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Abstract: 

The interaction between surfaces and biological elements, in particular, proteins is critical for 

the performance of biomaterials and biosensors. This interaction can be controlled by 

modifying the surface in a process known as biofunctionalization. In this work, the enzyme 

lactate dehydrogenase (LDH) is used to study the stability of the interaction between a 

functional protein and amine-functionalized surfaces. Two different functionalization 

procedures were compared: Activated Vapour Silanization (AVS) and Immersion Silanization 

(IS). Adsorption kinetics is shown to follow the Langmuir model for AVS-functionalized 

samples, while IS-functionalized samples show a certain instability if immersed in an aqueous 

medium for several hours. In turn, the enzymatic activity of LDH is preserved for longer times 

by using glutaraldehyde as crosslinker between the AVS biofunctional surface and the enzyme. 

1. Introduction. 

The interaction between materials and biological systems depends critically on processes that 

occur at their interface. This interaction is especially relevant for biomaterials, since it 

determines the fate of the implant inside the organism[1-3]. In this regard, it is assumed that 

the type and state (native or denatured) of the adsorbed proteins on the surface immediately 

after implantation and their subsequent recognition by specific cell lineages [2] determines the 

response of the organism to the material. In addition to its relevance for controlling the 

biocompatibility of biomaterials, the adequate interaction between surfaces and biological 

moieties is also essential in fields such as biosensors [4,5] and for the development of drug 

delivery systems[6,7]. 

One of the basic approaches that intends to exert a tight control on the molecular events 

developing at the interface is the chemical modification of the material surface, a process 

known as biofunctionalization [8,9]. Surface biofunctionalization is typically performed through 
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the deposition of functional groups on the surface of the material that, in most cases, allows 

the covalent binding between the material and selected biological molecules. 

Among the main biofunctionalization techniques, the attachment to the surface of amino 

groups (-NH2) by exposing the material to organometallic moieties is one of the most 

commonly used. The organometallic 3-aminopropylethoxysilane (APTES) is very often used as 

source of amines. In particular, biofunctionalization by silanization [10-12] implies the 

formation of siloxane bonds (Si-O-Si) between hydroxyl (-OH) groups present at the surface 

and hydrolyzed organometallic molecules that carry the amino group. This technique is mostly 

performed in solution (immersion silanization, IS), and requires the presence of free hydroxyl 

groups at the surface that can react with the organometallic molecules. In order to increase 

the density of –OH groups on the surface, immersion in an acid solution (such as HF-

isopropanol) is commonly used in a step known as activation [13,14]. However, silanization 

processes tend to be very sensitive to the initial activation step, as well as to different 

environmental conditions, such as humidity, which leads to a relatively low reproducibility of 

the functional film properties [15], and even to the formation of aggregate structures 

(colloids). 

In this work, the use of an alternative biofunctionalization technique, Activated Vapour 

Silanization (AVS) [16-18], is explored for creating a reliable interface between the material 

and the biological system. AVS combines vapour silanization with chemical vapour deposition 

(CVD) and allows an accurate control on the properties of the functionalized materials. In 

particular, it has been found that the surface roughness and surface amine concentration of 

the AVS functionalized samples can be controlled by varying the deposition conditions [19]. 

Since successful biofunctionalization implies that the biological molecules must preserve their 

function, both techniques (IS and AVS) are assessed by studying their interaction with the 

enzyme lactate dehydrogenase (LDH) in terms of the adsorption kinetics, amount and activity 

of the adsorbed protein. An important difference is detected between both functionalized 

surfaces, since AVS layers are shown to remain stable in an aqueous buffer at longer times 

than IS layers. The activity of the protein is further extended on AVS layers if glutaraldehyde is 

used as crosslinker between the surface and the enzyme. 

2. Materials and Methods 

2.1. Sample Preparation  

Functionalization was performed on (100), p-type, one side polished, silicon samples with an 

area of ≈0.6 cm2. Before functionalization, silicon samples were cleaned by subsequent 

sonication in acetone and isopropanol, 2 minutes in each solvent, and dried with argon.  

2.2. Immersion Silanization (IS) 

Before functionalization, silicon samples were immersed for 10 minutes in an HF-isopropanol 

(10%) solution in order to remove the native oxide layer of the silicon (surface activation). The 

samples were then immersed in 1% (v/v) of 3-aminopropyltriethoxysilane (APTES, 

NH2(CH2)3Si(OC2H5)3, Sigma-Aldrich) in toluene, previously heated at 103 ºC, for 30 minutes. 

The samples were subsequently sonicated after functionalization in acetone and isopropanol, 

2 minutes in each solvent, and dried with argon. 

2.3. Activated Vapor Silanization (AVS) 



A detailed description of the AVS process can be found elsewhere[17,18].Briefly, APTES is 

placed in a low vacuum chamber and evaporated at a controlled evaporation temperature 

(Tevap). The vapor is transported by an Ar flux and activated at high temperature (Tact) before 

impinging on the silicon samples that are placed in the deposition chamber. Previous 

works[19] have demonstrated that biofunctional layers with optimum properties on silicon are 

obtained with deposition parameters: Tevap= 150 0C, Tact =750 0C, PAr= 1 mbar and 20 minutes 

deposition time. After functionalization, the samples were subsequently sonicated in acetone 

and isopropanol, 2 minutes in each solvent, and dried with argon. 

2.4. Enzyme immobilization 

Lactate dehydrogenase (LDH) adsorption: The amine functionalized films (by either IS or AVS) 

were immersed in 1 ml of Tris-HCl buffer (0,1M; pH 6,8) for one hour for surface passivation. 

Subsequently, surfaces were incubated with 600 µl of bovine muscle LDH (EC 1.1.1.27; PM = 

36598 Da; Sigma-Aldrich) with different concentrations (1-80 µg/ml) in Tris-HCl buffer (0.1M; 

pH = 6.8) for different times (15 min - 24 hours). After incubation, the samples were washed 

with 1 ml of Tris-HCl buffer solution.  

Lactate dehydrogenase (LDH) immobilization with glutaraldehyde: AVS functionalized 

samples were immersed for 3 hours in 1 ml of phosphate buffer saline ( PBS, 1x, pH = 7.5) for 

surface passivation. Later, samples were incubated for 4 hours in 1 ml of glutaraldehyde 

(OHC(CH2)CHO; Sigma-Aldrich), diluted in PBS at a concentration of 2,5 %. Subsequently, 

samples were washed for 1 hour with 1 ml of PBS buffer and, finally, incubated for 24 hours 

with 600 µl of bovine muscle LDH (EC 1.1.1.27; Sigma-Aldrich) at a concentration of 50µg/ml in 

PBS buffer. 

2.5. Enzymatic Assay 

Enzymatic Assay: LDH catalyzes the reaction: 

Pyruvate + NADH (Nicotinamide adenine dinucleotide) +H+ ↔ Lactate + NAD+   

(Equation 1) 

The substrates were immersed in 500 µl (Vassay) of Tris-HCl (0,1M; pH 7,1) containing 2,9 mM 
pyruvate and 5,7 mM NADH. The reaction was monitored by a Dynamica Halo RB-10 
Spectrophotometer, using a 1 cm length (l) glass cuvette. For each measurement, 30 µl of 
supernatant (Vsample) were diluted in 970 µl of 2,9 mM pyruvate solution in Tris-HCl buffer 
(Vcuvette= 970 µl +30 µl ) and absorbance at 340 nm (OD340) was measured. Note that Vassay will 
decrease 30 µl after each measurement. The amount of LDH adsorbed was estimated from the 
variation of NADH concentration in the solution (µmol) versus time, following equation 2: 

LDH (mg)= (µmol NADH/min)/U  (Equation 2) 

Where U is the specific activity of the enzyme. U was experimentally characterized 
immediately before starting each enzymatic test, since an ageing effect was observed on LDH, 

with values of U varying from 225,2 to 117,3 
        

          
. 

In turn, the NADH moles for each time were obtained from the following expression[19]: 

      µmol NADH (tn)= 
                   

   
    

           

       
  

(Equation 3) 



where n is the number of previous measurements (i.e. n=0 for the first measurement) and Ɛ is 

the molar extinction coefficient of NADH at 340 nm (=6,22 mM-1 cm-1). Combining equation 2 
and 3 allows calculating the amount of functional protein on the surface. 

2.6. Protein adsorption 

The Langmuir model was used to model the protein adsorption on the functionalized surfaces. 

Following this model, the surface is represented as a lattice, with a certain number of effective 

nodes or positions that can be occupied by protein molecules. The total number of effective 

nodes of the surface corresponds to the Maximum Superficial Density (MSD). The Langmuir 

model assumes that a specific Superficial Density (SD) at equilibrium is reached for each 

concentration of LDH in the solution if the system is allowed to reach equilibrium.  

The rate of adsorption ,
       

  
, for a specific concentration of LDH is assumed to be 

proportional to the difference between the protein adsorbed at a given time (SD(t)) and the 

Superficial Density at equilibrium (SDE), and its evolution is described by equation 4: 

      

  
               (Equation 4) 

Solution of equation 4 under the initial condition SD(0)=0 yields: 

SD(t)= SDE × (1-         (Equation 5) 

where k is the kinetic constant with unit minutes-1. 

If the system is allowed to reach equilibrium, Langmuir model predicts that at a given 

temperature the coverage of the surface will be given by the equation:  

 

Ɵ=
                               

                           
 

       

         
 

(Equation 6) 

Where  is constant at a given temperature and depends on the energy involved in the 

adsorption process. 

2.7. Characterization of the functionalized layers 

The functionalized layers were characterized by atenuated total reflectance infrared 

spectroscopy (ATR), field emission scanning electron microscopy (FESEM) and fluorescence 

microscopy. A Nicolet iS5 infrared spectrometer, coupled to an iD5 ATR accessory, was used to 

characterize the biofunctional layers. The spectral range measured was 550-4000cm-1, and 30 

scans were taken for each measurement with 4 cm-1 resolution. FESEM images were obtained 

with an Auriga Zeiss field-emission scanning electron microscope at observation conditions 

V=4.0 kV. Secondary emission electrons were observed. Fluorescence was measured with a 

Leica DFC340FX microscope. Observation conditions: 20x objective, exposition time=425,5 ms, 

gain=2,6 and gamma=1,18. A non-functionalized silicon substrate was used as control. Samples 

were incubated for 20 min in a solution that contained 1mg/ml of fluorescein isothiocyanate 

(FITC) in a phosphate buffer saline (PBS) solution. After incubation, the samples were 

sonicated twice in PBS for 5 min. 

 



3. Results and Discussion: 

The morphology and density of reactive amines of both types of biofunctional layers are 

shown in Figure 1. IS samples show some typical colloidal structures (figure 1A), as found in 

previous works[20]. In contrast, a flat and featureless surface is observed in AVS samples. 

Figure 1B shows the cross-sectional view of an AVS sample. The density of amino groups is 

higher in the AVS sample as shown by the higher fluorescence intensity (Figure 1 D), compared 

with the IS samples (Figure 1C) 

Adsorption kinetics 

The adsorption kinetics of LDH on both substrates was characterized by incubating the samples 

with a 50 µg/ml LDH solution in Tris-HCl buffer for times ranging from 15 to 24 hours. Results 

are shown in Figure 2, for AVS (A) and for IS (B) functionalized samples. For AVS, the 

theoretical fitting calculated from Equation 5 is also included. The values obtained from the 

fitting are SDE=5.5×1015 molecules/m2 and k=0.0069 min-1. In contrast, adsorption kinetics on 

IS functionalized surfaces does not show a monotonous behavior. A maximum is observed 

after 30 minutes of incubation (1,2×1016 molecules/m2) followed by a significant decrease of 

the surface density of active LDH. These results suggest that the IS layers might be unstable 

after several hours immersed in a buffer.  

 

The possible instability of the IS samples was checked by ATR spectroscopy. For that purpose, 

the following samples were characterized: i) silicon substrate (control), ii) as-deposited IS 

functionalized sample and iii) IS functionalized sample after immersion in Tris-HCl (0,1M; pH 

6,8) for 24 hours. The FTIR spectra are shown in Figure 3. It can be observed that the 

representative adsorption bands of silanized surfaces (Si-O-Si, of polymerized APTES at 

1000/1250 cm-1 and =NH2/NH3
+ at 1500/1750 cm-1) are only present in the as-deposited 

functionalized sample[21]. After immersion in Tris-HCl (0,1M; pH 6,8), the sample shows the 

same spectrum as that of the silicon reference. This result supports that the IS functional layer 

was removed during immersion, which justified the behavior observed in Figure 2. 

 

LDH adsorbed as a function of the LDH concentration 

The amount of LDH adsorbed on IS and AVS functionalized surfaces as a function of the LDH 

concentration in solution was measured by incubating the surfaces with increasing LDH 

concentrations ranging from 1 to 80 µg/ml. Incubation time was fixed to 2 hours in order to 

characterize the adsorption on the IS despite their instability at longer immersion times, 

although this time does not allow the system to reach a state of complete equilibrium. The 

adsorbed functional LDH detected for each concentration is represented in figure 4.  

On both surfaces, the concentration of adsorbed protein steadily increases with increasing 

concentration of LDH until saturation is approximately reached at a concentration of about 

5×1023 molecules/m3. The maximum amount of adsorbed protein (MSD), is higher on IS 

functionalized samples, although it could be an effect of its rougher surface compared with the 

AVS layer. Despite their differences, the order of magnitude of the maximum protein adsorbed 

on both functional layers is comparable to the theorical value of an LDH monolayer (1.27x1016 

molecules/cm2), that is obtained by assuming an average diameter of 10 nm for each LDH 

molecule. 



Covalent immobilization of LDH 

The assessment of the immobilization of LDH on the functional surfaces using glutaraldehyde 

as crosslinker was undertaken only on the AVS layers, due to the instability of the IS layers. As 

shown in Table 1, the initial surface density obtained for the sample incubated with 

glutaraldehyde was 3.9 x 1015 molecules/m2, although this value might include contributions 

from both adsorbed and covalently bound proteins. This value is comparable to the protein 

quantified on the sample incubated without glutaraldehyde under the same experimental 

conditions (2.5 x 1015 molecules/m2) , which serves as a control of the protein adsorbed with 

PBS buffer (all previous studied were performed with a Tris-HCl buffer). Both initial surface 

densities are in the range of the values obtained with the Tris-HCl buffer, which indicates that 

the change of buffer does not affect significantly the LDH adsorption or its enzymatic activity. 

As shown in Table 1, only the samples incubated with 2.5% glutaraldehyde were shown to 

keep their enzymatic activity at 8 h and 24 h which indicates the increased stability of LDH on 

the AVS functionalized layer upon addition of this crosslinking agent. 

 

4. Conclusions 

In this work, the immobilization of a functional protein on AVS and IS functionalized surfaces 

was investigated using lactate dehydrogenase (LDH) as a model protein. In particular, the 

kinetics of the process and the stability of the protein on the functionalized layers was 

assessed. Adsorption kinetics for AVS functionalized samples is shown to follow the theoretical 

Langmuir adsorption model, while the behavior observed for IS functionalized samples is more 

erratic and suggests that the functional layer is unstable in liquid media at long immersion 

times, as subsequently confirmed by ATR FTIR spectroscopy. The stability of the LDH on the 

AVS functionalized samples is increased by using glutaraldehyde as crosslinker. Addition of 

glutaraldehyde allows the detection of LDH activity even after 24 hours of immersion in a 

buffer. In summary, AVS biofunctional layers show a high potential for immobilizing proteins 

for different applications, such as implants or biosensors, while preserving the biological 

activity of the moieties. 
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Figure Captions 

Figure 1: A) FESEM plan view of an IS functionalized sample. B) FESEM cross section of a functionalized 

AVS sample. The marker  corresponds to 400 nm for both micrographs.  Representative fluorescence 

images of an IS (C) and AVS (D) samples. The inset corresponds to the fluorescence image of the silicon 

substrate without biofunctional layer used as control. 

 

Figure 2: Surface Density quantified by enzymatic assay at different incubation times (minutes) with a 

solution of 50 g/ml of LDH for AVS (A) and IS (B) functionalized surfaces. In figure A, the theoretical 

fitting using equation 5 with values SDE=5,5x10
15 

molecules/m
2
 and k=0.0069 min

-1
 is also shown. 

 

Figure 3:  FTIR ATR spectra silicon samples functionalized by immersion silanization, either as-

deposited (IS as deposited) or after immersion (IS immersed) for 24 hours in Tris-HCl (0,1M; pH 

6,8). The spectrum of silicon is used as control for comparison. 

 

Figure 4.  Surface concentration (molecules/m2) of active LDH adsorbed on the functionalized 

surfaces as a function of the incubation LDH concentration (molecules/m3) for both IS (solid 

circles) and AVS (open squares) samples. 

 

 



 

Immersion time (hours) AVS 

1015 molecules/m2 

AVS+2.5% glutaraldehyde 

1015 molecules/m2 

0 2.8 3.9 

8 0 2.7 

24 0 1.3 

 

Table 1. Active LDH detected after immersion in PBS buffer for different times of either LDH 

adsorbed on AVS layers (AVS) or LDH exposed to the AVS layer in the presence of a crosslinker 

(AVS-2.5% glutaraldehyde). 

 

 

Table 1
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