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ABSTRACT 20 

The poor air quality in the London metropolis has sparked our interest in studying the 21 

time series dynamics of air pollutants in the city. The dataset consists of roadside and 22 

background air quality for seven standard pollutants: nitric oxide (NO), nitrogen dioxide 23 

(NO2), oxides of nitrogen (NOx), ozone (O3), particulate matter (PM10 and PM2.5) and 24 

sulphur dioxide (SO2), using fractional integration to investigate issues such as 25 

persistence, seasonality and time trends in the data. Though we notice a large degree of 26 

heterogeneity across pollutants and a persistent behaviour based on a long memory 27 

pattern is observed practically in all cases. Seasonality and decreasing linear trends are 28 

also found in some cases. The findings in the paper may serve as a guide to air pollution 29 

management and European Union (EU) policymakers.  30 

Keywords: Air quality; time trends; long memory; fractional integration; seasonality; 31 
London 32 

 33 
JEL Classification: C22, Q53, Q58 34 
 35 
Prof. Luis A. Gil-Alana gratefully acknowledges financial support from the MINEIC-AEI-FEDER 36 
ECO2017-85503-R project from ‘Ministerio de Economía, Industria y Competitividad’ (MINEIC), 37 
`Agencia Estatal de Investigación' (AEI) Spain and `Fondo Europeo de Desarrollo Regional' (FEDER). He 38 
also acknowledges support from an internal Project of the Universidad Francisco de Vitoria. Comments 39 
from the Editor and two anonymous reviewers are gratefully acknowledged. 40 
 41 

  42 

mailto:alana@unav.es
mailto:os.yaya@ui.edu.ng
mailto:o.s.olaoluwa@gmail.com
mailto:n.carmona@ufv.es


2 
 

1. INTRODUCTION 43 

The quality of air in London has improved significantly over the past decades (Browne et 44 

al. 2007; Colette et al. 2011; EEA 2017; Andrade et al. 2018; Lang et al. 2019), but 45 

exceedances of the legislative limit values still persist in some pollutants such as ozone 46 

(O3), nitrogen dioxide (NO2) and particulate matters (PM10 and PM2.5), in both 47 

background and roadside datasets. London failed to meet the air quality European Union 48 

(EU) standard since 2010, largely due to diesel vehicles on its roads which resulted in 49 

high emissions of NO2, and congestion has further compounded the effect of diesel fumes 50 

in the city. Diesel engines release NOx, and large concentrations of NO2 are experienced 51 

along roadsides in urban areas (Gardner and Dorling 1999; Font and Fuller 2016).    52 

In 2016, 43 breaches of annual pollution were recorded in London. In 2017, the 53 

first breach of annual pollution limits was experienced in London, less than 10 days into 54 

the New Year, and this continued for about a month into 2018. However, for the first 55 

three months in 2010, no breach occurred (King´s College, 2019). Currently, people in 56 

London still live under poor air quality, however, NO2 levels are falling and could reach 57 

the normal level for living in the next six years. The NO2 and particulate matters exceed 58 

the EU standard, particularly during winter and early spring, not only in London but also 59 

in many other European cities (Bessagnet et al. 2005; Petit et al. 2017; etc.). Based on the 60 

rate of reduction in NO2 between 2010 and 2016, Font et al. (2019) estimated that it would 61 

take about 193 years for NO2 to reach legal levels.   62 

 The pollution has both health and social care costs, estimated to reach about £5.3 63 

billion by 2035 (O’Hare 2018). This author further reported that the costs of air pollution 64 

in 2017 to the National Health Service (NHS) and social care were estimated at about 65 

£157 million. The research further predicted about 2.5 million new cases of coronary 66 

heart diseases, strokes, childhood cancer, lung cancer, pulmonary disease, diabetes, low 67 
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birth weight and dementia by 2035. Fine particulate matter (PM2.5) and NO2 are 68 

particularly responsible for these costs. PM2.5 is made up of particles with a diameter of 69 

less than 2.5 microns. These are emitted during the combustion of vehicle engine fuels, 70 

braking and tyre wearing, while NO2 is released during the burning of fossil fuels, 71 

particularly diesel fuel. Both pollutants have been targeted by the UK government, 72 

seeking a strategy to reduce their exceedances. The Brexit deal could further challenge 73 

London’s fight to improve the quality of air since the EU has stricter standards and rules 74 

than the UK is obliged to meet. Hence, concern is rising in the minds of dwellers 75 

regarding the future of London’s air. Air pollution has proved to be stubborn in its 76 

behaviour, even if vehicle numbers are curbed, aircraft and agricultural pollution could 77 

prove more of a challenge to inhabitants, and further damage human health. There is a 78 

need to investigate the dynamics of the evolvement of the chemistry of air pollution since 79 

this will provide recommendations to modellers and predictors on the appropriate models 80 

to employ in the analysis of air pollution in London. Also, the findings in this paper will 81 

complement the management of air quality by the EU since there is a long-standing 82 

tradition of using modelling techniques to support the design of air quality policies by 83 

government authorities with regards to regulations on the emissions of pollutants. 84 

 In the present paper, we investigate the statistical properties of the data by looking 85 

at issues such as persistence, seasonality and time trends in the dynamic evolution of air 86 

quality chemistry in London. For this purpose, we use methods based on fractional 87 

integration, which extend the classical analysis of stationarity/non-stationarity that only 88 

use integer degrees of differentiation (i.e., 0 for stationarity and 1 for nonstationarity) to 89 

fractional values. Thus, by allowing the differencing parameter to be a fractional number, 90 

we allow for a much richer degree of flexibility in the dynamic specification of the data. 91 
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   Studying air quality persistence, seasonality and trends inform us regarding the 92 

possible change in the current trend of the time series; the level of persistence gives us an 93 

idea of the impact that shocks would have on the series. In other words, it will tell us if 94 

the series would soon revert to its mean level or would be further pushed away from its 95 

mean path. In a highly persistent series, a shock to the series tends to persist for long 96 

periods of time and the series drifts away from its historical mean path. Then, a time trend 97 

indicates the general direction in which the series is moving, and the level of persistence 98 

will tell us if shocks will have a transitory or a permanent effect.  99 

 It is noticeable that most empirical research on air pollution has focused on a type 100 

of air pollutants such as NO2, particulate matter 2.5 (PM2.5) or sulphur dioxide (SO2). The 101 

air pollution is determined by the chemical compositions of the mixture of pollutants such 102 

as SO2, NO2, carbon monoxide (CO), ozone (O3), PM2.5 and PM10, as detailed by the 103 

World Health Organization (WHO, 2018) standards. Our research is also different from 104 

other existing studies in this field as it involves datasets of standard air pollutants in 105 

London. 106 

 The remainder of the paper is structured as follows: Section 2 presents a brief 107 

review of air quality modelling, while Section 3 is devoted to the methodology used in 108 

the paper. Section 4 describes the data. The empirical results are displayed in Section 5 109 

and Section 6 contains some concluding comments. 110 

 111 

2. LITERATURE REVIEW 112 

Being able to assess and forecast the level of chemical composition of pollutants in the 113 

air can help in preventing harmful effects on public health and facilitate the efficiency of 114 

government policies aimed at improving air quality.  115 
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Most studies focus on two issues, on the one hand, seeking the connection between 116 

pollution and harmful health effects; and, on the other hand, quantifying, modelling and 117 

making predictions regarding air pollution by assessing the most suitable models for air 118 

pollution. The present paper is more related to this second line of research. 119 

Dealing with the first line of research, Schwartz and Marcus (1990), using 120 

AutoRegressive Moving Average (ARMA) models, examined the connection between air 121 

pollution and mortality in London in the period 1958-1972. The results of the study 122 

demonstrated a high degree of correlation, in particular with SO2. On the other hand, 123 

using predictive methods, Gardner and Dorling (1999) analyzed NOx (a combination of 124 

NO and NO2) using hourly meteorological data obtained from Central London using a 125 

multilayer perceptron (MLP) neural network model. The findings in the study showed 126 

that this model is more effective in modelling these pollutants compared to regression-127 

based models.   128 

Atkinson et al. (1999) examined the relationship between emergency admissions 129 

for respiratory problems and air pollution in London for the period from 1992 to 1994. 130 

They used Poisson regressions to determine the correlation between hospital admissions 131 

and the concentration of PM10 and SO2. Salini and Pérez (2006) used the same 132 

methodology as Gardner and Dorling (1999), reaching similar results for the city of 133 

Santiago de Chile. They found that the simple perceptron with a linear function is more 134 

reliable for prediction than the persistence method; however, the function did not 135 

outperform a multi-layered network in its predictability. "It can be said that when 136 

nonlinear effects are not too important in modelling, multilayer networks are not 137 

significantly better than perceptron. However, as in this case, when these non-linear 138 

effects become important, multilayer networks are better in terms of their predictability, 139 

compared to linear models" (Salini and Pérez 2006; page 290). Pan and Chen (2008), 140 
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using air pollution data in Taiwan, concluded that long memory AutoRegressive 141 

Fractional Integrated Moving Average (ARFIMA) models are more accurate than 142 

AutoRegressive Integrated Moving Average (ARIMA)-type models. Zamri et al. (2009), 143 

in assessing Malaysian air pollution, applied the Box-Jenkins ARIMA approach by 144 

modelling the maximum monthly chemical compositions of CO and NO2 and showing an 145 

increasing trend since the 1996 limits set by the US National Ambient Air Quality 146 

Standards (NAAQS). 147 

Beevers et al. (2013) combined two models for the study of pollution in London 148 

during 2008. The first is the KCL urban model that provides annual predictions of the air 149 

chemical compositions of NO, NO2, O3, PM10 and PM2.5. The second one is the urban air 150 

quality model on a multiscale (CMAQ), which predicts air quality per hour. CMAQ is an 151 

acronym for the Community Multi-Scale Air Quality Model, a sophisticated atmospheric 152 

dispersion model developed by the US Environmental Protection Agency (EPA) to 153 

address regional air pollution problems. An example of a regional air pollution problem 154 

is a multi-state area where O3 or PM2.5 levels exceed the US health standards. The use of 155 

both models allows the quality of air, temporal and by source category to be predicted. 156 

However, the authors addressed the difficulty of measuring factors such as exhaust 157 

emissions, car braking, types of used tyres and, on the other hand, the need for a 158 

sociological study that includes data on public and private transport use, education, etc., 159 

to correct the uncertainty of the models. 160 

Li et al. (2017) analysed air quality in Beijing from 2014 to 2016 to validate the 161 

effectiveness of the Long Short-Term Memory Neural Network Extended (LSTME) 162 

model. The models used are the Spatio-temporal Deep Learning (StDL), the Time Delay 163 

Neural Network (TDNN) model, the ARMA model, the Support Vector Regression 164 

(SVR) model, and the traditional LSTME model and concluded that the LSTME model 165 

https://en.wikipedia.org/wiki/Atmospheric_dispersion_modeling
https://en.wikipedia.org/wiki/Atmospheric_dispersion_modeling
https://en.wikipedia.org/wiki/United_States_Environmental_Protection_Agency
https://en.wikipedia.org/wiki/National_Ambient_Air_Quality_Standards
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is more effective than the other models as it is able to model time series with long-term 166 

dependencies with optimal time delays (Li et al. 2017; page 1002) and to capture more 167 

accurately effective space-time correlations and improving predictions. Naveen and Anu 168 

(2017) studied air quality in India using ARIMA and seasonal ARIMA (SARIMA) 169 

models, with the former being more effective than the latter. They also proposed the use 170 

of alternative models to improve prediction. 171 

Regarding the studies focusing on air pollution and health effects in London, we 172 

should mention the studies of King's College London and the work of Anderson et al. 173 

(1996), in which, through a Poisson's regression model, they found a causal link between 174 

outdoor air pollution levels and mortality in London.  175 

Our methodological approach is invariant to those in the literature, since it is based 176 

on long memory processes and use fractional integration in the analysis of air quality 177 

chemistry in London metropolis. Specifically, we dwelled on three properties of air 178 

quality in London, that is, the persistence, seasonality and time trend. The outcome of the 179 

findings in the paper would henceforth serve as eye opener to the choice of a forecasting 180 

model for air quality chemistry level. 181 

 182 

3. METHODOLOGY 183 

Long memory is a feature in time series that indicates that observations are highly 184 

dependent across time even if they are far distant apart. Many models can describe this 185 

behaviour and one very popular in Econometrics is the one based on fractional 186 

integration. Given a process {xt, t = 0, ±1, …}, we say that it is fractionally integrated or 187 

integrated of order d (i.e., xt ≈ I(d)) if after taking d-differences, the new process becomes 188 

stationary I(0). In other words, xt is I(d) if its d-differences are short memory including 189 

here the white noise model but also the stationary ARMA-type of models. 190 
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 Using L as the lag operator, i.e., Lkxt = xt-k, xt is I(d) if: 191 

...,2,1,)1( ==− tuxL tt
d    (1) 192 

where ut is I(0) or short memory, and long memory takes places as long as the parameter 193 

d is positive, which may be a fractional value. This is clearly an advantage with respect 194 

the classical methods that exclusively consider integer degrees of differentiation, (usually, 195 

1) and that based its statistical analysis on the unit root methods, simply distinguishing 196 

between stationarity (if d = 0) and nonstationarity (if d = 1). Thus, allowing d to be 197 

fractional we permit a much richer degree of flexibility in the dynamic specification of 198 

the data. 199 

Our selected model is the following one, 200 

          ,...,2,1t,ux)L1(,xty tt
d

tt ==−++=    (2) 201 

where yt is the observed time series, and α and β are unknown coefficients referring, 202 

respectively, to an intercept and a time trend; xt is the regression error series, supposed to 203 

be I(d) and thus, ut is an I(0) process, described first as a white noise process and then 204 

allowing for weak autocorrelation, in the latter case using the non-parametric spectral 205 

approach of Bloomfield (1973). The latter is a model for the I(0) term that is specified 206 

exclusively in terms of its spectral density function and that fits extremely well in the 207 

context of fractional integration. Moreover, its autocorrelation function decays 208 

exponentially fast as in the AR case, but unlike the AR models, it is stationary across all 209 

its values. 210 

 We estimate the fractional differencing parameter d along with the rest of 211 

parameters in equation (2) by using the Whittle function in the frequency domain, and, 212 

along with the estimates of the parameters in the model, we also presented the 95% 213 

confidence intervals of the non-rejection values of d using a simple version of the tests of 214 
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Robinson (1994) widely employed in the empirical literature on I(d) processes. (see, e.g., 215 

Gil-Alana and Robinson 1997; Gil-Alana 2005; Gil-Alana and Trani 2019 and others). 216 

 217 

4. THE DATA  218 

The London monthly average air quality levels dataset was obtained from the London 219 

Data website at https://datahub.io/core/london-air-quality, with both roadside and 220 

background datasets of standard air quality chemistry such as nitric oxide (NO), nitrogen 221 

dioxide (NO2), oxides of nitrogen (NOx), ozone (O3), particulate matter (PM10 and PM2.5) 222 

and sulphur dioxide (SO2). These datasets are site averages, obtained from London Air 223 

Quality Network (LAQN) at: 224 

 https://www.londonair.org.uk/london/asp/datadownload.asp, at a daily frequency, and 225 

representing London daily air quality level. At LAQN, there were 30 background and 14 226 

roadside sites; with 130 monitoring sites in Greater London with 51 background and 79 227 

roadside sites (see, Font et al., 2019). Note that not all locations measured all pollutants, 228 

therefore it was more convenient to use datasets produced by the London Data website. 229 

The data are measured in micrograms per cubic meter of air (ug/m3). 230 

INSERT TABLE 1 ABOUT HERE 231 

Time series ranges, as well as the corresponding number of observations of these 232 

air quality chemistries, are tabulated in Table 1. We observe the commencement of 233 

pollutants chemistry in 2008 for some variables, while others start in 2010 and all of them 234 

end in December 2018. Plots of each air quality chemical composition are given in 235 

Figures 1 and 2 for roadside and background readings, respectively. As noted in the plots 236 

for NO, NO2, NOx and O3, seasonality is clearly noticeable, as the highest values of ozone 237 

level are found during summer periods in London (from June to August), while NO2 and 238 

PM10 are at their lowest level during this period. For PM10, PM2.5 and SO2, in both data 239 

https://datahub.io/core/london-air-quality
https://www.londonair.org.uk/london/asp/datadownload.asp
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reading sources (roadside, Figure 1 and background, Figure 2), we observe irregular time 240 

dynamics, albeit with occasional long spikes mimicking seasonality in the datasets. 241 

Summary statistics for the mean, minimum and maximum values of air quality chemistry 242 

levels for both roadside and background readings are given in Table 2. For NO2, the mean 243 

value for the series is above the EU standard of 40μg/m3 for the roadside readings of the 244 

pollutant, while this is below the standard for the background readings (34μg/m3), 245 

whereas the maximum background value is above the standard (60.237μg/m3). For PM10 246 

and PM2.5 in the roadside readings, the maximum values are above the exceedances limit, 247 

while only the PM2.5 is above the EU standard, though the PM2.5 is known to be more 248 

hazardous. Generally, there are wide disparities between maximum and minimum air 249 

pollution chemistry levels of all the seven pollutants for roadside and background 250 

readings.       251 

INSERT FIGURES 1 AND 2 ABOUT HERE 252 

INSERT TABLE 2 ABOUT HERE 253 

 254 

5. EMPIRICAL RESULTS 255 

The results in Table 3 are obtained under the assumption that the error term ut in (2) is a 256 

white noise process. Thus, no autocorrelation is permitted apart from the one produced 257 

by the fractional differencing structure. We display the estimates of d (and the 95% 258 

confidence bands) for the three classic cases of i) no regressors, ii) with an intercept, and 259 

iii) with an intercept and a linear time trend, marking in bold in the table the selected case 260 

for each series depending on the significance of the coefficients based on their 261 

corresponding t-values. 262 

INSERT TABLES 3 AND 4 ABOUT HERE 263 
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We observe in Table 3 that the time trend coefficient is significant in a number of 264 

cases, in particular for PM10 and PM2.5 in the two cases of roadside and background series. 265 

Looking at the estimates of the differencing parameter, we observe that the unit root null 266 

hypothesis, i.e., d = 1 cannot be rejected in the cases of NO and NOx for the London mean 267 

roadside, and in the cases of NOx and O3 for the background series. In all the other cases, 268 

the estimates of d are found to be statistically significantly smaller than 1 implying mean-269 

reverting behaviour, and for two of the series (PM2.5 in the roadside and PM10 in 270 

background), the I(0) hypothesis of short memory behaviour cannot be rejected, implying 271 

a very short degree of dependence between the observations in these two cases. 272 

 In Table 4, we allow for autocorrelation in the error term. As earlier mentioned, 273 

we use here a non-parametric approach due to Bloomfield (1973) which is quite 274 

convenient in the context of fractional integration and that approximates very well highly 275 

parameterized ARMA models with few parameters.1 Here we observe that the time series 276 

is significant in a large number of cases and the estimated values of d are now smaller 277 

than 1 in all cases. Moreover, the I(0) hypothesis cannot be rejected now in the majority 278 

of the cases, and evidence of long memory (i.e., d > 0) only takes place in the cases of 279 

NO for roadside and SO2 for background. Thus, it seems that the competition between 280 

the two structural approaches (No autocorrelation and Bloomfield autocorrelation cases) 281 

is the cause of the reduction in the values of the differencing parameter. These results, 282 

however, though allowing for autocorrelation, do not take into account the potential 283 

seasonal (monthly) nature of the data. Thus, in the following table, we take this feature 284 

into consideration by allowing for a seasonal monthly AR(1) structure on ut, i.e., 285 

,...,2,1,12 =+= − tuu ttt    (3) 286 

where εt is now a white noise process.  287 

 
1 See Gil-Alana (2004) for the modelization of Bloomfield (1973) in the context of fractional integration. 
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INSERT TABLES 5 AND 6 ABOUT HERE 288 

 The results using this model are presented in Table 5 with further results for 289 

selected cases in Table 5 displayed in Table 6. In Table 5, the long memory feature is 290 

found in the majority of the cases with the values of d belonging to the interval (0, 1). 291 

Evidence of short memory (d = 0) is only found in the cases of PM10 (roadside and 292 

background) and PM2.5 (roadside) particulates. Table 6 displays the estimated model 293 

coefficients under the selected specification in Table 5. We observe significant seasonal 294 

AR coefficients and, in those cases where the time trend is statistically significant, it is 295 

found to be negative in all cases, implying a decreasing deterministic pattern in the data. 296 

This is consistent with other works that also find a decreasing trend in London air 297 

pollutants (e.g., Lang et al., 2019). 298 

INSERT TABLE 7 ABOUT HERE 299 

 As a second approach in the analysis of the seasonality issue, we conducted 300 

seasonality tests using the method detailed in Beaulieu and Miron (1993). This is 301 

Hylleberg et al.’s (HEGY, 1990) test version for monthly frequency series. 302 

Nonstationarity and seasonality can both be tested in this approach simultaneously, 303 

following Box, Jenkins and Reinsel (2008) who proposed carrying out the lag operation 304 

( )1 s

tL x−  for seasonal differencing in order to obtain a transformed stationary weakly 305 

dependent series. For monthly data, as in our case, s = 12. The Seasonal Monthly 306 

Integration (SMI) process representing such a time series is, 307 

( )121 ,     1,2,...t tL x u t− = =     (4) 308 

where all the 12 roots lie within the unit circle. Using then the decomposition (1 – L12) = 309 

(1 – L) ϕ(L), where ϕ(L) = ( 1 + L + L2 + … + L11), the first of these components, (1 – L) 310 

is related to the regular (zero frequency) unit root test using the t1 statistic, which is 311 

equivalent to the classical ADF unit root test. The remaining factors are then used in the 312 
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seasonal unit root testing, while at annual frequency, the t statistic t2 is used in testing 313 

annual seasonal unit roots. For all other frequencies, the joint test for seasonal unit root 314 

at any data frequency is carried out using the F test statistic F2-12. (Details on HEGY 315 

testing procedure for monthly frequency dataset is found in Beaulieu and Miron 1993).  316 

 We conducted the HEGY test for the cases of i) an intercept only, ii) an intercept 317 

with a linear time trend and iii) with an intercept, a trend and seasonal dummies. The 318 

results are presented in Table 7 with the unit root test results for roadside readings 319 

presented in the upper panel (i) and those of background readings presented in the lower 320 

panel (ii). The results indicate non-rejection of the null hypotheses for non-seasonal unit 321 

root and seasonal unit root tests, for intercept only and an intercept with trend, based on t 322 

statistics 
1t  and 

2t , implying evidence of regular unit root and annual seasonal unit roots 323 

in the series. For all other frequencies other than the zero frequency (non-seasonal 324 

frequency), we conducted F tests 
2 12F −

 and these are significant throughout, implying that 325 

seasonality is only detected at the annual frequency but it is not found at any other 326 

frequency.  327 

 As a final step, we also examined the possibility of non-linear trends with smooth 328 

breaks, still within the context of fractional integration, and for this purpose, we used the 329 

method proposed in Cuestas and Gil-Alana (2016) which is based on the Chebyshev’s 330 

polynomials in time.2 In particular, we consider here the following model, 331 

,...,2,1t,ux)L1(;x)t(Py tt
d

t

m

0i
iTit ==−+=

=

     (5) 332 

with m indicating the order of the Chebyshev polynomial Pi,T(t) defined as: 333 

,1)(,0 =tP T
 334 

 
2 This nonlinear deterministic function allows for modelling smooth breaks in the time series. It is similar 

in application to flexible Fourier function of Enders and Lee (2012a,b), recently applied in fractional 

integration framework in Gil-Alana and Yaya (2020). 
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   ( ) ...,2,1;,...,2,1,/)5.0(cos2)(, ==−= iTtTtitP Ti 
.
      (6) 335 

Hamming (1973) and Smyth (1998) showed detailed descriptions of these polynomials 336 

in time, and Bierens (1997) and Tomasevic and Stanivuk (2009) argued that it is possible 337 

to approximate highly non-linear trends with low degree polynomials. Thus, if m = 0 in 338 

(5), the model contains an intercept; if m = 1 it also includes a linear trend; and if m > 1 339 

it becomes non-linear - the higher m is, the less linear the approximated deterministic 340 

component becomes. For our dataset, we set m = 3 and thus, significant values of the 341 

estimates of θ2 and/or θ3 will provide us with evidence of non-linearity. 342 

INSERT TABLE 8 ABOUT HERE 343 

 Table 8 reproduces the results under the assumption that ut in (5) is a white noise 344 

process, though almost identical results were obtained under weak (seasonal and non-345 

seasonal) autocorrelation. The first thing we observe in this table is that there are very 346 

few cases of non-linearities. In fact, only for PM10 under the roadside series, and for SO2 347 

in the background reading do we find significant parameter estimates θ2 and/or θ3, 348 

implying nonlinearity of series dynamics. Focussing on the estimates of d, the results 349 

once more indicate some shreds of evidence of long memory patterns. Starting with the 350 

background case, there is a single case of a short memory pattern, i.e., d = 0 (PM10); four 351 

series with values of d constrained between 0 and 1: SO2, (d = 0.15), PM2.5 (0.24), NO, 352 

(0.67) and NO2, (0.68); and finally, there are two cases where the unit root null, i.e., d = 353 

1 cannot be rejected: NOx, (0.74) and O3, (0.83). For the roadside series, evidence of I(0) 354 

behaviour is found in the two PM particulates (PM10 and PM2.5). The unit root hypothesis 355 

cannot be rejected for NO, (with d = 0.73), and evidence of long memory with d ranging 356 

between 0 and 1 is obtained for the remaining cases. 357 

 358 

 359 
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6. CONCLUSIONS 360 

The analyses carried out in this article and its results are transcendent as they examined 361 

the air quality in London by providing evidence of persistence, seasonality and time 362 

trends in various air quality pollutants. In particular, we have examined two datasets, 363 

these being roadside and background standard air quality chemistry readings such as nitric 364 

oxide, nitrogen dioxide, oxides of nitrogen, ozone, particulate matter (PM10 and PM2.5) 365 

and sulphur dioxide. Our results indicate that long memory is present in the majority of 366 

the cases, implying high degrees of persistence measured in terms of a fractional 367 

differencing parameter that is constrained between 0 and 1. Mean reversion is also found 368 

practically in all cases since the values are found to be significantly smaller than 1. This 369 

means that shocks will tend to disappear by themselves in the long run. Seasonality is 370 

another relevant factor and the time trend if significant, is found to be negative in all cases 371 

indicating a reduction in pollutant levels.   372 

The evidence of long memory is consistent with numerous other works that found 373 

this feature in many other disciplines including hydrology (Hurst, 1951), climatology 374 

(Gil-Alana, 2005; Rea et al., 2011; Gil-Alana and Sauci, 2019), environmental sciences 375 

(Barassi et al., 2011; Belbute and Pereira, 2017; Gil-Alana and Trani, 2019), etc. On the 376 

other hand, seasonality is something to be expected due to the monthly frequency of the 377 

data and the mixing layer dynamics, meteorological conditions and emission patterns.  378 

The possibility of structural breaks has not been considered in this work. This is 379 

an important issue, noting that several authors have shown that fractional integration and 380 

structural breaks are very much related (Diebold and Inoue, 2001; Granger and Hyung, 381 

2004; Ohanissian et al., 2008; etc.). Instead of that and based on the small number of 382 

observations used in this application, we have considered a nonlinear approach based on 383 

Chebyshev polynomials in time, and that approximates breaks in a rather smooth way. 384 
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The fractional integration modelling framework can easily be generalized to the 385 

Seasonal Autoregressive Fractionally Integrated Moving Average (SARFIMA) model or 386 

other variants which allow for forecasting values of the chemical composition of air 387 

quality, but the outcome of these findings would have served as eye opener to the choice 388 

of forecasting model, other than the SARFIMA model.3 The findings could further help 389 

in the designing of environmental policies aimed at challenging and further reducing 390 

atmospheric pollution by 2050 in line with the UN 2030 Agenda, which focuses on the 391 

Sustainable Development Goals. It is essential to redesign the management of air 392 

pollution in London by focusing on improving emissions mainly from transportation. 393 

Also, appropriate measures should be taken in each seasonal quarter of London’s weather 394 

since air quality is at its poorest level during the summer. This is because the tropospheric 395 

ozone, unlike other pollutants, is not emitted directly into the atmosphere, but it is a 396 

secondary pollutant produced by the reaction between nitrogen dioxide, hydrocarbons 397 

and sunlight; therefore, high levels of ozone pollution take place in the central hours of 398 

the day during the summer. 399 

 400 

The data that support the findings of this study are openly available in the London 401 

Data website at https://datahub.io/core/london-air-quality 402 
 403 
 404 
 405 
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Table 1: Time series of London Air Quality 614 

London mean roadside 

Series Starting period Ending period N. of Obs. 

Nitric oxide, NO January 2010 December 2018 108 

Nitrogen dioxide, NO2 January 2008 December 2018 132 

Oxides of nitrogen, NOx January 2010 December 2018 108 

Ozone, O3 January 2008 December 2018 132 

PM10 particulate January 2008 December 2018 132 

PM2.5 particulate January 2008 December 2018 132 

Sulphur dioxide, SO2 January 2008 December 2018 132 

London mean background 

Nitric oxide, NO January 2010 December 2018 108 

Nitrogen dioxide, NO2 January 2008 December 2018 132 

Oxides of nitrogen, NOx January 2010 December 2018 108 

Ozone, O3 January 2008 December 2018 132 

PM10 particulate January 2008 December 2018 132 

PM2.5 particulate May 2008 December 2018 128 

Sulphur dioxide, SO2 January 2008 December 2018 132 

 615 

 616 

  617 
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Table 2: Data Summary    618 

Series London mean roadside London mean background 

 Mean 
Min.  
value 

Max.  
Value 

Mean 
Min.  
value 

Max. 
value 

Nitric oxide, NO 78.339 27.211 180.933 22.123 4.172 79.245 

Nitrogen dioxide, NO2 55.757 38.950 75.922 34.865 20.050 60.237 

Oxides of nitrogen, NOx 139.490 82.235 250.743 56.383 25.642 129.152 

Ozone, O3 27.174 10.658 46.266 36.895 13.869 62.562 

PM10 particulate 25.122 16.285 43.315 19.272 11.927 36.933 

PM2.5 particulate 15.715 7.898 32.581 13.293 6.395 29.912 

Sulphur dioxide, SO2 3.263 -1.687 8.541 3.362 1.079 6.734 

The Air Quality Standards Regulations 2010 is found at 619 
http://www.legislation.gov.uk/uksi/2010/1001/schedule/2/made. This documents the safe limits for NO2 620 
as 40 μg/m3. For PM10 and PM2.5, they are 40 μg/m3 and 25 μg/m3, respectively.  621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

  633 

http://www.legislation.gov.uk/uksi/2010/1001/schedule/2/made
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Figure 1: London Mean Roadside Air Quality readings on y-axis, measured in 638 
ug/m3 and plotted year, the x-axis of each plot. 639 
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Figure 2: London Mean Background Air Quality readings on y-axis, measured in 645 

ug/m3 and plotted year, the x-axis of each plot. 646 
  647 



25 
 

Table 3: Estimates of d under the assumption of no autocorrelation 648 

London mean roadside 

Series No terms With intercept With a time trend 

Nitric oxide, NO 0.72   (0.62,  1.00) 0.76   (0.56,  1.03) 0.76   (0.55,  1.03) 

Nitrogen dioxide, NO2 0.82   (0.70,  0.99) 0.50   (0.34,  0.70) 0.48   (0.31,  0.70) 

Oxides of nitrogen, NOx 0.79   (0.63,  1.00) 0.73   (0.50,  1.00) 0.73   (0.50,  1.00) 

Ozone, O3 0.80   (0.63,  1.01) 0.74   (0.51,  0.98) 0.74   (0.51,  0.98) 

PM10 particulate 0.58   (0.46,  0.72) 0.24   (0.12,  0.41) 0.18   (0.04,  0.39) 

PM2.5 particulate 0.48   (0.36,  0.63) 0.23   (0.12,  0.39) 0.12  (-0.06,  0.35) 

Sulphur dioxide, SO2 0.46   (0.31,  0.64) 0.31   (0.17,  0.50) 0.31   (0.16,  0.50) 

London mean background 

Series No terms With intercept With a time trend 

Nitric oxide, NO 0.69   (0.48,  0.95) 0.67   (0.42,  0.98) 0.68   (0.42,  0.98) 

Nitrogen dioxide, NO2 0.87   (0.72,  1.07) 0.68   (0.47,  0.93) 0.68   (0.45,  0.93) 

Oxides of nitrogen, NOx 0.77   (0.58,  1.01) 0.73   (0.46,  1.02) 0.74   (0.47,  1.02) 

Ozone, O3 0.85   (0.67,  1.07) 0.83   (0.60,  1.07) 0.83   (0.60,  1.07) 

PM10 particulate 0.52   (0.40,  0.66) 0.20   (0.09,  0.38) 0.12  (-0.06,  0.35) 

PM2.5 particulate 0.49   (0.37,  0.64) 0.31   (0.18,  0.51) 0.27   (0.08,  0.50) 

Sulphur dioxide, SO2 0.47   (0.34,  0.62) 0.33   (0.24,  0.46) 0.33   (0.24,  0.46) 

In bold, the significant cases according to the deterministic terms. In parenthesis, the 95% confidence 649 
intervals of the values of d. 650 
 651 

  652 
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Table 4: Estimates of d under the assumption of autocorrelation 653 

London mean roadside 

Series No terms With intercept With a time trend 

Nitric oxide, NO 0.51  (0.22,  0.91) 0.35  (0.15,  0.76) 0.32  (0.11,  0.76) 

Nitrogen dioxide, NO2 0.71  (0.51,  0.99) 0.24  (0.03,  0.73) 0.15  (-0.11,  0.73) 

Oxides of nitrogen, NOx 0.54  (-0.03,  0.98) 0.18  (-0.10,  0.74) 0.14  (-0.13,  0.74) 

Ozone, O3 0.32  (-0.12,  1.04) -0.26  (-0.57,  0.73) -0.23  (-0.58,  0.73) 

PM10 particulate 0.51  (-0.06,  0.76) 0.07  (-0.06,  0.27) -0.10  (-0.26,  0.27) 

PM2.5 particulate 0.45  (-0.13,  0.70) 0.09  (-0.05,  0.30) -0.37  (-0.59,  0.30) 

Sulphur dioxide, SO2 0.28  (-0.14,  0.73) 0.02  (-0.24,  0.39) 0.03  (-0.23,  0.39) 

London mean background 

Series No terms With intercept With a time trend 

Nitric oxide, NO -0.01  (-0.19,  0.67) 0.00  (-0.23,  0.76) -0.18  (-0.47,  0.45) 

Nitrogen dioxide, NO2 0.59  (0.35,  0.96) 0.17  (-0.01,  0.73) -0.43  (-0.81,  0.83) 

Oxides of nitrogen, NOx -0.12  (-0.19,  0.89) -0.08  (-0.34,  0.74) -0.46  (-1.04,  0.58) 

Ozone, O3 -0.05  (-0.11,  1.11) -0.17  (-0.54,  0.73) -0.28  (-0.66,  0.90) 

PM10 particulate 0.49  (0.27,  0.73) 0.05  (-0.08,  0.27) -0.30  (-0.49,  0.07) 

PM2.5 particulate 0.45  (-0.11,  0.71) 0.12  (-0.03,  0.30) -0.17  (-0.38,  0.22) 

Sulphur dioxide, SO2 0.32  (0.09,  0.59) 0.29  (0.13,  0.39) 0.30  (0.17,  0.51) 

In bold, the significant cases according to the deterministic terms. In parenthesis, the 95% confidence 654 
intervals of the values of d. 655 
 656 

  657 
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Table 5: Estimates of d under the assumption of seasonal autocorrelation 658 

London mean roadside 

Series No terms With intercept With a time trend 

Nitric oxide, NO 0.72  (0.54,  0.95) 0.60  (0.41,  0.91) 0.60  (0.39,  0.91) 

Nitrogen dioxide, NO2 0.79  (0.66,  0.96) 0.36  (0.23,  0.56) 0.32  (0.16,  0.54) 

Oxides of nitrogen, NOx 0.74  (0.57,  0.96) 0.54  (0.33,  0.86) 0.53  (0.32,  0.86) 

Ozone, O3 0.55  (0.40,  0.75) 0.24  (0.09,  0.50) 0.25  (0.10,  0.50) 

PM10 particulate 0.52  (0.39,  0.68) 0.14  (0.03,  0.29) 0.08  (-0.06,  0.27) 

PM2.5 particulate 0.42  (0.28,  0.58) 0.16  (0.05,  0.32) 0.06  (-0.10,  0.27) 

Sulphur dioxide, SO2 0.44  (0.30,  0.60) 0.30  (0.17,  0.46) 0.28  (0.14,  0.46) 

London mean background 

Series No terms With intercept With a time trend 

Nitric oxide, NO 0.59   (0.36,  0.88) 0.47   (0.25,  0.85) 0.46  (0.19,  0.85) 

Nitrogen dioxide, NO2 0.77   (0.62,  0.96) 0.34   (0.22,  0.53) 0.20  (0.00,  0.50) 

Oxides of nitrogen, NOx 0.68   (0.48,  0.94) 0.47   (0.25,  0.85) 0.46  (0.19,  0.85) 

Ozone, O3 0.52   (0.34,  0.74) 0.27   (0.12,  0.52) 0.26  (0.09,  0.53) 

PM10 particulate 0.45   (0.31,  0.61) 0.12  (-0.03,  0.28) 0.04  (-0.11,  0.25) 

PM2.5 particulate 0.44   (0.31,  0.60) 0.26   (0.13,  0.44) 0.21  (0.05,  0.42) 

Sulphur dioxide, SO2 0.45   (0.31,  0.60) 0.28   (0.18,  0.42) 0.28  (0.18,  0.42) 

In bold, the significant cases according to the deterministic terms. In parenthesis, the 95% confidence 659 
intervals of the values of d. 660 
 661 

  662 



28 
 

Table 6: Estimates of d under the assumption of seasonal autocorrelation 663 

London mean roadside 

Series d  (95% interval) Intercept Time trend AR 

Nitric oxide, NO 0.60   (0.41,  0.91) 84.921  (5.54) --- 0.354 

Nitrogen dioxide, NO2 0.32   (0.16,  0.54) 60.442  (19.15) -0.080  (-1.99) 0.428 

Oxides of nitrogen, NOx 0.54   (0.33,  0.86) 143.642  (8.51) --- 0.420 

Ozone, O3 0.24   (0.09,  0.50) 27.478  (14.20) --- 0.669 

PM10 particulate 0.08  (-0.06,  0.27) 28.009  (25.18) -0.044  (-3.10) 0.382 

PM2.5 particulate 0.06  (-0.10,  0.27) 18.819  (19.38) -0.047  (-3.76) 0.286 

Sulphur dioxide, SO2 0.30   (0.17,  0.46) 3.410  (8.52) --- 0.203 

London mean background 

Series d  (95% interval) Intercept Time trend AR 

Nitric oxide, NO 0.47   (0.25,  0.85) 26.871  (4.02) --- 0.359 

Nitrogen dioxide, NO2 0.20   (0.00,  0.50) 41.813  (17.55) -0.101   (-3.40) 0.646 

Oxides of nitrogen, NOx 0.47   (0.25,  0.85) 66.240  (6.46) --- 0.429 

Ozone, O3 0.27   (0.12,  0.52) 37.105  (13.76) --- 0.692 

PM10 particulate 0.04  (-0.11,  0.25) 21.795  (24.58) -0.038   (-3.32) 0.646 

PM2.5 particulate 0.21   (0.05,  0.42) 15.642  (10.77) -0.038   (-2.04) 0.646 

Sulphur dioxide, SO2 0.28   (0.18,  0.42) 3.332  (13.20) --- 0.230 

In parenthesis in the second column, the 95% confidence intervals of the estimated values of d. in the third 664 
and fourth column, t statistics values are in parenthesis. The “AR” is the estimated seasonal AR(1) values.    665 
 666 

 667 
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Table 7: Results of the HEGY Quarterly Seasonal unit root 676 

i)     London mean roadside 

Series Regression 
1t  

2t  
2 12F −

 

Nitric oxide, NO Intercept only 0.2429 -0.8343 7.9221 

Intercept and trend -0.7950 -0.8413 7.7816 

Intercept, trend and seasonal dummy 0.8748 0.5871 13.8999 

Nitrogen dioxide, 

NO2 

Intercept only -0.7176 -0.8088 6.1134 

Intercept and trend -2.3521 -0.8124 6.1146 

Intercept, trend and seasonal dummy 2.8932 2.9362 9.9875 

Oxides of 

nitrogen, NOx 

Intercept only -0.8530 -0.6957 7.5510 

Intercept and trend -1.8307 -0.6930 7.4601 

Intercept, trend and seasonal dummy 2.6703 2.6227 14.6369 

Ozone, O3 Intercept only -1.2149 -1.8058 4.5338 

Intercept and trend -1.6516 -1.8080 4.4319 

Intercept, trend and seasonal dummy 3.6920 3.5954 10.5347 

PM10 particulate Intercept only -0.2150 -0.8383 5.0926 

Intercept and trend -2.8297 -0.6235 5.0243 

Intercept, trend and seasonal dummy 3.2142 3.2061 6.9362 

PM2.5 particulate Intercept only -0.0164 -0.7408 4.9104 

Intercept and trend -1.9584 -0.6437 4.8029 

Intercept, trend and seasonal dummy 2.4029 2.4659 7.7611 

Sulphur dioxide, 

SO2 

Intercept only 1.3854 -0.8968 5.3395 

Intercept and trend 0.3269 -0.8863 4.9650 

Intercept, trend and seasonal dummy 1.3805 1.6499 5.8573 

ii)     London mean background 

Series Regression 
1t  

2t  
2 12F −

 

Nitric oxide, NO Intercept only 1.4599 -0.7625 6.8367 

Intercept and trend 0.5360 -0.7741 6.8876 

Intercept, trend and seasonal dummy -0.1487 -0.2389 12.0501 

Nitrogen dioxide, 

NO2 

Intercept only 0.9932 -0.5471 5.5080 

Intercept and trend -0.8502 -0.5334 5.4032 

Intercept, trend and seasonal dummy 1.5246 1.6500 8.1662 

Oxides of 

nitrogen, NOx 

Intercept only 0.4292 -0.5903 6.6705 

Intercept and trend -0.1071 -0.6044 6.6629 

Intercept, trend and seasonal dummy 0.9679 0.8257 12.3667 

Ozone, O3 Intercept only -1.9739 -1.3880 3.6973 

Intercept and trend -1.9417 -1.3786 3.6504 

Intercept, trend and seasonal dummy 3.9302 3.7862 10.5785 

PM10 particulate Intercept only 0.3369 -0.8042 4.7729 

Intercept and trend -3.0612 -0.6396 4.6386 

Intercept, trend and seasonal dummy 3.4327 3.4149 6.6551 

PM2.5 particulate Intercept only 0.1899 -0.6368 5.5896 

Intercept and trend -2.4430 -0.4708 5.4172 

Intercept, trend and seasonal dummy 3.1601 3.2390 8.3624 

Sulphur dioxide, 

SO2 

Intercept only -0.9885 -2.3177 5.6763 

Intercept and trend -0.9644 -2.2991 5.5756 

Intercept, trend and seasonal dummy 2.4293 2.0294 7.4713 
In bold in the column for t statistic 

1t  indicates evidence of no regular unit root at 5% level, while in bold 677 
for a column for t statistic 

2t  indicates evidence of no seasonal unit roots at annual frequency, vice-versa. 678 
In the last column, the joint F tests 

2 12F −
 are reported with Estimates in bold implying no evidence of 679 

seasonal unit roots at all other frequencies other than annual frequency. Critical values of the test are given 680 
in Franses and Hobijn (1997). 681 
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 682 

         Table 8: Estimates based on a non-linear I(d) model with white noise errors 683 

i)     London Mean Roadside 

Series d 

D 

θ0 θ1 θ2 θ3 

Nitric oxide, NO 0.73 

(0.47,  1.01) 

86.585 

(2.31) 

9.415 

(0.44) 

-11.400 

(-0.80) 

5.712 

(0.53) 

Nitrogen dioxide, NO2 0.46 

(0.25,  0.68) 

55.833 

(13.20) 

2.918 

(1.12) 

-1.845 

(-0.87) 

1.015 

(0.56) 

Oxides of nitrogen, NOx 0.72 

(0.47,  0.99) 

150.178 

(3.30) 

6.606 

(0.25) 

-7.393 

(-0.42) 

3.911 

(0.29) 

Ozone, O3 0.74 

(0.51,  0.98) 

27.362 

(1.91) 

0.668 

(0.08) 

0.045 

(0.01) 

0.828 

(0.20) 

PM10 particulate 0.11 

(-0.09,  0.37) 

25.152 

37.06) 

1.692 

(2.85) 

-0.968 

(-1.71) 

-1.816 

(-0.03) 

PM2.5 particulate 0.11 

(-0.08,  0.35) 

15.717 

(24.53) 

1.797 

(3.21) 

-0.294 

(-0.55) 

-0.004 

(-0.09) 

Sulphur dioxide, SO2 0.28 

(0.12,  0.48) 

86.585 

(2.31) 

9.415 

(0.44) 

-11.400 

(-0.80) 

5.712 

(0.53) 

ii)     London Mean Background 

Series d 

D 

θ0 θ1 θ2 θ3 

Nitric oxide, NO 0.67 

(0.40,  0.97) 

27.937 

(1.78) 

4.822 

(0.48) 

-0.990 

(-0.13) 

2.534 

(0.46) 

 

 
Nitrogen dioxide, NO2 0.68 

(0.45,  0.93) 

36.407 

(3.45) 

3.852 

(0.64) 

0.564 

(0.13) 

0.784 

(0.24) 

Oxides of nitrogen, NOx 0.74 

(0.47,  1.02) 

71.022 

(2.00) 

7.532 

(0.37) 

1.332 

(0.10) 

2.748 

(0.27) 

Ozone, O3 0.83 

(0.60,  1.07) 

36.431 

(1.85) 

-0.300 

(-0.02) 

0.219 

(0.02) 

0.527 

(0.07) 

PM10 particulate 0.09 

(-0.11,  0.34) 

19.281 

33.77) 

1.486 

(2.91) 

-0.324 

(-0.66) 

-0.203 

(-0.42) 

PM2.5 particulate 0.24 

(0.04,  0.49) 

13.277 

(12.71) 

1.557 

(1.98) 

-0.418 

(-0.59) 

-0.309 

(-0.47) 

Sulphur dioxide, SO2 0.15 

(0.00,  0.35) 

3.373 

(23.85) 

0.146 

(1.24) 

-0.438 

(-3.96) 

0.224 

(2.12) 

In parenthesis in the second column, the 95% confidence interval for d. In the third to the sixth column are 684 
t-values for parameters θ0, θ1, θ2 and θ3, respectively. Figures in bold indicate the significance of estimates 685 
at 5% level. 686 
 687 
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