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ABSTRACT 

The existing studies on persistence of ecological footprint have majorly concentrated on the 

aggregate ecological footprint without adequately considering its components.  The aim of 

this paper is to contribute to the existing papers on ecological footprint by examining the 

persistence of carbon footprint emissions for a group of 92 countries. Unlike the extant 

papers, we use fractional integration, which allows us to consider the stationary I(0) and the 

nonstationary I(1) cases as particular models of interest, being therefore more general and 

flexible than these two classical representations. The results indicate that only 25 out of the 

92 countries display mean reversion, with orders of integration strictly below 1 and showing 

transitory shocks, most of them belonging to lower-middle and low income countries. In 

these 25 countries it might not be easy to change the long run path of the carbon footprint as 

any policy shocks will have temporary effect. The foregoing findings can help policymakers 

in each nation to design efficient emission reducing policies. 
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1. Introduction 

One of the main obstacles to achieving sustainability is the biophysical confines of our 

planet. The Earth is essentially a closed system and therefore, it is subjected to 

thermodynamic laws which put restrictions on the production of natural resources as well as 

the absorption of waste. However, over the past five decades, humanity has, to a great extent, 

ensured that economic activities have continued to expand, whilst natural resources are 

gradually becoming limited (Mancini et al., 2016). Therefore, there is a need to use and 

analyse relevant tools to determine the degree at which mankind’s demand surpasses or 

remains within the limits of what the Earth’s natural capital can accommodate and to detect 

early warning signs and possibly project the impacts of human-driven pressures on 

ecosystems (Moldan et al., 2012). One of such tools is the carbon footprint. Generally, the 

carbon footprint is a component of the ecological footprint and it denotes the hectares of land 

needed to sequester anthropogenic carbon dioxide emissions. It accounts for more than 60% 

of the total ecological footprint in the globe (Global Footprint Network (2018).  

Many aspects of the carbon footprint have not been adequately analysed in the 

literature including the stationarity of the series. There are several reasons why determining 

whether carbon footprint follows a nonstationary path or a stationary trend is important. First, 

the existence of unit roots means that shocks to carbon footprints arising from the deployment 

of more fuel-efficient transportation and equipment and resulting from energy price jumps or 

exogenous innovation will be permanent (McKitrick, 2007). Second, the nonstationarity of 

the carbon footprint series has vital implications for the Environmental Kuznets Curve (EKC) 

papers that have used the carbon footprint as a representative of pollution. The assumption of 

trend stationarity of the pollution indicators is present in some EKC studies (Sidneva and 

Zivot, 2014). However, an EKC study that uses a nonstationary carbon footprint series in 

levels as the dependent series is likely to suffer from spurious inference, when the 
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explanatory variables such as output or income are also nonstationary. Specifically, if the 

time series for environmental indicator contain a stochastic trend, statistical approaches 

including ordinary least squares (OLS) that are based on the assumption that the series are 

stationary could generate spurious regression inferences. Therefore, the standard diagnostic 

statistics which are employed to gauge OLS results will suggest a statistically meaningful 

relation among non-stationary time series in most cases even when there is no relationship 

between the data generating processes (Hendry and Juselius, 2000; Dergiades et al., 2016). In 

the conventional autoregressive distributed lag (ARDL) method of Pesaran et al. (2001), it is 

assumed that all variables included in the regression involving environmental indicators 

should be at most stationary at first differences. Third, the division between trend stationary 

and difference stationary processes is vital to evaluate the potential long-term effect of 

environmental policy, which depends on the projection of future emissions and appraising the 

precision of these forecasts. For both nonstationary and stationary series, the long-term 

forecasts are the extrapolated deterministic trend. Forecast uncertainty for a nonstationary 

series increases as the forecast horizon becomes more distant. Stationary series are not 

susceptible to forecast uncertainty. Therefore, the long-term effects of a policy are less 

certain when the series are nonstationary relative to the stationary case (Gil-Alana and 

Solarin, 2018). Fourth, if the carbon footprint series at level are difference stationary, there is 

no prospect of convergence between them (as they are at different levels) so that any 

conclusion of convergence on the relative carbon footprint is at best weak (Nieswiadomy and 

Strazicich, 2004). 

The literature on the stationarity of pollution indicators has predominantly focussed 

on per capita CO2 emissions (Christidou et al., 2013; Tiwari et al., 2016; Gil-Alana et al., 

2017; Gil-Alana and Trani, 2018; etc.) However, per capita CO2 emissions and carbon 

footprint are different. Carbon footprint is expressed in terms of hectares of land, while per 
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capita emissions is related to the total population of a country. Unlike the typical per capita 

emissions available in many databases, the carbon footprint incorporates goods that are 

imported into a country but are produced elsewhere and generally take into account emissions 

associated with international transport and shipping. Consequently, a nation’s carbon 

footprint can rise even if the CO2 emissions within its borders decrease. 

Our aim in this paper is to make two contributions to the literature on the stationarity 

of pollution series. First, we examine the stationarity of the carbon footprint in 92 countries, 

which is likely to offer novel information on an indicator that has been largely ignored in the 

literature. Our study is different from papers that have considered the stationarity of 

ecological footprints (Ulucak and Lin, 2017; Solarin and Bello, 2018; Ozcan et al., 2019; 

Yilanci et al., 2019). Both Solarin and Bello (2018) and Ozcan et al. (2019) have considered 

the ecological footprint but not the carbon footprint. Although Ulucak and Lin (2017) 

considered the carbon footprint, the focus was on the U.S and OCED. The features of carbon 

footprints vary across different countries and therefore, policies that are fit for the U.S and 

OECD might not necessarily be suitable for other countries. Hence, the results from the 

current exercises is likely to guide many countries on whether the policy makers should 

implement environmental policies to decrease carbon footprint or allow the internal dynamics 

of these countries to automatically address the increase in carbon footprint.  

Our second contribution is the use of a fractional integration techniques, which 

according to our knowledge has not been used in the past to examine stationarity of carbon 

footprints or even ecological footprints. The fractional integration technique is appropriate in 

this context first because it generalizes the standard methods based on integer degrees of 

differentiation, allowing for fractional values. Thus, it allows for a much greater degree of 

flexibility in the dynamic specification of the data; Second, it can provide us with information 
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about the nature of the shocks, being transitory if the order of integration is smaller than 1, 

but permanent if that value is equal to or higher than 1. 

The remainder is arranged as follows: Section 2 reviews the existing literature, while 

the data and methodology of the paper are discussed in Section 3. The results are presented in 

Section 4. Section 5 concludes the paper. 

 

2. Literature review 

There is abundant literature on the stationarity and nonstationarity of CO2 emissions. Aldy 

(2006) and Lee and Chang (2009) show the convergence of the CO2 emissions of 

industrialized countries of the OECD, and the non-stability of the less developed countries 

using different methodologies, such as the Markov chain transition matrix and the panel data 

stationarity testing procedure developed by Carrion-i-Silvestre et al. (2005) respectively. 

Other studies have used unit root tests to check the convergence hypothesis by testing the 

stationarity/nonstationarity of the CO2 emissions. Examples are the works by Ezcurra (2007), 

Panopoulou and Pantelidis (2009), Chang and Lee (2008), Romero-Ávila (2008), Lee et al. 

(2008), Yavuz and Yilanci (2013), Ahmed et al. (2016), and the conclusions obtained in these 

works are mixed. 

 The stationarity of the CO2 emissions has been established in Christidou et al. 

(2013). He finds evidence supporting stationarity for 33 countries covering the period 1870–

2006 using a nonlinear panel unit root test developed by Kapetanios, Shin and Snell (KSS, 

2003). Evidence of convergence on the per capita global carbon dioxide emissions is also 

found in Zhang et al. (2018). On the other hand, there is also a significant number of papers 

obtaining evidence in favour of the non-stationarity of CO2 emissions, some of the them 

focussing on the convergence of CO2 emissions between countries. Thus, for example, the 

study of Criado and Grether (2011) covers the time period 1960-2002, and they investigate 
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the long run behaviour of the per capita CO2 emissions in a panel of 162 world areas, finding 

evidence in favour of nonstationarity, flattening and right-skewed spatial distributions before 

the oil price shocks in the 70s, and more stable and symmetric patterns between 1980 and 

2000; in addition, other studies showing that CO2 emissions follow unit root processes 

include Herrerías (2013), Li and Lin  (2013)) and Presno et al. (2018). In the same line, 

Jaunky (2011) shows that carbon dioxide emissions for high-income countries are integrated 

of order one, i.e. I(1). Yamazaki et al. (2014) also show that per capita CO2 emissions in 

OECD countries follow a unit root process.  

 Using fractional integration, Barros et al. (2016) study the global series of CO2 

emissions and the series of each of its five components (gas, liquids, solids, cement 

production and gas flaring), as well global per capita emissions for a long span of data. They 

empirically show that the series are nonstationary with orders of integration significantly 

above 1. However, Belbute and Pereira (2017), using a smilar methodology, conclude that the 

aggregate world CO2 emissions and its five components are stationary and mean reverting, 

though exhibiting long-term memory patterns.  

 Ecological Footprint (EF) is another environmental indicator that aroused the 

interest of researchers. Ulukak and Apergis (2018) investigate the convergence of the per 

capita ecological footprint using the club clustering methodological approach for the case of 

the EU countries; Jia et al., (2010) improve the forecasting capacity of the EF indicator with 

the standard AutoRegressive Integrated Moving Average (ARIMA) model; Solarin and Bello 

(2018) also showed the nonstationarity of EF. On the other hand, Ozcan et al. (2019), using 

unit root tests and SPSM procedures, find stationarity of EF for all high income countries and 

for about the half of the low-income and upper-middle income countries, while 

nonstationarity is found for the lower-middle income economies. 
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 Few studies have focused on the carbon footprint. We only found studies of the 

carbon footprint in research on EF analyzed in its components. Ulucak and Lin (2017) 

analyzed the stochastic behaviour of the EF and its components (carbon footprint, cropland, 

grazing land, forest products, built-up-land, and fishing grounds) for the U.S. Using Fourier 

unit root tests, they conclude that the cropland footprint and biocapacity are stationary, 

whereas the ecological footprint, carbon footprint, grazing land footprint, forest footprint, 

built-up land footprint, fishing grounds footprint, and ecological deficit are nonstationary. 

Yilanci et al. (2019), using a technique developed by Bahmani-Oskooee et al. (2014), study 

the unit root properties of the ecological footprint and its six components using panel data 

from 25 OECD countries for the time period 1961-2013. Their results indicate that five EF 

components show stationary properties, but the footprint of fishing grounds does not have 

mean-reverting behavior.  Solarin and Bello (2018) have provided evidence for 

nonstationarity of the Ecological Footprint, while Ozcan et al. (2019) conclude that the series 

is stationary. 

 From the above literature, something that is apparent is the last of consensus about the 

stationary/nonstationary nature of the CO2 emissions including carbon footprint. However, all 

except two of these works (Barros et al., 2016, and Belbute and Pereira, 2017) use techniques 

that characterizes the series as stationary I(0) or nonstationary I(1), not allowing for fractional 

degrees  of differentiation, which is the approach used in this work. As later explained, in 

Section 3.2, this method (fractional integration) is more general than the classical ones, 

including the I(0) and the I(1) models as particular cases of interest within this methodology. 

 

3. Data and methodology 

3.1 Carbon footprint 
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Carbon footprint is calculated by utilising several parameters, namely domestic electricity 

consumption and the combustion of fossil fuels, embodied carbon in traded items, a country’s 

contribution to the world’s international transport emissions and also non-fossil fuel sources 

of emissions (National Footprint Accounts, 2016). The total amount of CO2 emissions 

apportioned to a particular country is expressed in global hectares terms by using the 

footprint intensity of carbon. The carbon footprint is derived from the following: 

*(1 )
* *C OCEAN

C C
C

P S
CF EQF IYF

Y

−
= ,    (1) 

where CF is the carbon footprint of a country; CP  is the yearly anthropogenic CO2 emissions;

OCEANS  is the share of carbon that is taken by the oceans; CY  is the yield of the productive land 

that is needed to capture the CO2 emissions; CEQF  is an equivalence term for carbon as a land 

type. CIYF  is an adjustment term for temporal variations in yield from the forest. 

We generated the annual dataset of carbon footprint in per capita global hectares and 

its components from the database of the Global Footprint Network (2018). We concentrate on 

92 countries for the period 1961 to 2014 being the only countries which have a dataset 

available for the entire period.1 

 

3.2 Methodology 

As mentioned earlier, we use techniques based on fractional integration. For this purpose we 

need to define first an integrated of order 0 or I(0) process. We say that a given process {ut, t 

= 0, ±1, ...} is I(0) if the infinite sum of its autocovariances is finite. Within this group we can 

include the white noise and the stationary and invertible ARMA processes. Having said this, 

a process {xt, t = 0, ±1, ...} is integrated of order d (and denoted as I(d)) if taking its d-

differences the process becomes I(0). That is, 

 
1 See Appendix 1 for the abbrevations of the countries across the tables 
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where L is the lag operator (i.e., Lxt = xt-1); d can be any real value (and thus allowing for 

fractional values), and ut is I(0) as defined above. Then, the polynomial on the left hand side 

in (2) can be expressed in terms of its Binomial expansion, such that, for all real d: 
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In this context, d plays a crucial role, since it will be an indicator of the degree of dependence 

of the series. Thus, the higher the value of d is, the higher the level of association will be 

between the observations. These processes were introduced in the 80s by Granger (1980, 

1981), Granger and Joyeux (1980) and Hosking (1981) and the first applications with 

aggregate data appear in the 90s (Sowell, 1992; Baillie, 1996; Gil-Alana and Robinson, 1997; 

etc.). Nowadays, they are widely applied in many different disciplines including in 

environmental studies (Solarin et al., 2018; Barassi et al., 2018; etc.). Note that they are very 

flexible in the sense that depending on the value of d we can characterize different processes 

such as anti-persistence (d < 0), short memory or I(0) behaviour (d = 0); stationary long 

memory processes (0 < d < 0.5), nonstationary though mean reverting behaviour (0.5 ≤ d < 

1); unit roots or I(1) (d = 1) or even explosive models (d > 1). Moreover, d plays a crucial 

role in the determination of the nature of the shocks, noting that if d is smaller than 1 shocks 

will have a transitory nature contrary to what happens if d ≥ 1 where shocks will be 

permanent. 

 We estimate the differencing parameter d by using the Whittle function in the 

frequency domain (Dahlhaus, 1989). In particular, we use a testing approach developed by 
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Robinson (1994) that is very convenient in the context of the present paper. It is a Lagrange 

Multiplier (LM) test that is based on the following model, 

,...,2,1, =+= txzy tt
T

t      (3) 

where yt is the observed data, zt is a (kx1) vector of deterministic terms that might include for 

instance, an intercept and time trends, and the regressions errors xt are of the same for as in 

equation (1) and thus, potentially fractional. The tested null hypothesis is:  

 ,: 0ddHo =      (4) 

in (3) and (1) for any real value d0. As earlier mentioned, the test has several advantages: 

Firstly, it is valid for any real value d0, and thus, including stationary (d0 < 0.5) but also 

nonstationary (d0 ≥ 0.5) hypotheses, with no need of preliminary differencing in the latter 

case; also, the limiting distribution is standard normal, and thus, we do not need to rely on 

numerical values obtained by Monte Carlo simulation studies as is the case with most unit 

root procedures; moreover, this limit behaviour holds independently of the deterministic 

terms used in (3) and the way of modelling the I(0) disturbances ut in (1); finally, the test is 

the most efficient one in the Pitman sense against local departures from the null. The 

functional form of the test statistic can be found in Gil-Alana and Robinson (1997). 

 

4. Empirical results 

As a preliminary step in this section, we conduct standard unit root methods on the 92 series. 

We use Dickey and Fuller (ADF, 1979) and Elliot et al. (ERS, 1996) tests, and the results, 

though not reported, produced evidence in favour of unit roots in the majority of the cases. 

We start this empirical section by considering the following model, This, however, is not 

surprising, noting that these methods, along with others like Kwiatkowski et al., (KPSS, 

1992), Phillips and Perron (PP, 1988); Ng and Perron (NP, 2001) focus exclusively on the 

I(0)/I(1) dichotomy and do not consider fractional alternatives. Moreover, it is a well known 
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fact that all these unit root methods have extremely low power if the alternatives are of a 

fractional form. (See, e.g., Diebold and Rudebusch, 1991; Hassler and Wolters, 1994; Lee 

and Schmidt, 1996; etc.). Due to that, we start this section by considering the following 

model,  

,...,2,1,)1(, ==−++= tuxLxty tt

d

tt
o  (5) 

where yt is the time series we observe, α and β are the coefficients referring respectively to 

the intercept and the time trend, and d is the differencing parameter. 

Table 1 displays the estimated values of d (and the 95% confidence bands of the non-

rejection values of d using Robinson’s (1994) tests, under the three standard cases of i) no 

deterministic terms, ii) an intercept, and iii) an intercept with a linear time trend. We have 

marked in bold in the table the selected model for each series. 

[Insert Tables 1 and 2 about here] 

 We observe that the time trend is required in a number of cases (33 countries 

summarized in Table 3), while an intercept is sufficient to describe the deterministic part in 

the rest of the countries. Along with the estimated values of d, we also report the 95% 

confidence intervals of the non-rejection values of d using Robinson’s (1994) approach. 

Table 2 focusses on the estimated coefficients for each country. The second column displays 

the estimates of d, and columns 3 and 4 report the intercept and the time trend coefficients. 

A summary of the results is presented across Tables 3 and 4. In Table 3 we display the 

list of countries that show significant time trends. We observe that the highest coefficient 

corresponds to South Korea, followed by Malaysia, Austria and Israel. We have included in 

the table a column with a number referring to the income level: 1 for high income countries, 2 

for upper-middle income, 3 for lower-middle income, and 4 for low income countries. (See 

Appendix 2 for the classification of the countries). We observe in Table 3 that most of the 

countries displays time trends refers to categories 3 and 4.  
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[Insert Tables 3 and 4 about here] 

Table 4 summarizes the results in Table 2 in terms of the estimated values of d. We 

present the results grouped in three different categories. The first group refers to the countries 

belonging to the “mean reversion” case, i.e,. countries with an order of integration 

significantly smaller than 1; the second group refers to those countries showing evidence of 

unit roots, i.e., with orders of integration around 1; and the third group refers to countries 

with explosive behaviour and orders of integration significantly above 1. We observe that 

dealing with the “mean reverting“ countries, most of them belong to category 4 (low income 

countries), and just the opposite happens to the group of “explosive“ behaviour, with most 

countries belonging to category 1 (high income countries). Thus, it seems that the degree of 

persistence seems to be highly correlated with the income level of the countries, and those 

with the lowest income are related to lower degrees of persistence. 

 

5. Concluding comments 

In this paper we have examined the stationary/nonstationary properties of the carbon footprint 

emissions in a group of 92 countries for the time period 1961 - 2014. For this purpose, we 

have used techniques based on the concept of fractional integration which is more general 

than the standard methods based on integer degrees of differentiation (0 for stationarity and 1 

for nonstationarity). Allowing the order of integration to be fractional allows us to study 

cases of nonstationarity though with mean reverting behaviour if the differencing parameter 

is in the interval [0.5, 1).  

Our results reject the hypothesis of stationarity I(0) in all cases, but also the I(1) 

hypothesis is rejected in many countries, finding evidence of mean reversion (d < 1) in some 

countries, and evidence of explosive behaviour (d > 1) in others. Thus, the use of classical 

methods based on the strong I(0)/I(1) dichotomy may produce erroneous conclusions on the 
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properties of the series.  We show that only 25 out of the 92 countries show mean reversion, 

most of them belonging to lower-middle income (7) or low income (10) countries. The mean 

reversion in these countries implies that shocks to the carbon footprint are temporary. Carbon 

footprint will move back towards its initial mean or trend after experiencing a natural or 

economic shock. Hence, policy makers should not use excessive targets when the carbon 

footprint momentarily departs from the trend path as environmental management and 

conservation policies aimed at decreasing the carbon footprint do not have no durable effects. 

The internal dynamics of these economies will tend to offer some hindsight to revert back 

carbon footprint to its initial trend path. Hence, excessive interferences from the political 

authorities will be a misfit under this scenario.  

On the other extreme, the highest degrees of persistence are observed in high income 

countries. Economic or natural shock hitting carbon footprint will have long-lasting effects as 

carbon footprint not be able to move back to its original trend mean or path or after such 

shock.  

Thus, the authorities in these economies should introduce environmental programmes to 

decrease the footprint arising from the human activities. These strategies include the 

imposing of carbon tax to thwart carbon overuse and subsidies provision for the use of green 

energy sources. As the industrialized economies have developed better strategies to address 

the problems of carbon footprint; developing nations should imitate the steps that have been 

taken by the advanced nations. 

One of the limitations of this study is that we have not considered the other elements 

of ecological footprints. Beyond the carbon footprint, the aggregate ecological footprint has 

five more components, which include fishing grounds, cropland, forest land and built-up land 

grazing land footprints. Hence, future studies can take up the challenge of examining the 

persistence of the other subsets of ecological footprint, which will provide more insights on 
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ecological footprint dynamics for each country that has been covered in this paper.  In 

addition, the possibility of structural breaks is an issue that has not been considered in this 

work. This is relevant, noting that various authors have shown that fractional integration and 

structural breaks are intimately related (Dibold and Inoue, 2001; Granger and Hyung, 2004; 

etc.) and though many methods have been proposed in recent years (Sibbertsen, 2004; Gil-

Alana, 2008; Hassler and Meller, 2011; Shao, 2011; Hyang and Shin, 2018; etc.) this is 

something that will be examined in future papers. 
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Table 1: Estimates of d for each series 

Country No det. terms With an intecept With a linear trend 

AFG 1.18   (1.02,  1.42) 1.21   (1.03,  1.46) 1.21   (1.03,  1.47) 

ALB 1.04   (0.87,  1.30) 1.22   (1.04,  1.48) 1.22   (1.03,  1.48) 

ANG 1.07   (0.85,  1.37) 1.04   (0.78,  1.35) 1.05   (0.84,  1.35) 

ARG 0.97   (0.82,  1.18) 1.00   (0.81,  1.27) 1.00   (0.82,  1.27) 

AUS 0.87   (0.70,  1.10) 1.11   (0.90,  1.40) 1.11   (0.89,  1.39) 

AUSTRIA 0.81   (0.56,  1.09) 0.83   (0.67,  1.13) 0.83   (0.62,  1.13) 

BAR 0.59   (0.42,  0.87) 0.70   (0.59,  0.89) 0.68   (0.51,  0.89) 

BEL 0.99   (0.82,  1.22) 0.97   (0.80,  1.20) 0.98   (0.81,  1.19) 

BEN 1.04   (0.85,  1.37) 1.04   (0.86,  1.37) 1.04   (0.84,  1.38) 

BOL 0.67   (0.55,  0.82) 0.67   (0.57,  0.81) 0.62   (0.48,  0.80) 

BRA 1.10   (0.93,  1.32) 1.13   (0.93,  1.37) 1.13   (0.94,  1.37) 

BUR 0.70   (0.56,  0.87) 0.67   (0.51,  0.90) 0.66   (0.50,  0.90) 

BURK 0.94   (0.80,  1.17) 0.98   (0.82,  1.33) 0.97   (0.79,  1.36) 

CAM 1.07   (0.93,  1.29) 1.09   (0.92,  1.34) 1.08   (0.93,  1.33) 

CAN 1.01   (0.86,  1.23) 1.21   (1.02,  1.48) 1.20   (1.02,  1.45) 

CAR 0.71   (0.55,  0.94) 0.62   (0.47,  0.81) 0.62   (0.47,  0.81) 

CHAD 0.82   (0.70,  0.99) 0.79   (0.65,  0.96) 0.79   (0.67,  0.96) 

CHILE 0.90   (0.79,  1.06) 0.99   (0.86,  1.22) 0.99   (0.84,  1.24) 

CHINA 1.20   (1.11,  1.36) 1.48   (1.31,  1.76) 1.50   (1.35,  1.73) 

COL 1.03   (0.86,  1.26) 0.90   (0.52,  1.22) 0.93   (0.73,  1.21) 

CONGO 0.75   (0.63,  0.91) 0.70   (0.57,  0.87) 0.69   (0.57,  0.87) 

CORD 1.00   (0.87,  1.20) 1.00   (0.84,  1.23) 1.00   (0.84,  1.23) 

COSR 0.47   (0.34,  0.71) 0.55   (0.45,  0.71) 0.46   (0.29,  0.69) 

COTI 1.15   (1.02,  1.34) 1.17   (1.02,  1.39) 1.17   (1.02,  1.38) 
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Country No det. terms With an intecept With a linear trend 

CUBA 1.09   (0.94,  1.35) 1.26   (1.05,  1.62) 1.25   (1.05,  1.61) 

DOMR 0.88   (0.64,  1.20) 0.91   (0.71,  1.23) 0.90   (0.67,  1.23) 

DEN 1.07   (0.90,  1.33) 1.02   (0.85,  1.33) 1.02   (0.85,  1.31) 

ESAL 0.91   (0.77,  1.12) 0.92   (0.81,  1.12) 0.91   (0.77,  1.12) 

FIJ 0.79   (0.58,  1.04) 0.51   (0.36,  0.85) 0.65   (0.45,  0.90) 

FRA 0.98   (0.83,  1.18) 1.08   (0.90,  1.31) 1.08   (0.90,  1.30) 

GAM 0.72   (0.49,  1.20) 0.74   (0.61,  1.03) 0.74   (0.55,  1.03) 

GER 1.02   (0.88,  1.22) 1.10   (0.95,  1.33) 1.10   (0.95,  1.32) 

GHA 0.86   (0.73,  1.05) 0.84   (0.72,  1.04) 0.83   (0.69,  1.04) 

GRE 1.06   (0.88,  1.29) 1.11   (0.96,  1.30) 1.10   (0.96,  1.29) 

GUA 0.68   (0.59,  0.93) 0.80   (0.71,  1.03) 0.62   (0.33,  1.01) 

GUI 0.95   (0.80,  1.23) 0.92   (0.76,  1.23) 0.92   (0.76,  1.23) 

GUY 0.88   (0.76,  1.04) 0.86   (0.71,  1.07) 0.86   (0.71,  1.07) 

HAI 0.65   (0.45,  1.05) 0.68   (0.58,  0.88) 0.56   (0.34,  0.87) 

IND 1.23   (1.10,  1.44) 1.25   (1.16,  1.39) 1.29   (1.19,  1.43) 

INDO 0.83   (0.74,  1.06) 0.83   (0.76,  0.97) 0.75   (0.60,  0.98) 

ISR 0.50   (0.39,  0.84) 0.94   (0.71,  1.75) 0.90   (0.49,  1.78) 

ITA 1.01   (0.82,  1.27) 1.18   (1.02,  1.41) 1.17   (1.01,  1.39) 

JAP 1.09   (0.94,  1.29) 1.20   (1.03,  1.44) 1.18   (1.03,  1.41) 

JOR 0.88   (0.64,  1.22) 0.91   (0.71,  1.26) 0.90   (0.64,  1.26) 

KDPR 1.17   (1.04,  1.35) 1.23   (1.11,  1.40) 1.22   (1.10,  1.38) 

KEN 1.00   (0.85,  1.21) 0.98   (0.79,  1.24) 0.98   (0.81,  1.24) 

KOR 0.81   (0.73,  0.97) 0.85   (0.77,  1.01) 0.77   (0.60,  0.99) 

LAO 0.71   (0.45,  1.01) 0.51   (0.34,  0.86) 0.52   (0.26,  0.87) 

LEB 0.94   (0.73,  1.22) 1.02   (0.82,  1.30) 1.01   (0.83,  1.29) 

LIB 0.82   (0.66,  1.04) 0.77   (0.60,  1.03) 0.77   (0.59,  1.03) 

LUX 0.79   (0.63,  1.02) 0.72   (0.56,  0.93) 0.72   (0.57,  0.93) 

 

(cont.) 
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Country No det. terms With an intecept With a linear trend 

MAD 0.79   (0.63,  1.05) 0.49   (0.32,  0.81) 0.50   (0.31,  0.81) 

MAL 0.81   (0.72,  0.98) 0.82   (0.73,  0.98) 0.75   (0.60,  0.97) 

MALI 1.01   (0.88,  1.22) 0.99   (0.87,  1.18) 1.00   (0.86,  1.20) 

MALTA 0.83   (0.70,  1.01) 0.86   (0.74,  1.02) 0.86   (0.74,  1.02) 

MEX 0.34   (0.28,  1.01) 0.53   (0.46,  0.64) 0.33   (0.16,  0.55) 

MOZ 0.78   (0.67,  0.92) 0.75   (0.64,  0.90) 0.74   (0.63,  0.89) 

MYAN 1.59   (1.30,  1.93) 1.49   (0.59,  1.94) 1.45   (0.89,  1.93) 

NEP 0.82   (0.71,  0.98) 0.80   (0.70,  0.95) 0.77   (0.64,  0.95) 

NETH 0.92   (0.76,  1.15) 0.77   (0.58,  1.01) 0.79   (0.63,  1.01) 

NIC 0.76   (0.59,  0.98) 0.63   (0.49,  0.87) 0.66   (0.48,  0.88) 

NIG 0.92   (0.79,  1.09) 0.87   (0.73,  1.04) 0.88   (0.76,  1.04) 

NIGE 1.12   (0.87,  1.47) 1.21   (0.97,  1.57) 1.21   (0.96,  1.57) 

NOR 0.98   (0.82,  1.23) 0.96   (0.75,  1.24) 0.96   (0.75,  1.24) 

PAK 0.98   (0.76,  1.31) 1.04   (0.88,  1.30) 1.04   (0.86,  1.29) 

PAN 0.75   (0.50,  1.15) 0.87   (0.67,  1.21) 0.85   (0.57,  1.21) 

PAR 1.05   (0.82,  1.37) 1.14   (0.92,  1.43) 1.14   (0.91,  1.43) 

PER 1.10   (0.96,  1.30) 1.06   (0.89,  1.28) 1.06   (0.91,  1.28) 

PHI 1.12   (0.92,  1.45) 1.23   (1.04,  1.53) 1.22   (1.03,  1.51) 

POL 1.02   (0.88,  1.25) 1.17   (1.01,  1.45) 1.17   (1.01,  1.44) 

POR 1.18   (1.02,  1.40) 1.26   (1.22,  1.45) 1.25   (1.11,  1.44) 

ROM 1.27   (1.10,  1.56) 1.50   (1.27,  1.93) 1.48   (1.27,  1.90) 

RWA 1.13   (0.96,  1.37) 1.16   (0.97,  1.44) 1.17   (0.97,  1.45) 

SAINL 0.77   (0.58,  1.08) 0.87   (0.72,  1.14) 0.86   (0.68,  1.14) 

SILE 0.87   (0.71,  1.10) 0.74   (0.55,  1.05) 0.73   (0.51,  1.05) 

 

(cont.) 
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Country No det. terms With an intecept With a linear trend 

SOM 0.69   (0.54,  0.89) 0.61   (0.46,  0.82) 0.63   (0.49,  0.83) 

SPA 1.16   (0.96,  1.42) 1.28   (1.12,  1.49) 1.27   (1.12,  1.48) 

SRI 1.00   (0.84,  1.33) 0.89   (0.80,  1.04) 0.88   (0.77,  1.06) 

SWE 1.01   (0.87,  1.21) 0.97   (0.81,  1.18) 0.97   (0.82,  1.18) 

SWI 0.93   (0.76,  1.17) 1.02   (0.80,  1.38) 1.02   (0.82,  1.37) 

SYR 0.84   (0.62,  1.11) 0.95   (0.79,  1.16) 0.95   (0.77,  1.16) 

THA 1.10   (0.92,  1.41) 1.14   (0.95,  1.46) 1.15   (0.92,  1.47) 

TOGO 0.76   (0.67,  0.90) 0.78   (0.69,  0.92) 0.73   (0.61,  0.90) 

TUN 0.65   (0.58,  0.78) 0.73   (0.66,  0.83) 0.51   (0.33,  0.74) 

TUR 0.64   (0.57,  0.83) 0.72   (0.64,  0.83) 0.51   (0.35,  0.74) 

UGA 1.14   (1.01,  1.33) 1.13   (0.99,  1.32) 1.13   (0.99,  1.33) 

UK 0.93   (0.77,  1.16) 0.97   (0.78,  1.23) 0.97   (0.77,  1.23) 

US 1.00   (0.85,  0.23) 1.19   (1.02,  1.46) 1.19   (1.02,  1.43) 

VEN 0.86   (0.71,  1.06) 0.89   (0.74,  1.07) 0.89   (0.75,  1.07) 

VIE 1.24   (1.11,  1.48) 1.26   (1.13,  1.49) 1.27   (1.14,  1.50) 

YEM 0.64   (0.51,  0.86) 0.62   (0.51,  0.78) 0.56   (0.42,  0.76) 

ZIM  0.86   (0.73,  1.05) 0.81   (0.68,  0.99) 0.81   (0.68,  0.99) 

The values in parenthesis are the 95% confidence bands for the values of d where the null hypothesis (4)  

cannot be rejected. The values  in bold refers to the selected specification for the deterministic terms. 
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Table 2: Estimated coefficients for the selected models 

Country d (95% band) Intecept (t-value) Time trend (t-value) 

AFG 1.21   (1.03,  1.46) 0.02644   (1.97) --- 

ALB 1.22   (1.04,  1.48) 0.50001   (6.52) --- 

ANG 1.07   (0.85,  1.37) --- --- 

ARG 1.00   (0.81,  1.27) 0.82184   (9.83) -- 

AUS 1.11   (0.90,  1.40) 2.99857   (17.55) --- 

AUSTRIA 0.83   (0.62,  1.13) 1.66004   (8.65) 0.04418   (3.02) 

BAR 0.68   (0.51,  0.89) 0.59954   (2.48) 0.03705   (3.09) 

BEL 0.97   (0.80,  1.20) 3.32139   (13.40) --- 

BEN 1.04   (0.84,  1.38) 0.04484   (2.41) 0.00578   (1.97) 

BOL 0.62   (0.48,  0.80) 0.01626   (0.37) 0.01187   (6.25) 

BRA 1.13   (0.93,  1.37) 0.25536   (6.13) --- 

BUR 0.67   (0.51,  0.90) 0.02049   (7.16) --- 

BURK 0.97   (0.79,  1.36) 0.01343   (1.57) 0.00202   (1.87) 

CAM 1.09   (0.92,  1.34) 0.05207   (5.10) -- 

CAN 1.21   (1.02,  1.48) 3.15515   (17.31) -- 

CAR 0.62   (0.47,  0.81) 0.03496   (5.31) -- 

CHAD 0.79   (0.67,  0.96) 0.01107   (3.21) 0.00039   (1.71) 

CHILE 0.99   (0.86,  1.22) 0.58876   (5.05) -- 

CHINA 1.48   (1.31,  1.76) 0.29708   (7.10) -- 

COL 0.93   (0.73,  1.21) 0.34728   (12.66) 0.00659   (2.26) 

CONGO 0.69   (0.57,  0.87) 0.12441   (3.00) 0.00358   (1.69) 

CORD 1.00   (0.84,  1.23) 0.06897   (9.11) -- 

COSR 0.46   (0.29,  0.69) 0.30438   (3.19) 0.01474   (4.59) 

COTI 1.17   (1.02,  1.39) 0.08873   (4.32) -- 

 

(cont.) 
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Country d (95% band) Intecept (t-value) Time trend (t-value) 

CUBA 1.26   (1.05,  1.62) 0.74495   (9.77) -- 

DOMR 0.90   (0.67,  1.23) 0.19877   (3.35) 0.01323   (2.32) 

DEN 1.02   (0.85,  1.33) 3.18747   (12.04) -- 

ESAL 0.92   (0.81,  1.12) 0.15120   (4.13) -- 

FIJ 0.65   (0.45,  0.90) 0.27340   (3.23) 0.01106   (2.83) 

FRA 1.08   (0.90,  1.31) 2.12479   (12.62) -- 

GAM 0.74   (0.55,  1.03) 0.05678   (2.39) 0.00344   (2.49) 

GER 1.10   (0.95,  1.33) 2.57611   (10.41) -- 

GHA 0.83   (0.69,  1.04) 0.14931   (5.43) 0.00416   (1.98) 

GRE 1.11   (0.96,  1.30) 0.53227   (2.69) -- 

GUA 0.62   (0.33,  1.01) 0.46490   (3.32) 0.05961   (9.84) 

GUI 0.92   (0.76,  1.23) 0.07101   (5.24) -- 

GUY 0.86   (0.71,  1.07) 0.70241   (5.28) -- 

HAI 0.56   (0.34,  0.87) 0.03958   (5.36) 0.00175   (6.15) 

IND 1.29   (1.19,  1.43) 0.08776   (10.00) 0.00918   (2.70) 

INDO 0.75   (0.60,  0.98) 0.02670   (1.37) 0.01049   (9.04) 

ISR 0.90   (0.49,  1.78) 1.21613   (5.27) 0.04081   (1.84) 

ITA 1.18   (1.02,  1.41) 0.99786   (7.19) -- 

JAP 1.20   (1.03,  1.44) 1.14822   (7.23) -- 

JOR 0.91   (0.71,  1.26) 0.46316   (4.68) -- 

KDPR 1.23   (1.11,  1.40) 0.62001   (4.93) -- 

KEN 0.98   (0.79,  1.24) 0.11235   (11.53) -- 

KOR 0.77   (0.60,  0.99) 0.12811   (0.67) 0.07966   (6.61) 

LAO 0.52   (0.26,  0.87) 0.05959   (4.35) 0.00140   (2.82) 

LEB 1.02   (0.82,  1.30) 0.67929   (3.99) -- 

LIB 0.77   (0.60,  1.03) 0.12384   (3.02) -- 

LUX 0.72   (0.56,  0.93) 10.93938   (15.70) -- 

 

(cont.) 
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Country d (95% band) Intecept (t-value) Time trend (t-value) 

MAD 0.49   (0.32,  0.81) 0.06107   (8.00) -- 

MAL 0.75   (0.60,  0.97) -0.02357   (-0.15) 0.05109   (5.59) 

MALI 1.00   (0.86,  1.20) 0.02546   (3.98) 0.00248   (2.85) 

MALTA 0.86   (0.74,  1.02) 0.70984   (1.82) -- 

MEX 0.33   (0.16,  0.55) 0.49074   (4.37) 0.02424   (6.99) 

MOZ 0.75   (0.64,  0.90) 0.09055   (4.29) -- 

MYAN 1.49   (0.59,  1.94) 0.04760   (5.17) -- 

NEP 0.77   (0.64,  0.95) 0.00664   (0.64) 0.00330   (5.02) 

NETH 0.77   (0.58,  1.01) 2.60961   (7.81) -- 

NIC 0.66   (0.48,  0.88) 0.17621   (4.62) 0.00497   (2.75) 

NIG 0.88   (0.76,  1.04) 0.02684   (3.87) 0.00109   (1.75) 

NIGE 1.21   (0.97,  1.57) 0.04228   (1.94) -- 

NOR 0.96   (0.75,  1.24) 2.10637   (5.02) -- 

PAK 1.04   (0.86,  1.29) 0.08604   (8.32) 0.00460   (2.83) 

PAN 0.87   (0.67,  1.21) 0.29917   (2.30) -- 

PAR 1.14   (0.92,  1.43) 0.13417   (3.28) -- 

PER 1.06   (0.89,  1.28) 0.12691   (2.96) -- 

PHI 1.23   (1.04,  1.53) 0.13652   (6.09) -- 

POL 1.17   (1.01,  1.45) 2.26959   (13.28) -- 

POR 1.26   (1.22,  1.45) 0.33385   (3.22) -- 

ROM 1.50   (1.27,  1.93) 0.93291   (8.14) -- 

RWA 1.16   (0.97,  1.44) 0.01014   (2.31) -- 

SAINL 0.86   (0.68,  1.14) 0.27613   (2.14) 0.01972   (1.82) 

SILE 0.74   (0.55,  1.05) 0.10701   (6.81) -- 

 

(cont.) 
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Country d (95% band) Intecept (t-value) Time trend (t-value) 

SOM 0.61   (0.46,  0.82) 0.03824   (5.53) -- 

SPA 1.28   (1.12,  1.49) 0.77370   (5.52) -- 

SRI 0.88   (0.77,  1.06) 0.18125   (5.97) 0.00843   (3.09) 

SWE 0.97   (0.81,  1.18) 2.51348   (9.57) -- 

SWI 1.02   (0.80,  1.38) 2.44581   (12.03) -- 

SYR 0.95   (0.79,  1.16) 0.21104   (2.69) -- 

THA 1.10   (0.92,  1.41) -- -- 

TOGO 0.73   (0.61,  0.90) 0.03501   (1.67) 0.00437   (3.68) 

TUN 0.51   (0.33,  0.74) 0.05873   (1.58) 0.01892   (14.28) 

TUR 0.51   (0.35,  0.74) 0.20972   (3.19) 0.03110   (13.24) 

UGA 1.13   (0.99,  1.32) 0.01584   (2.78) -- 

UK 0.97   (0.78,  1.23) 3.84158   (20.32) -- 

US 1.19   (1.02,  1.46) 5.09345   (19.97) -- 

VEN 0.89   (0.75,  1.07) 0.24906   (1.44) 0.02986   (1.86) 

VIE 1.26   (1.13,  1.49) 0.07068   (2.91) -- 

YEM 0.56   (0.42,  0.76) 0.11249   (2.31) 0.00599   (3.20) 

ZIM  0.81   (0.68,  0.99) 0.36168   (6.63) -- 

The values in parenthesis in the second column are the values of d where the null hypothesis cannot be rejected 

at the 5% level. The values in parenthesis in the third and fourth columns are the corresponding t-values. Thus, 

values above 1.645 indicate significance at the 5% level. 
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Table 3:  List of countries with significant time trend coefficients 

Country Economic group 

Development 
Estimated time trend 

South Korea 1  0.07966   (6.61) 

Guadeloupe  1 0.05961   (9.84) 

Malaysia 2 0.05109   (5.59) 

Austria 1 0.04418   (3.02) 

Israel 1 0.04081   (1.84) 

Barbados 1 0.03705   (3.09) 

Turkey 2 0.03110   (13.24) 

Venezuela 2 0.02986   (1.86) 

Mexico 2 0.02424   (6.99) 

Saint Lucia 2 0.01972   (1.82) 

Tunisia 3 0.01892   (14.28) 

Costa Rica 

 

2  0.01474   (4.59) 

Dominican Rep. 2 0.01323   (2.32) 

Bolivia 3 0.01187   (6.25) 

Fiji 2 0.01106   (2.83) 

Indonesia 3 0.01049   (9.04) 

India 3 0.00918   (2.70) 

Sri Lanka 3 0.00843   (3.09) 

Colombia 2 0.00659   (2.26) 

Yemen 3 0.00599   (3.20) 

Benin 4 0.00578   (1.97) 

Nicaragua 3 0.00497   (2.75) 

Togo 4 0.00460   (2.83) 

Ghana 3 0.00437   (3.68) 

Pakistan 3 0.00416   (1.98) 

Congo 3 0.00358   (1.69) 

Gambia 4 0.00344   (2.49) 

Nepal 4 0.00330   (5.02) 

Mali 4 0.00248   (2.85) 

Burkina Faso 4 0.00202   (1.87) 

Haiti 4 0.00175   (6.15) 

Laos 3 0.00140   (2.82) 

Niger 4 0.00109   (1.75) 

Chad 4 0.00039   (1.71) 
The values in parenthesis in the third and fourth  REMOVE !!!colums are the corresponding t-values. 

Values above 1.645 indicate significance at the 5% level. 
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Table 4: Classification of countries according to the estimates of d 

Evidence of I(d, d < 1) Evidence of I(1) - UR Evidence of I(d, d > 1) 

(Mean Reversion) (Unit root behaviour) (Explosive behaviour) 

Mexico (0.33) 

Costa Rica (0.46) 

Madagascar (0.49) 

Tunisia, Turkey (0.51) 

Laos (0.52) 

Haiti, Yemen (0.56) 

Somalia (0.61) 

Nicaragua (0.66) 

Barbados (0.68) 

Bolivia, Central African 

Republic (0.62) 

Fiji (0.65) 

Burundi (0.67) 

Congo (0.69) 

Luxembourg (0.72) 

Togo (0.73) 

Indonesia, Malaysia, 

Mozambique (0.75) 

Korea, Nepal (0.77) 

Chad (0.79) 

Zimbawe (0.81) 

Guadeloupe (0.62) 

Gambia, Sierra Leone 

(0.74) 

Liberia, Netherlands (0.77) 

Austria, Ghana (0.83) 

Guyana, Malta, Saint 

Lucia (0.86) 

Panama (0.87) 

Niger, Sri Lanka (0.88) 

Venezuela (0.89) 

Dominican Republic, 

Israel (0.90) 

Jordan (0.91) 

El Salvador, Guinea (0.92) 

Colombia (0.93) 

Syria (0.95) 

Norway (0.96) 

Belgica, Burkina Faso, 

Sweden, U.K. (0.97) 

Kenya (0.98) 

Chile (0.99) 

Argentina, Democratic 

Rep. of Congo, Mali 

(1.00) 

Denmark, Lebanon, 

Switzerland (1.02) 

Benin, Pakistan (1.04) 

Peru (1.06) 

Angola (1.07) 

France (1.08) 

Cameroon (1.09) 

Germany, Thailand (1.10) 

Australia, Greece (1.11) 

Brazil, Uganda (1.13) 

Paraguay (1.14) 

Rwanda (1.16) 

Nigeria (1.21) 

Myanmar (1.49) 

 

Cote d’Ivoire, Poland 

(1.17) 

Italia (1.18) 

U.S. (1.19) 

Japan (1.20) 

Afganistan, Canada (1.21) 

Albania (1.22) 

North Korea, Phillippines 

(1.23) 

Cuba, Portugal, Vietnam 

(1.26) 

Spain (1.28) 

India (1.29) 

China (1.48) 

Romania (1.50) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Countries in group 1:     4 

Countries in group 2:     4 

Countries in group 3:     7 

Countries in group 4:    10 

Countries in group 1:     15 

Countries in group 2:     13 

Countries in group 3:     11 

Countries in group 4:     11 

Countries in group 1:      7 

Countries in group 2:      4  

Countries in group 3:      4 

Countries in group 4:      2 
This classification is based on the statistical significance provided by the confidence bands in Table 2. 
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Appendix 1: Abbrevations of countries 

AFG = Afganistan 

ALB = Albania 

ANG = Angola 

ARG = Argentina 

AUS = Australia 

AUSTRIA = Austria 

BAR = Barbados 

BEL = Belgium 

BEN = Benin 

BOL = Bolivia 

BRA = Brazil 

BUR = Burundi 

BURK = Burkina Faso 

CAM = Cameroon 

CAN = Canada 

CAR = Central Africa Rep. 

CHAD = Chad 

CHILE = Chile 

CHINA = China 

COL = Colombia 

CONGO = Congo 

CORD = Dem. Rep. Congo 

COSR = Costa Rica 

COTI = Cote d‘Ivorie 

CUBA = Cuba 

DOMR = Dominican Rep. 

DEN = Denmark 

ESAL = El Salvador 

FIJ = Fiji 

FRA = France 

GAM = Gambia 

GER = Germany 

GHA = Ghana 

GRE = Greece 

GUA = Guadeloupe 

GUI = Guinea 

GUY = Guyana 

HAI = Haiti 

IND = India 

INDO = Indonesia 

ISR = Israel 

ITA = Italia 

JAP = Japan 

JOR = Jordan 

KDPR = Korean Dem. P. Rep. 

KEN = Kenya 

KOR = Korea 

LAO = Laos 

LEB = Lebanon 

LIB = Liberia 

LUX = Luxembour 

MAD = Madagascar 

MAL = Malaysia 

MALI = Mali 

MALTA = Malta 

MEX = Mexico 

MOZ = Mozambique 

MYAN = Myanmar 

NEP = Nepal 

NETH = Netherlands 

NIC = Nicaragua 

NIG = Niger 

NIGE = Nigeria 

NOR = Norway 

PAK = Pakistan 

PAN = Panama 

PER = Peru 

PHIL = Phillippines 

POL = Poland 

POR = Portugal 

ROM = Romania 

RWA = Rwanda 

SAINL = Saint Lucia 

SILE = Sierra Leone 

SOM = Somalia 

SPA = Spain 

SRI = Sri Lanka 

SWE =  Sweden 

SWI = Switzerland 

SYR = Syria 

THA = Thailand 

TOGO = Togo 

TUN = Tunisia 

TUR = Turkey 

UGA =  Uganda  

UK = United Kingdom 

US = United States 

VEN = Venezuela 

VIE = Vietnam 

YEN = Yemen  

ZIM = Zimbawe 
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Appendix 2: Classification of countries according to the income level 

High income           

(1) 

 

Upper-middle 

income    (2) 

Lower-middle 

income    (3) 

Low income              

(4) 

Australia 

Austria 

Barbados 

Belgium 

Canada 

Chile 

Denmark 

France 

Germany 

Greece 

Guadaeloupe 

Israel 

Italy 

Japan 

Korea 

Luxembourg 

Malta 

Netherlands 

Norway 

Poland 

Portugal 

Spain 

Sweden 

Switzerland 

UK 

US 

 

 

 

Albania 

Argentina 

Brazil 

China 

Colombia 

Costa Rica 

Cuba 

Dominican Rep. 

Fiji 

Guyana 

Lebanon 

Malaysia 

Mexico 

Panama 

Paraguay 

Peru 

Romania 

Saint Lucia 

Thailand 

Turkey 

Venezuela 

Angola 

Bolivia 

Cameroon 

Congo 

Cote d’Ivorie 

El Salvador 

Ghana 

India 

Indonesia 

Jordan 

Kenya 

Laos 

Myanmar 

Nicaragua 

Nigeria 

Pakistan 

Phillipinnes 

Sri Lanka 

Syria 

Tunisia 

Vietnam 

Yemen 

Afganistan 

Benin 

Burkina Faso 

Burundi 

Central African Rep. 

Chad 

Congo Dem. Rep. 

Gambia 

Guinea 

Haiti 

Korean Dem. Pop. R. 

Liberia 

Madagascar 

Mali 

Mozambique 

Nepal 

Niger 

Rwanda 

Sierra Leone 

Somalia 

Thogo 

Uganda 

Zimbawe 

 

 

 

 

 

 

 

 

 

 

 


