.52) 

Litecoin 0.24   (0.20,   0.28) Litecoin 0.16   (0.13,   0.20) 

Monero 0.21   (0.17,   0.27) Monero 0.28   (0.22,   0.35) 

Nem 0.17   (0.13,   0.22) Nem 0.06   (0.01,   0.11) 

Ripple 0.27   (0.24,   0.30) Ripple 0.18   (0.15,   0.22) 

Siacoin 0.16   (0.12,   0.22) Siacoin 0.16   (0.11,   0.23) 

Stellar 0.25   (0.21,   0.31) Stellar 0.14   (0.09,   0.20) 

Tether 0.29   (0.25,   0.34) Tether 0.17   (0.12,   0.22) 

In parenthesis, the 95% confidence band of the non-rejection values of d. 
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Table 8: Estimates of d in a model under autocorrelation 

ABSOLUTE returns SQUARED returns 

Series d   (95% band) Series d   (95% band) 

Bitcoin 0.25   (0.21,   0.32) Bitcoin 0.15   (0.11,   0.22) 

Bitshare 0.23   (0.18,   0.28) Bitshare 0.13   (0.07,   0.19) 

Bytecoin 0.16   (0.11,   0.22) Bytecoin 0.09   (0.02,   0.15) 

Dash 0.17   (0.13,   0.23) Dash 0.06   (0.02,   0.11) 

Ether -0.01 (-0.07,   0.07) Ether -0.15 (-0.19,  -0.07) 

Litecoin 0.25   (0.21,   0.31) Litecoin 0.13   (0.09,   0.19) 

Monero 0.15   (0.10,   0.22) Monero 0.01  (-0.03,   0.08) 

Nem 0.18   (0.12,   0.27) Nem 0.05  (-0.02,   0.14) 

Ripple 0.35   (0.30,   0.42) Ripple 0.28   (0.22,   0.35) 

Siacoin 0.17   (0.11,   0.25) Siacoin 0.13   (0.07,   0.21) 

Stellar 0.21   (0.15,   0.29) Stellar 0.04  (-0.01,   0.12) 

Tether 0.29   (0.24,   0.35) Tether 0.10   (0.05,   0.16) 

In parenthesis, the 95% confidence band of the non-rejection values of d. 
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Table 9: Bai and Perron’ s (2003) results for structural  breaks 

ABSOLUTE returns SQUARED returns 

Series breaks Break dates Series breaks Break dates 

Bitcoin 2 15/04/2014;  30/06/2017 

 

Bitcoin 3 18/12/2014;  17/12/2015 

09/11/2016 

 Bitshare 2 03/02/2015;  15/12/2015 

 

Bitshare 2 03/02/2015;  15/12/2015 

 
Bytecoin 2 27/02/2014;  08/02/2016 

 

Bytecoin 2 10/02/2015;  08/02/2016 

 
Dash 1 04/12/2013 Dash 1 04/12/2013 

Ether 1 10/10/2013 Ether 1 10/10/2013 

Litecoin 3 23/01/2014;  24/07/2015 

29/03/2017 

 

Litecoin 1 23/01/2014 

Monero  3 14/02/2014;  16/07/2015 

09/02/2016 

 

Monero  3 02/12/2013;  16/07/2015 

14/07/2016 

 Nem 3 16/01/2014;  04/08/2014 

29/04/2015 

 

Nem 1 01/04/2014 

Ripple 2 14/02/2014;  09/12/2016 

 

Ripple 0 ------ 

Siacoin 3 11/10/2013;  04/03/2014 

07/11/2014 

 

Siacoin 0 ------ 

Stellar 3 08/11/2013;  15/10/2014 

25/01/2016 

 

Stellar 3 08/11/2013;  16/10/2014 

01/09/2015 

 Tether 0 ----- Tether 0 ----- 

 

 

 

 

 

 

 

  



32 
 

Table 10: Estimates of d for each subsample based on absolute returns 

Series Subsamples No terms An intercept A linear time 

trend 
 

Bitcoin 

1st subsample 0.21  (0.14,  0.30) 0.21  (0.14,  0.29) 0.20  (0.14,  0.30) 

2nd subsample 0.22  (0.18,  0.27) 0.21  (0.17,  0.26) 0.21  (0.17,  0.26) 

3rd subsample 0.04  (-0.04, 0.17) 0.05  (-0.05, 0.17) 0.04  (-0.05, 0.17) 

      

Bitshare 

1st subsample 0.24  (0.17,  0.31) 0.20  (0.14,  0.28) 0.20  (0.14,  0.28) 

2nd subsample 0.18  (0.09,  0.29) 0.16  (0.08,  0.27) 0.16  (0.07,  0.27) 

3rd subsample 0.21  (0.11,  0.33) 0.19  (0.10,  0.31) 0.19  (0.10,  0.31) 

      

Bytecoin 

1st subsample 0.25  (0.16,  0.36) 0.20  (0.13,  0.30) 0.19  (0.12,  0.30) 

2nd subsample 0.18  (0.11,  0.26) 0.18  (0.11,  0.26) 0.18  (0.11,  0.25) 

3rd subsample 0.21  (0.12,  0.32) 0.17  (0.09,  0.27) 0.16  (0.07,  0.27) 

      

Dash 

 

1st subsample 0.21  (0.08,  0.38) 0.19  (0.07,  0.36) 0.25  (0.10,  0.68) 

2nd subsample 0.20  (0.16,  0.25) 0.19  (0.15,  0.24) 0.19  (0.15,  0.24) 

      

Ether 
1st subsample 0.41  (0.21,  0.71) 0.41  (0.20,  0.78) 0.45  (0.22,  0.80) 

2nd subsample 0.22  (0.16,  0.28) 0.19  (0.14,  0.26) 0.19  (0.14,  0.26) 

      

 

Litecoin 

1st subsample 0.25  (0.18,  0.35) 0.26  (0.19,  0.37) 0.23  (0.14,  0.35) 

2nd subsample 0.19  (0.13,  0.26) 0.18  (0.12,  0.25) 0.18  (0.12,  0.25) 

3rd subsample 0.21  (0.16,  0.28) 0.19  (0.13,  0.25) 0.18  (0.12,  0.24) 

4th subsample 0.20  (0.11,  0.31) 0.17  (0.08,  0.28) 0.17  (0.08,  0.28) 

      

 

Monero 

1st subsample 0.23  (0.14,  0.34) 0.16  (0.10,  0.25) 0.15  (0.09,  0.25) 

2nd subsample 0.20  (0.13,  0.29) 0.20  (0.13,  0.28) 0.19  (0.13,  0.28) 

3rd subsample 0.31  (0.19,  0.46) 0.26  (0.16,  0.41) 0.25  (0.14,  0.42) 

4th subsample 0.09 (0.02,  0.20) 0.11 (0.02,  0.21) 0.10 (0.01,  0.21) 

      

 

Nem 

1st subsample 0.14  (0.04,  0.29) 0.13  (0.04,  0.25) 0.13  (0.03,  0.28) 

2nd subsample 0.21  (0.12,  0.33) 0.19  (0.11,  0.30) 0.19  (0.11,  0.30) 

3rd subsample 0.15  (0.04,  0.29) 0.14  (0.04,  0.27) 0.13  (0.03,  0.26) 

4th subsample 0.13 (0.05,  0.23) 0.12 (0.04,  0.22) 0.12 (0.04,  0.22) 

      

Ripple 

1st subsample 0.24  (0.17,  0.33) 0.21  (0.15,  0.29) 0.20  (0.13,  0.29) 

2nd subsample 0.29  (0.23,  0.36) 0.27  (0.21,  0.34) 0.26  (0.20,  0.34) 

3rd subsample 0.28  (0.21,  0.36) 0.28  (0.22,  0.36) 0.28  (0.22,  0.36) 

  

 

Siacoin 

1st subsample 0.24  (0.09,  0.45) 0.23  (0.09,  0.43) 0.22  (0.08,  0.43) 

2nd subsample -0.05 (-0.13, 0.10) -0.06 (-0.17, 0.10) -0.07 (-0.19, 0.10) 

3rd subsample 0.16  (-0.07, 0.42) 0.11  (-0.04, 0.37) 0.08  (-0.15, 0.36) 

4th subsample 0.11 (0.06,  0.17) 0.12 (0.07,  0.19) 0.11 (0.06,  0.18) 
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Stellar 

1st subsample 0.27  (0.13,  0.47) 0.24  (0.11,  0.42) 0.25  (0.12,  0.42) 

2nd subsample 0.07  (-0.02, 0.18) 0.07  (-0.02, 0.18) 0.07  (-0.02, 0.18) 

3rd subsample 0.14  (0.06,  0.22) 0.13  (0.06,  0.22) 0.13  (0.06,  0.21) 

4th subsample 0.26 (0.15,  0.40) 0.23 (0.13,  0.36) 0.25 (0.14,  0.38) 

     Tether No subsamples 0.29  (0.25,  0.33) 0.29  (0.25,  0.34) 0.27  (0.22,  0.32) 

In parenthesis, the 95% confidence band of the non-rejection values of d. In bold, the significant models according 

to the deterministic terms. 
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Table 11: Estimated values for each series across the subsamples. Absolute returns 

Series 1st subsample 2nd subsample 3rd subsample 4th subsample 

Bitcoin 0.21  (0.14,  0.29) 0.21  (0.17,  0.26) 0.05  (-0.05, 0.17) ----- 

Bitshare 0.20  (0.14,  0.28) 0.16  (0.08,  0.27) 0.19  (0.10,  0.31) ----- 

Bytecoin 0.20  (0.13,  0.30) 0.18  (0.11,  0.26) 0.16  (0.07,  0.27) ----- 

Dash 0.25  (0.10,  0.68) 0.19  (0.15,  0.24) ----- ----- 

Ether 0.41  (0.20,  0.78) 0.19  (0.14,  0.26) ----- ----- 

Litecoin 0.23  (0.14,  0.35) 0.18  (0.12,  0.25) 0.18  (0.12,  0.24) 0.17  (0.08,  0.28) 

Monero 0.16  (0.10,  0.25) 0.20  (0.13,  0.28) 0.25  (0.14,  0.42) 0.11 (0.02,  0.21) 

Nem 0.13  (0.04,  0.25) 0.19  (0.11,  0.30) 0.14  (0.04,  0.27) 0.12 (0.04,  0.22) 

Ripple 0.21  (0.15,  0.29) 0.27  (0.21,  0.34) 0.28  (0.22,  0.36) ----- 

Siacoin 0.23  (0.09,  0.43) -0.06 (-0.17, 0.10) 0.11  (-0.04, 0.37) 0.11 (0.06,  0.18) 

Stellar 0.24  (0.11,  0.42) 0.07  (-0.02, 0.18) 0.13  (0.06,  0.22) 0.23 (0.13,  0.36) 

Tether 0.27  (0.22,  0.32) ----- ----- ----- 

In parenthesis, the 95% confidence band of the non-rejection values of d. 
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Table 12: Estimates of d for each subsample based on squared returns 

Series Subsamples No terms An intercept A linear time 

trend 
 

 

Bitcoin 

1st subsample 0.24  (0.18,  0.32) 0.23  (0.17,  0.30) 0.23  (0.17,  0.30) 

2nd subsample 0.07  (-0.03, 0.18) 0.05  (-0.02, 0.15) 0.02  (-0.07, 0.14) 

3rd subsample 0.12  (0.01,  0.28) 0.12  (0.00,  0.26) 0.12  (0.00,  0.27) 

4rd subsample 0.09  (0.02,  0.18) 0.09  (0.02,  0.18) 0.08  (0.02,  0.18) 

      

Bitshare 

1st subsample 0.23  (0.16,  0.29) 0.20  (0.14,  0.27) 0.19  (0.14,  0.27) 

2nd subsample 0.20  (0.11,  0.32) 0.17  (0.09,  0.28) 0.15  (0.05,  0.27) 

3rd subsample 0.21  (0.11,  0.33) 0.19  (0.10,  0.31) 0.19  (0.10,  0.31) 

      

Bytecoin 

1st subsample 0.24  (0.18,  0.32) 0.22  (0.16,  0.29) 0.20  (0.14,  0.28) 

2nd subsample 0.20  (0.12,  0.30) 0.18  (0.11,  0.28) 0.19  (0.11,  0.28) 

3rd subsample 0.07  (0.00,  0.13) 0.07  (0.00,  0.14) 0.10  (0.00,  0.29) 

      

Dash 

 

1st subsample 0.06  (-0.05, 0.13) 0.05  (-0.05, 0.19) 0.11  (-0.02, 0.36) 

2nd subsample 0.18  (0.13,  0.13) 0.17  (0.12,  0.23) 0.17  (0.12,  0.23) 

  0.06  (-0.05, 0.13) 0.06  (-0.05, 0.13) 0.06  (-0.05, 0.13)  

Ether 
1st subsample 0.38  (0.17,  0.69) 0.38  (0.17,  0.73) 0.41  (0.18,  0.77) 

2nd subsample 0.14  (0.08,  0.20) 0.13  (0.08,  0.19) 0.13  (0.08,  0.19) 

      

Litecoin 
1st subsample 0.15  (0.07,  0.25) 0.15  (0.07,  0.26) 0.11  (0.02,  0.24) 

2nd subsample 0.15  (0.11,  0.20) 0.15  (0.11,  0.20) 0.15  (0.11,  0.20) 

      

 

Monero 

1st subsample 0.15  (0.06,  0.27) 0.12  (0.04,  0.22) 0.07  (-0.02, 0.18) 

2nd subsample 0.19  (0.12,  0.26) 0.18  (0.12,  0.26) 0.18  (0.12,  0.26) 

3rd subsample 0.34  (0.22,  0.50) 0.31  (0.20,  0.46) 0.31  (0.20,  0.46) 

4rd subsample 0.02  (-0.08, 0.17) 0.02  (-0.08, 0.16) 0.03  (-0.07,  

0.16)       

Nem 

1st subsample 0.14  (0.16,  0.25) 0.25  (0.17,  0.37) 0.25  (0.15,  0.38) 

2nd subsample 0.05  (-0.01, 0.20) 0.05  (-0.01, 0.11) 0.05  (-0.01, 0.12) 

     Ripple No subsamples 0.18  (0.15,  0.22) 0.18  (0.15,  0.22) 0.18  (0.15,  0.22) 

 Siacoin No subsamples 0.12  (0.17,  0.23) 0.11  (0.16,  0.22) 0.11  (0.16,  0.22) 

      

 

Stellar 

1st subsample 0.15  (0.03,  0.32) 0.15  (0.03,  0.31) 0.15  (0.03,  0.31) 

2nd subsample 0.06  (-0.02, 0.16) 0.06  (-0.02, 0.16) 0.06  (-0.02, 0.16) 

3rd subsample 0.22  (-0.14, 0.73) 0.16  (-0.10, 0.55) 0.22  (-0.08, 0.61) 

4rd subsample 0.13  (0.04,  0.24) 0.13  (0.04,  0.24) 0.13  (0.04,  0.24) 

     Tether No subsamples 0.16  (0.12,  0.22) 0.17  (0.12,  0.22) 0.15  (0.09,  0.21) 
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Table 13: Estimated values for each series across the subsamples. Squared returns 

SERIES 1ST 

SUBSAMPLE 

2ND 

SUBSAMPLE 

3RD 

SUBSAMPLE 

4RD 

SUBSAMPLE 

Bitcoin 0.23  (0.17,  0.30) 0.02  (-0.07, 0.14) 0.12  (0.00,  0.26) 0.09  (0.02,  0.18) 

Bitshare 0.19  (0.14,  0.27) 0.17  (0.09,  0.28) 0.19  (0.10,  0.31) ----- 

Bytecoin 0.22  (0.16,  0.29) 0.18  (0.11,  0.28) 0.10  (0.00,  0.29) ----- 

Dash 0.11  (-0.02, 0.36) 0.17  (0.12,  0.23) ----- ----- 

Ether 0.38  (0.17,  0.73) 0.13  (0.08,  0.19) ----- ----- 

Litecoin 0.11  (0.02,  0.24) 0.15  (0.11,  0.20) ----- ----- 

Monero 0.07  (-0.02, 0.18) 0.18  (0.12,  0.26) 0.31  (0.20,  0.46) 0.02  (-0.08, 0.16) 

Nem 0.25  (0.17,  0.37) 0.05  (-0.01, 0.11) ----- ----- 

Ripple 0.18  (0.15,  0.22) ----- ----- ----- 

Siacoin 0.11  (0.16,  0.22) ----- ----- ----- 

Stellar 0.15  (0.03,  0.31) 0.06  (-0.02, 0.16) 0.16  (-0.10, 0.55) 0.13  (0.04,  0.24) 

Tether 0.15  (0.09,  0.21) ----- ----- ----- 

 

 

 

 

 

 

 


