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Abstract

Background: The genetic profile that is needed to define an endurance athlete has been studied during recent
years. The main objective of this work is to approach for the first time the study of genetic variants in liver-
metabolizing genes and their role in endurance performance by comparing the allelic and genotypic frequencies in
elite endurance athletes to the non-athlete population.

Methods: Genotypic and allelic frequencies were determined in 123 elite endurance athletes (75 professional road
cyclists and 48 endurance elite runners) and 122 male non-athlete subjects (sedentary). Genotyping of cytochrome
P450 family 2 subfamily D member 6 (CYP2D6 rs3892097), glutathione-S transferase mu isoform 1 (GSTM1),
glutathione S-transferase pi (GSTP rs1695) and glutathione S-transferase theta (GSTT) genes was performed by
polymerase chain reaction (PCR). The combination of the polymorphisms for the “optimal” polygenic profile has
been quantified using the genotype score (GS).

Results: Statistical differences were found in the genetic distributions between elite endurance athletes and non-
athletes in CYP2D6 (p < 0.001) and GSTT (p = 0.014) genes. The binary logistic regression model showed a
favourable OR (odds ratio) of being an elite endurance runner against a professional road cyclist (OR: 2.403, 95% CI:
1.213–4.760 (p = 0.002)) in the polymorphisms studied.

Conclusions: Genotypic distribution of liver-metabolizing genes in elite endurance athletes is different to non-
athlete subjects, with a favourable gene profile in elite endurance athletes in terms of detoxification capacity.
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Key Points

� This is the first study that shows that the genetic
profile of liver-metabolizing genes in elite endurance
athletes (professional cyclists and endurance elite
runners) is different from the non-athlete
population.

� There is an implication of an “optimal” genetic profile
in liver-metabolizing genes in systemic recovery from

prolonged continuous efforts in this type of
endurance sport, favouring sporting performance.

� Elite endurance runners appear to have a more
optimal genetic profile in liver-metabolizing genes
than professional cyclists.

1 Background
The liver performs a variety of unique functions essential
for the preservation of homeostasis, including glucose and
lipid metabolism, xenobiotic detoxification, and serum
protein synthesis. Most of these roles are performed by
the hepatocyte, a quiescent and highly differentiated cell
expressing a complement of enabling genes [1, 2]. The
liver’s central position in systemic metabolism implies a
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prominent exposure to noxious stimuli derived from en-
vironmental toxicants, alcohol, viruses, and dietary habits,
the principal causes of liver disease [3].
The combined influence of several genetic variants,

each with a significant contribution, as well as the com-
plex interaction of genetic variants, can help to explain
individual variations in the human endurance perform-
ance. A wide variety of studies find genetic variants that
have influence on athletic performance in elite athletes,
in running [4–6], soccer [7], triathlon [8], or power ef-
forts [9, 10], finding new candidate genes year by year
[11]. Several studies show numerous types of liver-
metabolizing genes, referring to their help in the sys-
temic detoxification of drugs and potentially harmful
chemicals and cancer inducers [12–16].
The liver is the main organ of cleaning these harmful

endogenous products [17], and one of the most striking
features that characterize endurance athletes is their fas-
ter systemic recovery from continuous efforts, providing
improvement in their performance [18, 19]. The prob-
ability of a perfect polygenic endurance profile has been
previously determined [20], showing the influence of
genetic variants in this profile of high sporting perform-
ance [8, 21–24]. Recently, the relationship between
GSTP gene polymorphisms with performance in Russian
and Polish elite athletes has been verified [25], due to a
better elimination of exercise-induced reactive oxygen
species (ROS).
One of the most striking features that characterize en-

durance athletes is their faster systemic recovery from
continuous efforts, which is mostly related to nutritional
supplements like fruit-derived polyphenol [26], quick-
absorption carbohydrates [27], and combinations of
carbohydrates and proteins [28], providing endogenous
improvement performance. In liver metabolism, the in-
terpretation of serum aminotransferases concentration
in athletes should consider the release of aspartate ami-
notransferase (AST) from muscle and of alanine amino-
transferase (ALT), mainly from the liver, being markers
that predetermine in blood analysis, the endogenous re-
covery of these endurance athletes [29]. In this work, we
approach for the first time the study of genetic variants
in liver-metabolizing genes, such as cytochrome P450
family 2 subfamily D member 6 (CYP2D6), glutathione-
S transferase mu isoform 1 (GSTM1), glutathione S-
transferase pi (GSTP), and glutathione S-transferase
theta (GSTT), by comparing the allelic and genotypic
frequencies in elite endurance athletes with the non-
athlete population.

2 Methods
2.1 Study Population
The studied population comprised 123 elite endurance
athletes (75 professional road cyclists and 48 elite

endurance runners) and 122 male non-athlete subjects
(sedentary). Non-athlete subjects and elite endurance
athletes were of Spanish Caucasian descent. The sample
size of the group of endurance elite runners was limited,
because in Spain, there is not a high enough number of
these athletes who have an elite status compared with
the number of professional cyclists. All the elite runners
had validated high level and elite sports records in en-
durance competitions: five athletes ran below 2 h 10 min
in marathon, 12 athletes below 1 h 03 min in half-
marathon, and the remaining 31 athletes in competitions
of 10,000 m and 5000 m ran below 30 min and 14 min,
respectively. The athletes participated in marathon or
half-marathon of World Championships and/or in 10,
000 m and 5000 m runs in the European Championships
or Cross-Country World and European Championships.
Some of the athletes achieved finalist positions in the
marathon and the 10,000 m in the European Champion-
ships, with gold and silver medals in the Cross-Country
European Championship, representing Spain. The pro-
fessional cyclists had participated in the Union Cycliste
Internationale (UCI) World-Tour events, including
Grand Tours, classic cycle races, other one-day races or
stage races (often in all of them). Many of them reached
one of the top five positions in endurance competitions:
Tour de France, Giro d’Italia, and Vuelta a España.
Both runners and cyclists were males, due to the small

number of high-level female athletes in Spain who met
the inclusion criteria. The non-athlete subjects were
males matched by age to athletes; they were not
smokers, nor did they suffer from chronic or acute ill-
nesses at the time of sampling.
Informed consent of all the participants in the study

was obtained. The protocol of the study was approved
by the Committee of Institutional Ethics (University of
Valladolid) and agreed with the Declaration of Helsinki
for Human Research of 1974 (last modified in 2000).

2.2 Genotypes
2.2.1 Target Genes
In order to investigate the role of liver-metabolizing
gene variants in the systemic recovery and cleaning of
toxic products produced by training and competition in
endurance elite sports, the following functional polymor-
phisms were genotyped in target genes:
c.506-1G>A polymorphism former 1846G>A CYP2D6

gene (location: 22q13.1) generates a change in the ca-
nonical sequence at the 3’ end of intron 3. This muta-
tion prevents the splicing of the intron 3 exon 4
junction of the mRNA and codes and inactive protein
[30], showing a deficiency of several detoxification en-
zymes that increase the risk for head and neck squamous
cell carcinoma in alcohol- and tobacco-exposed individ-
uals [31].
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“Null”polymorphism of the GSTM1 gene (location:
1p13.3). This null polymorphism causes the reduction of
the detoxification capacity of aromatic hydrocarbons [32,
33] and has been related to predisposition to different
diseases, such as liver cancer [34], high risk in patients
with clear cell renal cell carcinoma (cRCC) [35], and car-
diovascular [36] and respiratory diseases [37, 38].
p.Ile105Val polymorphism of the GSTP gene (location:

11q13). The Isoleucine 105 form exhibited lower cata-
lytic activity towards several carcinogenic diol epoxides
as compared with the valine 105 form [39]. Individuals
with the GST P1 valine allele showed a significantly
higher level of DNA adducts [40]. This decrease in
GSTP enzyme activity has been shown to increase the
risk of several tumours, like brain [41], myeloid leukae-
mia [42], lymphomas [43], and gastric cancer [44].
GSTT gene (location: 22q11.23) also has a functional

(GSTT*1) and a non-functional allele (GSTT*0). The
GSTT can detoxify smaller reactive hydrocarbons, such
as ethylene oxide and diepoxy butane. The null genotype
of GSTT was reported to be associated with an increased
risk of bladder cancer, lung cancer, and myelodysplastic
syndrome [45].

2.2.2 Deoxyribonucleic Acid Extraction and Genotyping

Nucleic Acid Purification Genomic DNA was obtained
from ethylenediaminetetraacetic acid (EDTA) anti-
coagulated blood samples according to standard phenol-
chloroform procedures, followed by precipitation with
ethanol.

Genotyping GSTM1 and GSTT genotyping were car-
ried out by direct PCR amplification and subsequent
agarose gel electrophoresis, as previously described [32,
33, 46, 47]. CYP2D6 and GSTP polymorphisms were ge-
notyped by polymerase chain reaction (PCR) amplifica-
tion, followed by specific restriction fragment analysis in
2% agarose gel, as previously described [30, 39]. All PCR
reactions were carried out in 20 μl of the total volume,
being DNA concentrations between 125 and 250 μgr.
The primers sequence at target genes and PCR condi-
tions are shown in Table 1 and Table 2.

2.3 “Optimal” Polygenic Profile for Endurance
Performance in the Spanish Population (Caucasian)
The probability that an individual bears the “optimal”
genotype for each of the four polymorphisms was calcu-
lated based on the typical frequency of each genotype
observed in Spanish people (Caucasian descent for the
population of ≥ 3 generations) [45, 48] (Table 3). An
“optimal” GS of 2 was scored for the polymorphisms of
the CYP2D6 and GSTP genes and an “optimal” GS was
scored 1 for the polymorphisms of the GSTM and

GSTT genes. A scale was made with the estimated prob-
ability of having a “perfect” genetic profile, considering
the number of polymorphisms included in the entire
profile [24].
Based on the typical frequencies observed from the

“optimal” genotypes, a scale was generated, estimating
the probability of possessing a “perfect” genetic pro-
file, having taken into account the polymorphisms in-
cluded [24].

2.4 Polygenic Potential for the Endurance Performance of
the Spanish Population
The combined influence of the four polymorphisms
studied was calculated, following the procedure of Wil-
liams and Folland [20]. First, each genotype was scored

Table 1 Primers sequence at target genes

CYP2D6 Forward 5′-GCCTTCGCCAACCACTCCG-3′

Reverse 5′-AAATCCTGCTCTTCCGACGC-3′

GSTM1 A 5′-CGCCATCTTGTGCTACATTGCCCG-3′

B 5′-ATCTTCTCCTCTTCTGTCTC-3′

C 5′-TTCTGGATTGTAGCAGATCA-3′

GSTP Forward 5′-ACCCCAGGGCTCTATGGGAA-3′

Reverse 5′-TGAGGGCACAAGCCCCT-3′

GSTT Forward 5′-TTCCTTACTGGTCCTCACATCTC-3′

Reverse 5′-TCACCGGATCATGGCCAGCA-3′

Table 2 PCR conditions

CYP2D6 Initial denaturation 94° 5 min

× 30 cycles Denaturation 94° 1 min

Annealing 60° 1 min

Extension 72° 2 min

Final extension 72° 5 min

GSTM1 Initial denaturation 95° 5 min

× 40 cycles Denaturation 94° 30 sec

Annealing 58° 30 sec

Extension 72° 45 sec

Final extension 72° 8 min

GSTP Initial denaturation 94° 5 min

× 35 cycles Denaturation 94° 30 sec

Annealing 55° 30 sec

Extension 72° 30 sec

Final extension 72° 5 min

GSTT Initial denaturation 95° 5 min

× 30 cycles Denaturation 95° 1 min

Annealing 60° 1 min

Extension 72° 1 min

Final extension 72° 10 min
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within each polymorphism (Table 3). A genotype score
(GS) of 2 or 1 was assigned to the “optimal” or prefera-
ble endurance genotype, while a GS of 0 was assigned to
the less optimal genotype [49]. Secondly, the GSs of all
genotypes (GSCYP2D6 + GSGSTM1 + GSGSTP + GSGSTT)
were added, and finally the score was transformed to a
0–100 scale to facilitate interpretation, namely the total
genotype score (TGS), as follows:
TGS = (100/6) × (GSCYP2D6 + GSGSTM1 + GSGSTP +

GSGSTT)
The maximum score for CYP2D6 and GSTP was 2

and for GSTM1 and GSTT it was 1. Thus 6 is the max-
imum total sum of all GSs, and therefore the “optimal”
or preferable genotypic profile. As indicated [20], a TGS
of 100 represents a “perfect” profile and a TGS of 0
should be the “worst” possible profile for endurance
sports when all GSs have a score of 0. Finally, the TGSs’
distribution between elite endurance athletes and non-
athletes was assessed.

2.5 Polygenic Potential for Endurance Performance in the
Spanish Control Population and High-Level Athletes
A polygenic profile was calculated for each endurance
elite athlete and non-athlete subject, as described, in
order to analyse both the nature of the TGS distribution
in a highly selected group of Spanish endurance athletes,
and the differences between these and the subgroups of
cyclists and runners vs. non-athletes.

2.6 Statistical Analysis
The statistical average and kurtosis were calculated using
Statistical Package for the Social Sciences (SPSS), v.20.0
for Windows (IBM Corp. Released 2012. IBM SPSS Statis-
tics for Windows, Version 20.0. Armonk, NY: IBM Corp).
The probability of having an “optimal” endurance geno-
type for one to four polymorphisms between elite endur-
ance athletes and non-athletics was calculated by using
the χ2 test with fixed α 0.05. The genotypic frequencies of
the polymorphisms in CYP2D6, GSTM1, GSTP, and
GSTT genes were compared between elite endurance ath-
letes and non-athletics, using a χ2 test with fixed α 0.05.
The ability of TGS to correctly distinguish potential

elite endurance athletes from non-athletes (0 = non-

athlete, 1 = elite) was assessed using receiver operating
characteristic (ROC) curves [50]. With that purpose, the
area under the ROC curve (AUC) was calculated with
confidence intervals of 95% (95% CI). Finally, a binary
logistic regression model was used to study the relation-
ship between TGS and the athletic status.

3 Results
In the non-athlete population, the mean value of the
TGS was 65.706 (± 16.360), statistical kurtosis: − 0.182
(± 0.435), and in the group of elite endurance athletes it
was 73.709 (± 16.531), statistical kurtosis: − 0.096 (±
0.433). The mean value of the TGS in professional cy-
clists was 72.885 (± 15.445) statistical kurtosis: − 0.087
(± 0.548), and of endurance elite runners it was 74.996
(± 18.193), statistical kurtosis: − 0.052 (± 0.674). The dis-
tributions of TGS frequencies of the 122 non-athletes
and 123 elite endurance athletes are represented in Fig.
1. Figure 2 shows the frequency distribution of the TGSs
of cyclists and elite runners and the 122 non-athlete
subjects.
TGS distribution in elite endurance athletes is shifted

to the right with respect to non-athletes. Sixteen elite
endurance athletes (13.0%) and only three non-athletes
(2.5%) exhibited an “optimal” TGS of 100. The differ-
ence in the distribution of TGSs between both groups
was statistically significant (p < 0.001) (Table 4).
ROC analysis showed significant discriminatory accur-

acy of TGSs in the identification of elite endurance ath-
letes (AUC = 0.629; 95% CI: 0.559–0.698) (p < 0.001)
(sensitivity = 0.488, specificity = 0.689) (Fig. 3). The corre-
sponding TGS value at this point was 74.995. Binary logis-
tic regression analysis showed that subjects with a higher
TGS of this value (74.995) had an odds ratio (OR) of 1.171
(95% CI: 0.816–1.680 (p = 0.245)) of being elite endurance
athletes, compared to those with a TGS below this value.
The endurance elite runners showed an OR at the cut-off
point in comparison to the non-athlete population of
2.403 (95% CI: 1.213–4.760) (p = 0.002)) and professional
cyclists, in comparison to non-athlete subjects, had an OR
of 1.029 (95% CI: 0.735–1.442) (p = 0.462)).
Genotype distribution of liver-metabolizing genes in

the elite endurance athletes’ group when compared with

Table 3 Genotyping frequency in the Spanish population and elite endurance athletes

Symbol Gene Polymorphism Genotypes (2 or 1 = “optimal”
endurance genotype)

Frequency in
Spanish
population
(%) (*)

Frequency in
Spanish elite
endurance
athletes (%)

CYP2D6 Cytochrome P450 family 2 subfamily D member 6 c.506-1G>A 0 = AA–1 = GA–2 = GG 4–27–69 1–14–85

GSTM1 Glutathione S-transferase mu Functional(+)/null(−) 0 = −–1 = + 82–18 71–29

GSTP Glutathione S-transferase pi Ile(I)105Val(V) 0 = GG–1 = GA–2 = AA 41–45–14 6–31–63

GSTT Glutathione S-transferase tetha Functional(+)/null(−) 0 = −–1 = + 64–36 28–72

(*) www.ensembl.org
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the non-athlete population was statistically significant
for CYP2D6 (p < 0.001), showing a higher frequency in
the “optimal” genotype in athletes (G/G 85.36%) than
the non-athlete population (G/G 62.30%); in GSTT
“optimal” polymorphism, the frequency was higher in
elite endurance athletes than non-athletes’ (p = 0.014)
(Table 5). Between both groups of elite endurance ath-
letes (cyclists and runners), statistically significant results
were found in CYP2D6 (p = 0.002) and GSTT genes (p
= 0.049) compared with non-athletes (Table 6).

4 Discussion
A great variety of external factors influence an individ-
ual’s ability to succeed in sport; however, genetics may
play an important role in determining sporting

achievement, so creating individualized training pro-
grammes based on genetic predispositions is important,
as is identifying athletes who need an adapted training
routine to improve their performance and to account for
individual susceptibility to injury [51, 52].
For many years, genes with allelic variants have been

identified as predisposing individuals to elite endurance,
including Actinin Alpha 3 (ACTN3) [9] and Angiotensin
Converting Enzyme (ACE) [53]. A recent study of a co-
hort of Caucasian elite athletes, from 1500 m runners to
marathon runners, showed no differences in endurance
running times related to these polymorphisms in ACE
and ACTN3 genes previously described [54]. This study
presented 698 Caucasian elite athletes with similar per-
formance profile to our sample, found different results

Fig. 1 TGS distribution in elite endurance athletes and non-athlete subjects

Fig. 2 TGS distribution in elite endurance athletes: cyclists, runners and non-athlete subjects
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from ours. The results should be corroborated in subse-
quent studies with the same polymorphisms presented
in our elite endurance athletes.
Different pathologic as well as non-pathologic

conditions could increase the production of free
radicals or drain the antioxidant defence system.
Prolonged and intensive exercise is one of the oxi-
dative stress-inducing conditions, via overproduction
of reactive oxygen species and reactive nitrogen
species.

This oxidative stress in endurance sports and elite ath-
letes is a determinant of performance. It is known that
in competitions like cycling, in which the accumulated
efforts of several weeks affect the performance, which
also happens in endurance elite runners, with their re-
quirement of several weeks of preparation for a world
championship, European championship or marathon,
this is mainly due to the alteration in the redox-system
of the systemic homeostasis and withdrawal of toxic
products generated by high oxidative stress [55–57].

Table 4 Distribution of elite endurance athletes and non-athletes with GS of 0-6 in target genes

Number of accumulated genotypes in an “optimal” GS individual score Elite endurance athletes
(n = 123) (accumulative %)

Non-athletes (n = 122)
(accumulative %)

p value

0 0 (0.00%) 0 (0.00%) < 0.001

1 0 (0.00%) 1 (0.82%)

2 5 (4.06%) 8 (7.37%)

3 14 (15.44%) 29 (31.14%)

4 44 (51.22%) 46 (68.85%)

5 44 (86.99%) 35 (97.54%)

6 16 (100.00%) 3 (100.00%)

Fig. 3 ROC curve summarizing the ability of TGS to distinguish potential elite endurance athletes from non-athletes
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There is recent evidence that diet has an important role
in helping to reduce this oxidative stress by ingesting
carbohydrate-rich diets [58, 59] and lipids [60] in long-
distance sports, especially cycling [61, 62] and elite run-
ning [63, 64]. However, there are still insufficient studies
that consider the genetic heritage of individuals and es-
pecially high-performance athletes in the systemic
cleansing of oxidative stress. Only a recently published
pilot study by Al-Khelaifi et al. [65] provides evidence
that high-power and high-endurance athletes exhibit a
distinct metabolic profile, defined by a genetic pool, that
reflects steroid biosynthesis, fatty acid metabolism, oxi-
dative stress, and energy-related metabolites; this will be-
come a broad field of study in the coming years to
ascertain the systemic recovery of high performance ath-
letes. Al-Khelaifi et al.’s study analysed 743 metabolites;
gamma-glutamyl amino acids were significantly reduced
in both high-power and high-endurance athletes com-
pared with moderate counterparts, indicating an active
glutathione cycle, the same metabolic pathway that can
explain the phenotype of the genotypes showed in this
study. To date, the genetic markers and polymorphisms
that have been studied on an individual basis have been
involved in muscle damage [66], muscular modulation
[67–70], and in the immune system of these elite endur-
ance athletes [71, 72]; these have been necessary studies

that have shown that all these polymorphisms must be
investigated in order to understand the implications of
oxidative stress in a global way.
The enzymatic activity of the proteins coded by the se-

quences of GSTM1 [73] and GSTP [74, 75] genes has
been previously identified as a risk factor in diseases of
oxidative stress and is associated with the risk of devel-
oping chronic severe ethanol liver damage. On the other
side, CYP2D6 is a molecule of the cytochrome P450
superfamily that metabolizes several drugs and endogen-
ous molecules. Its activity has been associated with
different oxidative stress-related processes, as mitochon-
drial respiration [75], liver toxicity [76], or toxicity of re-
active metabolites in erythrocytes [77]. This work is the
first in this field that shows a pool of polymorphisms in
liver-metabolizing genes, such as glutathione transferases
and the cytochrome P450 family 2 subfamily D member
6 (which influence systemic recovery by the hepatic
cleansing of endogenous toxic products generated by in-
tense exercise), between the non-athletic population and
elite endurance athletes. A recent study shows the rela-
tionship between GSTP polymorphism in Russian and
Polish athletes [25], showing statistical data among high-
performance athletes and the non-athlete population.
But nevertheless, in this study, no differences have been
found between athletes and the non-athlete population

Table 5 Genotype distribution in elite endurance athletes and non-athletes of liver-metabolizing polymorphisms

Elite endurance athletes (n = 123) n (%) Non-athletes (n = 122) n (%) p value

CYP2D6

A/A 1 (1.66%) 2 (1.64%) < 0.001

G/A 17 (13.82%) 44 (36.06%)

G/G 105 (85.36%) 76 (62.30%)

GSTM1

+ 36 (29.27%) 45 (36.88%) 0.205

− 87 (70.73%) 77 (63.12%)

GSTP

G/G 8 (6.51%) 13 (10.65%) 0.122

G/A 38 (30.89%) 48 (39.35%)

A/A 77 (62.60%) 61 (50%)

GSTT

+ 89 (72.36%) 70 (57.38%) 0.014

− 34 (27.64%) 52 (42.62%)

Table 6 Genotype frequencies in liver metabolizers between elite endurance athletes (cyclist, runners) and non-athletes

CYP2D6 genotype GSTT genotype

GG GA AA p value + − p value

Elite endurance athletes Cyclists 63 (84.00%) 11 (14.66%) 1 (1.33%) 0.002 54 (72.00%) 21 (28.00%) 0.049

Runners 42 (87.50%) 6 (12.50%) 0 (0.00%) 35 (72.91%) 13 (27.09%)

Non-athletes 76 (62.29%) 44 (36.06%) 2 (1.64%) 70 (57.37%) 52 (42.63%)
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in the GSTP polymorphism studied, which may be due
to sample size (698 athletes in the Zarebska study vs.
122 athletes in this study).
CYP2D6 and GSTT polymorphisms present a geno-

typic frequency in elite endurance athletes different from
the non-athlete population; it is associated with a higher
metabolic activity of proteins [30, 45, 46], a fact that pre-
disposes this group to a better metabolic capacity. Dif-
ferences between the two sub-groups of endurance
athletes are not evident, as the frequencies between cy-
clists and runners are similar, corresponding to a
CYP2D6 polymorphism of an “optimal” genotype of 84%
in cyclists and 87.5% in runners, while null polymorph-
ism in the GSTT gene was “optimal” in 72% of cyclists
as against 72.91% of runners (Table 6). However, the
null genotype of GSTM1 showed more frequently in
athletes, needs to be investigated in subsequent studies
to verify these Caucasian athletes’ frequencies. In turn, it
was found that the definition of “optimal” genotypes in
the work of Williams and Folland [20] implied that elite
endurance athletes have a significantly higher proportion
of TGS than the non-athlete population and a lower
proportion of not optimal genotypes (p < 0.001) (Table
4), showing that the liver-metabolizing genes studied
presented in the group of elite endurance athletes an
“optimal” genotype that was significant in comparison to
non-athletes. The endurance elite runners present
favourable genetics in these polymorphisms than profes-
sional cyclists due to provokes more concentration of
oxidative stress biomarkers than cycling [78, 79], using
the glutathione (GSH) pathway, corroborated by TGS
scores; the endurance elite runners showed an OR at the
cut-off point in comparison to the non-athlete popula-
tion of 2.403 (p = 0.002) and professional cyclists with
respect to non-athlete subjects showed an OR of 1.029
(p = 0.462).
In this research, the genetic profiles defined by gen-

etic polymorphisms of liver-metabolizing genes in 123
elite endurance athletes were compared with 122
non-athlete males. We decided to include these liver-
metabolizing genes in the study, since the toxic
effects described are similar to those of high-
performance sportsmen in continuous efforts, being
able to produce the endogenous products as free radi-
cals and peroxides as a decrease in the physical cap-
acity of them. Oxidative stress is the consequence of
an impaired balance between free radical production
and the endogenous antioxidant protection system.
Only four known polymorphisms have been studied,
one within each target gene. Another interesting vari-
ant within these genes has not been included and
constitutes ground for further studies and a better
definition about the role of genetic variations in liver-
metabolizing genes and endurance performance.

In other previous genetic association studies of
sportive performance, the ethnic and geographical ori-
gins of the athletes included in the studies have been
mixed. Our work does not present these limitations,
since we have focused on Caucasian Spanish elite endur-
ance athletes’ performance, provided by the Spanish
Higher Council of Sports (CSD).
For the first time, to the best of our knowledge, the re-

lationship between these polymorphisms in liver-
metabolizing target genes is shown, leading the capacity
of systemic recovery in elite endurance athletes; this is a
new type of genetic study, showing a definitive model of
the profile in these types of genes that help the capacity
of systemic cleansing of ROS produced by the physical
effort in this group of subjects in order to understand
the multiple and complex mechanisms that define it.
Subsequent studies in relation to genetic profiles and

the serum analysis of catabolites for oxidative stress
products in elite endurance athletes to determine their
ability to clean these products for a return to systemic
homeostasis should be carried out in order to corrobor-
ate the results shown in this study and to be able to con-
clude that these genetic markers are predisposed to the
metabolizing capacity of toxic waste products induced
by high performance endurance.

5 Conclusions
It is demonstrated for the first time that genotypic distri-
bution in elite endurance athletes as regards endurance
(professional cyclist and elite runners) is different to the
non-athlete Caucasian population, there being a
favourable gene profile in terms of the detoxification
capacity. These results open a new way of study of this
genes group to complete the knowledge of oxidative
stress and recovery of systemic homeostasis in high per-
formance in endurance sports.
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