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A B S T R A C T   

Slow economic recovery, market concentration, and scant alternative energy sources make the Iberian energy 
market quite idiosyncratic when compared to the rest of the EU. This paper focusses on the Iberian energy market 
by dealing with the analysis of the relationship between energy consumption and energy prices by using frac-
tional integration in the Iberian market. This technique is used in order to examine the degree of persistence of 
the series, looking at the spot and futures markets in Spain and Portugal. The results indicate that all the series 
are fractionally integrated, showing long memory and mean reverting behaviour. Moreover, a close relation 
between energy consumption and energy prices is found in the spot market whereas it is not found in the futures 
market. In fact, there is a weak relationship between the futures market and energy consumption. However, 
regarding energy pricing, the relationship is stronger but with the spot market itself.   

1. Introduction 

Energy is the cornerstone of modern economies not only for the 
suppliers of physical goods and services but also as a means of social 
welfare and comfort for people in general. Hence, it is crucial to know 
how price changes impact on the energy demand of suppliers and con-
sumers. In the recent past, energy deregulation and sharp movements in 
the price of primary energy goods have stimulated an increased interest 
in this area. Most econometric studies in this field are focused on the 
price elasticities of energy demand with some other macroeconomic 
factors [1], helping us to gain a better understanding of the economic 
consequences of varying energy prices. Although the economic litera-
ture on energy demand dates back to the last century [2,3], in recent 
years numerous academic studies have used various techniques to esti-
mate both the short and the long-term price elasticity demand of 
different energy products in different countries. This paper, however, 
departs from that literature in the sense that we first examine the degree 
of persistence in both energy consumption and energy prices using 
updated time series techniques based on fractional integration. In 
addition, the relationship between these two variables has been inves-
tigated in the spot and futures markets in the case of Spain and Portugal. 

The Iberian business case has presented a number of regulatory 

specificities and competition constraints when compared to other Eu-
ropean energy markets. The main issues to resolve today in the Spanish 
market are the scant competition, the tariff deficit, faulty tariff design, a 
raft of uncertainties, potential market integration and the introduction 
of new technologies [4]. In the Portuguese market, Amorim et al. [5] 
indicate that the two main issues to address are that of setting up 
balancing mechanisms to implement renewable energy sources and ca-
pacity incentives to allow new investments. These operational and 
financial constraints may be responsible for excessive volatility in 
pricing and energy consumption in the Iberian region. Ciarreta and 
Zarraga [6] found also relevant intra-day price and transmission vola-
tility in the Iberian market, arguing how results are driven by market 
structure, market design and the regulation of renewable generation. 
Regarding the futures market, Capit!an-Herraiz and Rodriguez-Monroy 
[7] documented its lack of liquidity in comparison with other North 
European markets. 

Notwithstanding, the slow economic recovery experienced by the 
Iberian Peninsula following the global financial crisis of 2008 has also 
contributed to lack of investment in renewable sources. This earlier 
crisis has resulted in the absence of new players, which prefer to inno-
vate in bigger and integrated markets, where future options and spot 
market trades can be transacted more easily, due to higher liquidity. 
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This being the case, the energy market integration in the Iberian 
Peninsula, which is expected to take place from 2020 on, calls for more 
investigation on each country level current status. Although volatility in 
energy prices and consumption in spot and future markets might be 
mitigated due to variance pooling effects; future investment prospects 
could be affected by country-level market idiosyncratic conditions. The 
current COVID-19 crisis might highlight these weaknesses in the short 
future as has happened in the past. 

In summary, this paper departs from that literature in the sense that 
it examines the degree of permanence in both energy consumption and 
energy prices using updated time series techniques based on fractional 
integration. In addition, the relationship between the two variables is 
investigated in the spot and futures markets in the case of Spain and 
Portugal. The rest of the paper is structured in seven sections. The 
literature review is presented in Section 2, while Section 3 focuses on the 
Iberian case. The major methodological steps adopted in this research 
are presented in Section 4. Data descriptive and sources are detailed in 
Section 5. Results are analyzed in Section 6 and discussed in Section 7. 
Conclusions follow in Section 8. 

2. Literature review 

The literature relating to energy models for demand forecasting and 
management in the last century is extensive, especially after the oil crisis 
during the 1970s. After the 1990s, as a result of the Kyoto Protocol, 
environmental problems were included in the equation and the rela-
tionship between social factors, natural resources consumption and di-
oxide emissions were also studied. A very popular contribution towards 
gaining an understanding of the different energy models is the that of 
Jebaraj and Iniyan [8] in which different types of models such as energy 
planning, supply-demand structure or forecasting models where 
reviewed and presented, as well as renewable and emission reduction 
policies. 

A recent review of the different models for energy demand fore-
casting can be found in Suganthi and Samuel [1]. During the first decade 
of the 21st century several new techniques were introduced to accu-
rately predict future energy needs. Traditional methods such as time 
series regressions as well as other computing techniques such as fuzzy 
logic, genetic algorithms and neural networks are being extensively used 
to study the demand side management. 

Regarding the drivers that can affect energy demand, York [9] 
analyzed the relationship between demographic trends and energy 
consumption for the period 1960–2000 in fourteen EU countries, 
concluding that the relationship between population size and energy 
consumption was highly elastic and close to one. The age structure of the 
population and its level of urbanization appear to play important roles in 
terms of energy consumption. Other studies suggest that price or eco-
nomic activity also have an important relationship with energy demand. 
Sharimakin et al. [10] studied different European industries in the 
period 1995–2009 and concluded that long-run elasticity with respect to 
price is negative (!0.68), while long-run elasticity with respect to eco-
nomic activity is positive (0.81). Adeyemi et al. [11] studied the 
asymmetric price responses and the underlying energy demand trends, 
concluding that changes in energy prices might induce asymmetric 
changes in the derived demand for energy. This process should depend 
upon whether the price falls, rises, or rises above a previous maximum, 
but the derived demand for energy might be driven by exogenous factors 
such as improvements in the efficiency of the capital or government 
regulations. A consequence of this is that the drivers of energy demand 
need not necessarily be the same for all countries in the estimation of 
demand models. 

Analyzing energy consumption, Wong et al. [12] estimated the 
elasticities of changes in oil prices and income of twenty OECD countries 
for the period 1980–2010. Negative income elasticity was found for coal 
consumption but income elasticity for oil and gas was found to be pos-
itive, suggesting the importance of economic growth in the movement 

towards cleaner energy from coal to oil and gas. However, in the specific 
case of oil markets, its consumption fell significantly with higher oil 
prices. Bhattacharyya and Timilsina [13] studied other indirect aspects 
for developed economies, concluding that current models were not 
resolving conceptual issues regarding the existence of non-monetized 
transactions, such as the poor-rich or urban-rural structures. In addi-
tion, traditional energy resources or differentiation between commercial 
and non-commercial energy commodities were often poorly reflected in 
models. Other authors such as Beunder and Groot [14] concluded that 
the consumers’ preferences cannot be simply taken as given, as is 
customary in standard economic models, and they should interact with 
the structure of financial incentives. In consequence, taxes and sub-
sidies, or changing fixed or flexible rates in energy bills, were interacting 
and modifying with people’s preferences. 

Salisu and Ayinde [15] documented other emerging issues for energy 
demand, ranging from asymmetric price responses, time varying de-
mand parameters, triangulation analyses to seasonal and climate change 
effects. They proposed models assuming symmetric, asymmetric energy 
prices or non-parametric techniques with Bayesian approaches, to make 
empirical captures using time-varying coefficient models such as rolling 
regressions. Figueiredo et al. [16] analyzed the effects of renewable 
energy output variations, particularly wind power, noting that its pro-
duction is strongly influenced by weather conditions. A recent review of 
the latest current trends in energy systems can be found in Lopion et al. 
[17] as the requirements made on energy system models are changing 
due to the governments emissions regulation and the implementation of 
green energies. Along with the climate goals of the Paris Agreement, the 
national greenhouse gas strategies of industrialized countries involve 
the total restructuring of their energy systems. 

In terms of the pricing discovery and the relationship between spot 
and futures markets, Figuerola-Ferretti and Gonzalo [18] studied the 
modelling of pricing in commodity markets, presenting an equilibrium 
model between spot and futures prices with finite elasticity of arbitrage 
services and convenience yields. This model was tested in non-ferrous 
metals prices traded in the London Metal Exchange (LME), concluding 
that most markets are in backwardation and futures prices are infor-
mation dominant in highly liquid futures markets. Other studies, as that 
of Narayan and Sharma [19] proposed a time-varying price model 
structure based on a rolling-window error correction framework, 
showing that price discovery in nine general commodities is dominated 
by the spot market, while in another six, price discovery is dominated by 
the futures market. Therefore, challenging the well-established view in 
commodity markets that it is the futures market which dominates the 
spot price discovery process. 

Regarding energy pricing, a review of the different techniques can be 
found in Weron [20] explaining the complexity of the available solu-
tions, and this review has been recently updated in Nowotarski and 
Weron [21] focusing in a probabilistic perspective. Shrestha [22] ana-
lyzes empirically the price discovery process in the futures and spot 
markets for different types of energy, such as crude oil, heating oil and 
natural gas, discovering that almost all price discovery takes place in the 
futures markets for heating oil and natural gas but in the case of crude 
oil, price discovery takes place in both markets. 

In the specific case of the electricity market, Malo [23] studied 
electricity spot and futures price dependence with a multifrequency 
approach for modeling spot and weekly futures price dynamics. 
Garcia-Martos et al. [24] worked with unobserved components, pro-
posing a differential model to extract seasonal common factors from the 
vector of general electricity prices. Lisi and Pelagati [25] considered the 
market time series comparing deterministic and stochastic approaches, 
and concluding that both approaches may give good results. Le et al. 
[26] proposed an algorithm to simulate the clearing of the integrated 
European intra-day market coordinating the discrete auction with the 
continuous trading, helping to solve the different intra-day market sit-
uations. Monteiro et al. [27] presented a probabilistic price forecasting 
model for day-ahead hourly price forecasts in electricity markets, based 
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on a Gaussian density estimator function for each input variable, 
allowing the parameters of a Beta distribution to be calculated for the 
hourly price variable. De Marcos et al. [28] proposed a short-term 
hybrid electricity price forecasting model combining a cost-production 
optimization model with an econometric neural network model. 
Manner et al. [29] proposed a dynamic multivariate binary choice 
model, following a vector autoregressive (VAR) process. Finally, Lago 
et al. [30] used deep learning algorithms with neural networks, and in 
Lago et al. [31] they improved the model results associating this specific 
focus with market integration. 

Finally, regarding the specific usage of fractional integration in the 
context of energy, there are some studies that have used this method-
ology, including the contributions of Elder and Serletis [32] regarding 
energy future prices, Barros et al. [33] focusing on U.S. renewable en-
ergy consumption, Weron [20,34] and Gil-Alana et al. [35] in the field of 
electricity prices, and Barros et al. [36] on energy prices. 

3. The Iberian case 

This section focuses on the cases of Spain and Portugal. To under-
stand the specific Iberian business case, an interesting analysis of the 
Spanish market can be found in Duarte et al. [4] focusing in the specific 
disaggregation of the electricity industry into the generating, trans-
mission, distribution and marketing businesses, which were decoupled 
in 1997 under legislation prohibiting any single company from con-
ducting more than one of these businesses. Conventional thermal and 
hydropower generating together make up more than 50% of total 
output, wind power produces 19% and nuclear power accounts for only 
7% where almost all demand is covered by domestic production. The 
main issues to be resolved in the Spanish market concern the scant 
competition, the tariff deficit, faulty tariff design, a raft of uncertainties, 
potential market integration and the introduction of new technologies. 
In the Portuguese market, Amorim et al. [5] indicate that the two main 
issues to address are that of fulfilling balancing mechanisms to be able to 
manage more than 50% of renewable energy sources and the capacity 
incentives to allow new investments. In this line, as in Portugal there is a 
commitment for the renewable electricity share to reach 60% by 2020. 
Several authors have worked in this industry green-renewal process. 
Figueiredo et al. [37] explain the issues around replacing traditional 
coal-based power plants with photovoltaics, while Pereira and Saraiva 
[38] explain the implications of the penetration of wind power, since 
this process is putting the profitability of traditional stations under 
pressure. Distributional costs of wind energy production in Portugal 
under the liberalized Iberian market regime can be found in Prata et al. 
[39]. 

Another issue in the Iberian market is the interconnection needs 
between different countries. As explained by Rubino and Como [40]; 
current EU energy policy calls for a well-integrated internal energy 
market by 2020 achieving interconnection of at least 10% of the 
installed electricity production capacity for all EU member states, with a 
15% target in 2030. Figueiredo et al. [41] track the Iberian case, 
showing that Iberia has already surpassed this value reaching 25.6% and 
is aiming to achieve 3000 MW in the near future, which will represent 
32% of the maximum demand considered in this study. An adequate 
cross-border interconnection capacity should avoid the internal devel-
opment of dispatchable reserve capacity, helping balancing and grid 
security purposes. 

Several studies have tried to explain the electric consumption and 
price evolution in the Iberian market. Ciarreta and Zarraga [42] studied 
the dynamic relationship between electric consumption and GDP in 
Spain for the period 1971 to 2005 using a VAR model with differenced 
series in a unidirectional causality relationship. Their results show a 
linear relationship running from GDP to electric consumption with no 
evidence of a non-linear relationship. In Ciarreta and Zarraga [6]; the 
same authors studied the volatility of hourly pricing from the Iberian 
intra-day electricity market for the period 2002–2014, concluding that 

the results show significant volatility transmissions between the ses-
sions, arguing how results are driven by the market structure, the market 
design and the regulation of renewable generation. Regarding the fu-
tures market, Capit!an-Herraiz and Rodriguez-Monroy [7] documents its 
lack of liquidity compared with other North European markets, 
mentioning that the main significant drivers are the traded volumes in 
the OTC trading and auctions. Thus, it would be advisable to attract new 
players in order to increase liquidity and price efficiency. 

Regarding pricing models, Lagarto et al. [43] studied the market 
power of generating firms in the day-ahead Iberian Electricity Market 
(MIBEL) using a model where data on power plants, fuels, CO2 and the 
day-ahead electricity market are provided as input data, and measuring 
the direct influence of the external market price drivers, such as fuel and 
CO2 prices, renewable generation, or power plants availability. They 
conclude that major firms behaved much more competitively in off-peak 
than in peak periods, in some cases generating at market prices below 
marginal costs. Monteiro et al. [27] recently proposed another specific 
pricing model for the day-ahead price forecasting in the MIBEL market. 
Input variables include hourly time series records of weather forecasts, 
previous prices, and regional aggregation of power generations and 
power demands. 

4. Methodology 

Fractional integration is a time series technique that allows in-
vestigators to determine the dynamic specification of the data in a more 
flexible way than other approaches based on integer degrees of differ-
entiation. It belongs to a broader category named long memory, char-
acterized because the spectral density function is unbounded in at least 
one frequency on its spectrum. Within this group of processes, a very 
popular analysis model within the time series studies is the fractional 
integration that is described in the following paragraph and that is 
characterized because its spectral density function tends to infinity as 
the frequency approaches 0. 

We say that a given process {xt, t ¼ 0, #1, …} is integrated of order d, 
and denoted as I(d) (where d can be any real value) if it can be repre-
sented as: 

ð1 ! LÞd xt ¼ ut ; t ¼ 1; 2;… ; (1)  

where L is the lag operator (Lxt ¼ xt-1) and ut is integrated of order 0, i.e., 
I(0), defined as a covariance stationary process with a positive and 
bounded spectrum. Thus, ut can be a white noise but also a weakly 
autocorrelated process, for example, of the AutoRegressive Moving 
Average (ARMA) form.1 

The estimation of the differencing parameter d is crucial. Thus, if d ¼
0, xt ¼ ut in (1), and xt is said to be short memory as opposed to the case 
of long memory that takes place when d > 0. From a statistical view-
point, the borderline point is 0.5. Thus, if d < 0.5, xt is covariance sta-
tionary; however, if becomes nonstationary for d & 0.5, and it is more 
nonstationary as we increase the value of d, noting that the variance of 
the partial sum increases in magnitude with d; finally, from a policy 
perspective, mean reversion occurs if d < 1 and shocks will have per-
manent effects if d & 1. 

We estimate the value of d using the Whittle function based on the 
frequency domain [45], and, for this purpose, we use a version of a 
testing procedure developed in Robinson [46] that is very convenient in 
the context of the series examined here, noting that it permits us to test 
any real value of d, including thus values in the nonstationary range (d 
& 0.5). Using this method, we test the null hypothesis: 

Ho : d ¼ d0 ; (2) 

1 Thus, if ut in (1) is ARMA(p, q), xt is said to be a fractionally integrated 
ARMA, i.e., an ARFIMA(p, d, q) process. See, [44]. 
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in (1), where xt can be the errors in a regression model of form: 

yt ¼ β’zt þ xt; t ¼ 1; 2 ;…; (3)  

where zt can be either exogenous regressors or deterministic terms such 
as an intercept and/or a linear time trend. The test statistic proposed in 
Robinson [46] contains several important features. Thus, its limiting 
distribution is standard normal (N(0, 1)), so that we do not need to rely 
on critical values based on Monte Carlo simulation studies. Moreover, 
the test statistic and its asymptotic behaviour remain valid for any real 
value d0 in (2), including nonstationary cases, and thus, it does not 
require preliminary differencing to render the series stationary prior to 
the performance of the test; finally, it is the most efficient method in the 
Pitman sense against local departures from the null.2 Using alternative 
methods (also based on fractional integration) produced essentially the 
same results as those reported in this work. 

5. Data description 

The dataset encompassing spot and futures daily prices and energy 
consumption was obtained from the OMIP website (http://www.omip. 
pt/Downloads/tabid/104/language/pt-PT/Default.aspx) for Portugal 
and Spain, during the period encompassed from 2007 to 2017. Table 1 
presents the descriptive statistics for these time series, while Table 2 
presents the Kendall’s Tau correlation coefficient. 

While Table 1 suggests that price and demand time series are, 
somehow, asymmetrically distributed, although dispersion maybe 
considered low – with the exception of future energy demand -, Table 2 
reveals a moderately strong correlation between future and spot prices 
and a very weak correlation between spot energy and spot prices. Time 
series are depicted in Figs.1 and 2 for both energy and prices. 

6. Empirical results 

This section starts with the analysis of the individual series. The 
initial point is to estimate the value of d in the model given by (3) and (1) 
with zt ¼ (1,t)T, i.e., 

yt ¼ β0 þ β1t þ xt; ð1 ! LÞdxt ¼ ut; t ¼ 0; 1;…; (4)  

where yt refers to each of the observed time series (energy consumption 
and prices in the spot and future markets); β0 and β1 are unknown co-
efficients referring, respectively, to an intercept and a linear time trend, 
while xt is supposed to be I(d), where d can be any real value; finally, ut 
is I(0), expressed in terms of both uncorrelated and autocorrelated 
(Bloomfield) errors. Bloomfield [50] proposed an alternative to the 
ARMA modelling in a non-parametric way. It is non-parametric because 
there is no explicit form for the model since it is exclusively presented in 
terms of its spectral density function. He showed that the log of that 
function approximates very well the log spectrum of AR processes, 
producing also autocorrelations that decay exponentially fast as in the 
AR model. In all cases, we present the results for the original data as well 
as for the log-transformed values. 

Table 3 displays the estimates of d (and their associated 95% confi-
dence intervals) under the assumption of white noise errors. The results 
for the three standard cases of: i) no deterministic terms (i.e., β0 ¼ β1 ¼
0 in (4)), ii) an intercept (β1 ¼ 0 in (4)), and iii) an intercept with a linear 
time trend (β0 and β1 unknown) have been displayed, marking in bold in 
the table the selected model for each series, based on the t-values of the 
estimated coefficients on the d-differenced series. 

The first thing that can be observed in Table 3 is that the time trend is 

not required in any single case, and the intercept is sufficient to describe 
the deterministic terms. While focusing on the estimated values of d, it 
can be seen that in all cases the values are constrained between 0 and 1 
and both hypotheses (I(0) and I(1)) are decisively rejected in favour of 
fractional integration. Starting with the spot market, it is observed that 
the estimated value of d is 0.72 for consumption and 0.64 for the energy 
prices, and the values are slightly smaller (0.70 and 0.54) in the case of 
the log transformed data. For the futures market, the values are much 
smaller, being 0.24 (and 0.27 for the logged values) in the case of the 
energy consumption and 0.54 (0.48) for prices. Thus, evidence of long 
memory (d > 0) and mean reversion (d < 1) is obtained in all cases, and 
thought consumption seems to be nonstatonary (d & 0.5), prices follow a 
stationary path (d < 0.50) 

In Table 4 we allow the error term to be autocorrelated. However, 
instead of imposing a specific modelling assumption for ut in (4), we use 
here a non-parametric method due to Bloomfield [50]. It is called 
non-parametric in the sense that no functional form is explicitly pre-
sented for ut in (4). The model is exclusively defined in terms of its 
spectral density function throughout an expression that approximates 
fairly well highly parameterized ARMA process. Moreover, this 
approach accommodates extremely well in I(d) models (see Ref. [51]. 
The results using this approach are very similar to those given in Table 3 
in the sense that all values are constrained between 0 and 1 implying 
fractional integration and mean reverting behaviour. Thus, shocks 
affecting these series will have transitory though persistent effects. 

Thereafter, the relationships between the two variables (in logs) 
were analyzed by taking a regression of one of the variables against the 
other. Based on the fractional nature of the two series, one possibility 
here is to conduct a regression model under the assumption that the 
independent variables are exogenous to the system, allowing the errors 
to be potentially fractional. Thus, the following regression model was 
considered first, 

log  Ct ¼ γ0 þ γ1 log Pt!k þ xt; ð1 ! LÞdxt ¼ ut ; t ¼ 0; 1;…; (5)  

where C refers to energy consumption and P to energy prices, and with k 
¼ 0, 1, 2, 3, 4 and 5. Once more, we present the results for the two cases 
of uncorrelated (white noise) and autocorrelated (Bloomfield) errors, in 
Tables 5 and 6 respectively. 

The most noticeable feature observed in these two tables is that 
contemporaneously the slope is statistical significant in the two (spot 
and futures) markets, however, allowing for lags (k > 0) the coefficient 
only remains significant in the case of the spot market, implying that 
prices affect the behaviour of energy consumption in this market. 

Finally, the same experiment was carried out but in the opposite way, 
by testing energy prices against energy consumption, while still main-
taining the possibility of long memory errors, i.e, 

log  Pt ¼ γ0 þ γ1 log Ct!k þ xt; ð1 ! LÞdxt ¼ ut; t ¼ 0; 1;…; (6) 

The results for the two cases of uncorrelated and autocorrelated er-
rors are respectively reported in Tables 7 and 8. It can be seen that 
similar to the previous tables, only lag effects are statistically significant 
in the case of the spot market. Thus, energy prices and energy con-
sumption are both related in a bi-directional way in the case of the spot 
market. However, this relationship does not hold in the futures market. 

7. Discussion of results 

These results suggest that the energy spot market in Portugal and 
Spain presents the price-elasticity of demand expected behaviour of 
micro-economics, where higher prices induces lower consumption and 
vice-versa, in a feedback process that is temporally persistent. This 
temporal persistence within the ambit of a feedback process of prices 
and consumption in the spot markets is consistent with results presented 
in Table 1, where readers can easily note that variable dispersion is 
lower in spot markets, possibly as a consequence of a tied joint 

2 See Ref. [47] for an application using the same version of the tests of [46] as 
the one used in this work. The same version of the tests has been used in Refs. 
[48,49]; etc. 
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behaviour. 
On the other hand, results for the future energy markets are coun-

terintuitive. Not only is temporal persistence not significant, but higher 
(lower) levels of energy prices tend to stimulate higher (lower) energy 
consumption levels and vice-versa. This behaviour is typical of specu-
lative movements, where economic agents anticipate their purchases 
due to fear of future supply shortages. As long as energy supply in 
Portugal and Spain is controlled by a few companies with insufficient 
funding for generation and distribution capacity expansion, and which 
are scarcely integrated with other EU countries, this speculative 
behaviour in futures markets is quite justifiable. 

Finally, it can be said that the main challenge of governments and 

regulators should be to use this anticipatory consumption that triggers 
price increases to stimulate new energy projects related to capacity 
expansion, especially with green energies. Recent events such as the 
announcement of Iberdrola to build a new “mega” photovoltaics plant in 
Usagre – Extremadura (an investment of 290 € million, to be in service in 
September 2020), which will be the largest plant in Europe, is a clear 
example. Reductions in production costs and increases in the efficiency 
of solar panel plants are accelerating this process of green energy 
expansion. 

Table 1 
Descriptive statistics.  

Variables Min Max Mean SD CV 

Spot Energy (MWh) 465,578.300 922,465.000 654,659.647 71,056.337 0.109 
Future Energy (MWh) 48,000.000 1,055,730.000 103,750.166 112,060.387 1.080 
Spot Price (Euro/MWh) 5.779 94.128 49.649 11.455 0.231 
Future Price (Euro/MWh) 11.250 75.148 48.732 6.871 0.141  

Table 2 
Kendall’s Tau correlation matrix.   

Future Energy Future Price Spot Energy Spot 
Price 

Future Energy 
(MWh) 

1    

Future Price (Euro/ 
MWh) 

!0.006103973 1   

Spot Energy (MWh) !0.064405016 0.070074661 1  
Spot Price(Euro/ 

MWh) 
!0.038958766 0.510570069 0.14204931 1 

* Kendall’s Tau correlation was preferred over the traditional Pearson’s corre-
lation coefficient since it is better able to capture extreme, joint tail variation, 
being widely used for modeling bi-variate distributions by using the copulas 
technique. Significant results at p < 0.05 are highlighted in bold. 

Fig. 1. Energy consumption time series.  

Fig. 2. Energy price time series.  

Table 3 
Estimated values of d under no autocorrelation for the error term.  

i) Original data 
Spot market 

Series: Original No terms An intercept A linear trend 
Energy consumption 0.82 (0.79, 0.85) 0.72 (0.70, 0.75) 0.72 (0.70, 0.75) 
Energy prices 0.68 (0.65, 0.71) 0.64 (0.61, 0.67) 0.64 (0.61, 0.67) 
Futures market 

Series: Original No terms An intercept A linear trend 
Energy consumption 0.24 (0.21, 0.26) 0.24 (0.21, 0.26) 0.24 (0.21, 0.26) 
Energy prices 0.65 (0.63, 0.67) 0.52 (0.50, 0.54) 0.52 (0.50, 0.54) 
ii) Logged data 
Spot market 

Series: Logged No terms An intercept A linear trend 
Energy consumption 0.99 (0.96, 1.03) 0.70 (0.67, 0.73) 0.70 (0.67, 0.73) 
Energy prices 0.76 (0.74, 0.79) 0.54 (0.51, 0.57) 0.54 (0.51, 0.57) 
Futures market 

Series: Logged No terms An intercept A linear trend 
Energy consumption 0.46 (0.44, 0.48) 0.27 (0.24, 0.29) 0.27 (0.24, 0.29) 
Energy prices 0.85 (0.82, 0.88) 0.48 (0.46, 0.50) 0.48 (0.46, 0.50) 

The values in parenthesis report the 95% confidence bands for the values of d, i. 
e., the values of d where the null hypothesis cannot be rejected at the 5% level. In 
both, the selected model in relation with the deterministic terms. 

Table 4 
Estimated values of d under autocorrelation (Bloomfield) for the error term.  

i) Original data 
Spot market 

Series: Original No terms An intercept A linear trend 
Energy consumption 0.83 (0.79, 0.87) 0.70 (0.65, 0.77) 0.70 (0.65, 0.77) 
Energy prices 0.70 (0.65, 0.73) 0.62 (0.58, 0.68) 0.62 (0.58, 0.68) 
Futures market 
Series: Original No terms An intercept A linear trend 
Energy consumption 0.30 (0.27, 0.34) 0.30 (0.27, 0.34) 0.30 (0.27, 0.34) 
Energy prices 0.83 (0.80, 0.86) 0.70 (0.67, 0.74) 0.70 (0.67, 0.74) 
ii) Logged data 
Spot market 

Series: Logged No terms An intercept A linear trend 
Energy consumption 0.99 (0.94, 1.03) 0.68 (0.64, 0.72) 0.69 (0.64, 0.73) 
Energy prices 0.84 (0.81, 0.88) 0.60 (0.55, 0.64) 0.60 (0.55, 0.64) 
Futures market 
Series: Logged No terms An intercept A linear trend 
Energy consumption 0.57 (0.54, 0.60) 0.30 (0.27, 0.33) 0.30 (0.27, 0.33) 
Energy prices 0.96 (0.92, 1.01) 0.65 (0.62, 0.69) 0.65 (0.62, 0.69) 

The values in parenthesis report the 95% confidence bands for the values of d, i. 
e., the values of d where the null hypothesis cannot be rejected at the 5% level. In 
both, the selected model in relation with the deterministic terms. 
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8. Conclusion and policy implications 

Throughout this paper the stochastic properties of energy con-
sumption and energy prices in Spain and Portugal have been examined 
by using fractional integration or I(d) techniques in the spot and futures 
markets. The following points can be concluded according to this study:  

1. The univariate results clearly indicate that all the examined series 
display long memory patterns with mean reverting behaviour and 
thus the effects of the shocks disappear in the long run. In the 
multivariate setting we show that both variables are linked together 
in a bi-directional way in the case of the spot market, but this pattern 
does not hold in the futures market.  

2. There is a weak relationship between the futures market and energy 
consumption, however regarding the energy pricing, there is a 
stronger relationship with the spot market itself.  

3. In the case of energy consumption, our study is in line with other 
energy consumption studies, such as Wong et al. [12] for oil pricing 
that concluded higher oil prices lead to lower oil consumption. Our 
results have shown that energy consumption behavior could be 
similar in the spot pricing, with no strong relationship in terms of 
future pricing, as final consumers are not directly affected by future 
energy price changes.  

4. Regarding energy pricing, our study seems to be in line with that of 
Narayan and Sharma [19] completed for 15 general commodities, 
which concluded that in 60% of these commodities the stock market 
was dominant while in the other 40% it is the futures market which is 
dominant.  

5. Finally, according to our study, it can be said that in the Iberian 
energy market, spot dominates the futures market but both markets 
have a certain relationship in terms of electricity pricing. Further-
more, correlation shows a direct relationship between both markets. 
This result might make sense, as the futures market is used to hedge 
peaks of the spot market production pull, while these peaks usually 
happen only at certain specific demand events (for instance, cool 
spells or heat waves), where fewer energy sources are entering in the 
energy pull increasing the spot price.  

6. Our results could be used by policy-makers to draw some regulatory 
changes, since the energy supply in Portugal and Spain is controlled 
by only a few suppliers. Therefore, investment marks should be 
created so that speculative behaviour in futures markets could be 
avoided due to capacity expansion and better integration with EU 
energy lines. This being the case, the main challenge of a novel 
regulatory mark is to capture energy consumption in anticipation – 
and the consequent price increase - to trigger new energy projects 
related to capacity expansion, especially with green energies, with 
other EU players. 
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Table 5 
Estimated coefficients in the model in (5) under no autocorrelation.   

k 
Spot market Future market 

γ1 (t-value) d (95% band) γ1 (t-value) d (95% band) 

0 ¡0.0615 
(-8.33) 

0.70 (0.67, 0.73) 1.0956 (3.49) 0.27 (0.24, 0.29) 

1 ¡0.0615 
(-8.33) 

0.70 (0.67, 0.73) !0.1809 
(!0.57) 

0.27 (0.24, 0.29) 

2 ¡0.0617 
(-8.35) 

0.70 (0.67, 0.73) !0.5933 
(!1.49) 

0.27 (0.24, 0.29) 

3 ¡0.0620 
(-8.40) 

0.70 (0.67, 0.73) !0.4132 
(!1.31) 

0.27 (0.24, 0.29) 

4 ¡0.0620 
(-8.39) 

0.70 (0.67, 0.73) 0.1035 (0.32) 0.27 (0.24, 0.29) 

5 ¡0.0621 
(-8.41) 

0.70 (0.67, 0.73) 0.4214 (1.36) 0.27 (0.24, 0.29) 

In bold, significant coefficients at the 5% level. 

Table 6 
Estimated coefficients in the model in (5) under (Bloomfield) autocorrelation.   

k 
Spot market Future market 

γ1 (t-value) d (95% band) γ1 (t-value) d (95% band) 

0 ¡0.0605 
(-8.16) 

0.68 (0.64, 0.74) 1.2069 (3.75) 0.30 (0.27, 0.34) 

1 ¡0.0604 
(-8.15) 

0.68 (0.64, 0.74) !0.1771 
(!0.54) 

0.30 (0.27, 0.34) 

2 ¡0.0606 
(-8.18) 

0.68 (0.64, 0.74) !0.6054 
(!1.61) 

0.30 (0.27, 0.34) 

3 ¡0.0615 
(-8.32) 

0.69 (0.64, 0.74) !0.4103 
(!1.27) 

0.30 (0.27, 0.34) 

4 ¡0.0615 
(-8.30) 

0.69 (0.64, 0.75) 0.1374 (0.42) 0.30 (0.27, 0.34) 

5 ¡0.0616 
(-8.32) 

0.69 (0.64, 0.75) 0.4833 (1.49) 0.30 (0.27, 0.34) 

In bold, significant coefficients at the 5% level. 

Table 7 
Estimated coefficients in the model in (6) under no autocorrelation.   

k 
Spot market Future market 

γ1 (t-value) d (95% band) γ1 (t-value) d (95% band) 

0 ¡0.3680 
(-6.34) 

0.54 (0.52, 0.57) 0.0056 (4.43) 0.47 (0.45, 0.50) 

1 ¡0.3680 
(-6.34) 

0.54 (0.52, 0.57) !0.0008 
(!0.68) 

0.48 (0.46, 0.50) 

2 ¡0.3689 
(-6.36) 

0.54 (0.52, 0.57) !0.0023 
(!1.05) 

0.48 (0.46, 0.50) 

3 ¡0.3710 
(-6.41) 

0.54 (0.52, 0.57) !0.0014 
(!1.15) 

0.48 (0.46, 0.50) 

4 ¡0.3704 
(-6.39) 

0.54 (0.52, 0.57) !0.0007 (0.61) 0.48 (0.46, 0.50) 

5 ¡0.3706 
(-6.38) 

0.54 (0.52, 0.57) 0.0022 (1.15)) 0.48 (0.46, 0.50) 

In bold, significant coefficients at the 5% level. 

Table 8 
Estimated coefficients in the model in (6) under (Bloomfield) autocorrelation.   

k 
Spot market Future market 

γ1 (t-value) d (95% band) γ1 (t-value) d (95% band) 

0 ¡0.4264 
(-7.26) 

0.60 (0.55, 0.64) 0.0056 (4.75) 0.65 (0.61, 0.69) 

1 ¡0.4263 
(-7.26) 

0.60 (0.55, 0.64) !0.0012 
(!1.02) 

0.65 (0.61, 0.69) 

2 ¡0.4276 
(-7.28) 

0.60 (0.55, 0.64) !0.0022 
(!1.89) 

0.66 (0.60, 0.70) 

3 ¡0.4213 
(-7.18) 

0.59 (0.56, 0.63) !0.0013 
(!1.13) 

0.66 (0.62, 0.70) 

4 ¡0.4200 
(-7.16) 

0.59 (0.55, 0.63) !0.0006 
(!0.58) 

0.65 (0.62, 0.69) 

5 ¡0.4206 
(-7.17) 

0.59 (0.55, 0.63) !0.0020 
(!1.72) 

0.65 (0.62, 0.69) 

In bold, significant coefficients at the 5% level. 
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