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Abstract  

This paper analyzes the dynamics of U.S. lithium mining companies, the lithium industry 

and West Texas Intermediate (WTI) crude oil prices using a Fractional Cointegration 

Vector AutoRegressive model (FCVAR model) and a Continuous Wavelet Transform 

(CWT) for its resolution. The results indicate evidence of a negative relationship between 

FMC Corp with Albermale and SQM stock prices. These results are similar if we analyze 

the risk based on the beta term structure of each company. Analyzing the fractional 

differencing parameter for the stock prices and their logs, we observe that they are very 

persistent, and there are no long-term deviations in the stock prices. The same happens 

when analyzing the beta term structure. Based on Continuous Wavelet Transform (CWT) 

methods, our results show that lithium mining companies and the lithium industry are 

weakly correlated with WTI crude oil prices at higher frequencies (short-run) and persist 

through the sample period. At lower frequencies (long-term) the time series reached a 

high level of dependence between late 2012 to mid 2016, concluding that the lithium 

mining companies and the lithium industry reflect and foreshadow the responsiveness of 

the WTI crude oil prices during the period mentioned above. 
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1. Introduction 

Oil and lithium are two commodities that represent current and expected future energy 

supply, respectively. Since the late 19th century, the dominant source of energy has been 

that which has powered vehicles, from steam to gasoline to electrical power (see 

Anderson and Anderson, 2010). Most of the world liquid fuel is in the transport sector, 

and according to IPCC (2007), this sector produces 70% of total greenhouse gases. The 

interest in adopting renewables energies to stem the increase in global warming and 

climate change is increasing in recent years, especially in the automotive sector.  

The Paris agreement, ratified by many countries around the world, including ten 

OPEC member countries has endeavoured to focus on energy storage and electric 

mobility. That is why lithium and its industry play a fundamental role, given that lithium 

is the fundamental metal in the production of batteries for electric vehicles (EVs). The 

interest in increasing the use of electric vehicles to the detriment of combustion vehicles 

to achieve the aforementioned climate objectives, makes us think about an energy 

transition that may bring about residual use or the near disappearance of fossil fuels, at 

least in the transport sector. 

According to Schurr and Netschert (1960), two energy transitions have occurred 

in the US; the first when the use of coal overtook that of wood as a source of fuel in 1895, 

with 65% of coal versus 30% of wood, and the second, four and a half decades later 

involving oil and gas, when coal represented 28 percent and oil and gas 65%. In a recent 

paper, Cherif and Hasanov (2017) argue that, as in the previous cases, the same could 

happen to oil with renewable energies in relation to the transport sector in the next 10 to 

25 years. 

[Figure 1 about here] 
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Figure 1 is related to the statement made by Hao et al. (2016) where the increase 

in global demand for electric vehicles results in an increase in lithium consumption. We 

see in the figure that 56% of global end-use lithium markets are used to for batteries. The 

arguments cited above may have an impact on the crude oil prices due to the technological 

transition process and climate policy implications (Nakicenovic, 1986; Sovacool, 2016; 

Fouquet, 2016, among others). There are other authors who argue that the use of fossil 

energies can still persist thanks to the effect and production of shale oil in the United 

States (see Fouquet, 2010). Monge et al. (2017) showed that there was a structural change 

with the appearance of shale oil in January 2004. They also studied the behaviour of 

production and prices of shale oil, finding evidence of mean reversion during the pre-

break period and lack of it after the break.  PwC (2016) predicts moderate growth of 

vehicle sales for North America while emerging markets are expected to exhibit a steeper 

sales growth in light vehicles over the next decade. The new regulations, subsidies and 

technological advances are expected to increase the sale of electric cars, counteracting 

the impact of oil prices on the automobile industry. 

To answer the question about what type of relationship exists between the lithium 

industry and how it affects crude oil prices, we have made a short review of the 

literature.There are several studies focusing on the metal industry and the movement of 

prices. Ciner (2001) examines the long-run trend in gold and silver contracts traded on 

the Tokyo Commodity Exchange using cointegration methods, concluding that each 

should be approached as separete markets. Dooley and Lenihan (2005) analyzed future 

lead and zinc prices using ARIMA models. Auer (2015) used GARCH models to 

investigate precious metal markets focused on gold, silver, palladium and platinum, 

finding evidence of time-varying skewness and kurtosis in precious metals returns. Labys 

et al. (1998), using a Weibull test of cyclical duration for discovered cycles and a 
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structural time series method, analyzed short-term prices for aluminum, copper, gold, 

lead, nickel, silver, tin, tungsten, and zinc. Rossen (2015) explored the long- and short-

run cyclical behaviour of 20 monthly price series of a variety of mineral commodities 

such as copper, lead, tin, zinc, chromium, cobalt, manganese, etc. in the last 100 years, 

concluding that metal prices increase more strongly in a shorter period than they fall and 

they do not necessarily follow similar patterns. Sari et al. (2010) studied how gold, silver, 

platinum, palladium, oil prices and the U.S. dollar/euro exchange rate co-move and 

transmit information, finding a weak long-run equilibrium relationship, but strong 

feedbacks, in the short-run. Apergis et al. (2014), using a FAVAR model concluded that 

the price transmission across precious metal markets, stock markets, and the 

macroeconomy is substantial. Mo and Jeon (2018) examined cobalt, lithium, nickel and 

manganese prices with EV demand using the Vector Error Correction Model (VECM) 

method, finding that evidence of EV demand is important in short-run dynamics of cobalt 

and lithium prices. Other research papers in this context include Freitas and Da Silva 

(2013) and Martin et al. (2017), among others. Berthelsen and Arteaga (2016) studied the 

relationship between oil prices, lithium prices and electric vehicle growth using a VECM 

approach. They conclude that the most robust model was that in which the target equation 

was the lithium prices, showing that there is a long run relationship between the variables. 

They also concluded that causality is mostly from EV sales and oil prices towards lithium 

prices. 

Following the research line initiated by Monge and Gil-Alana (2018, 2019, 2020) 

and Gil-Alana and Monge (2019), to our knowledge, this is the first research paper which 

endeavours to analyze the impact of the lithium industry on the crude oil price in the U.S. 

and to determine what kind of relationship exists between them in the long run. To do so, 

first we analyze their statistical properties measuring the degree of persistence by using 
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fractional integration techniques and examing the long-term relationship of the three most 

important lithium mining stocks, which are Albemarle, SQM (Sociedad Química y 

Minera de Chile) and the FMC Corporation1 that operates on the New York Stock 

Exchange (NYSE), and their beta term structure using the Fractional Cointegration VAR 

(FCVAR) model proposed in Johansen and Nielsen (2010, 2012). Finally, we use 

methodologies based on Continuous Wavelet Transform (CWT) such as those in 

Davidson et al. (1997), Yousefi et al. (2005), Connor and Rossiter (2005), Vacha and 

Barunik (2012), Monge and Gil-Alana 2020, among others, to analyze structural changes 

in WTI crude oil prices caused by the U.S. and Chile lithium mining companies, which 

represent 46% of the market2, and the lithium industry represented by Solactive Global 

Lithium Index in the time frequency domain. For this purpose we have used daily, weekly 

and monthly data. 

The rest of the paper is organized as follows. Section 2 describes the data and 

presents the methodology applied in the paper. In Section 3 we discuss the main empirical 

results, while Section 4 concludes the paper. 

 

2. Data and methodology 

2.1 Dataset 

The choice of our dataset of lithium companies is based on the fact that they are among 

the largest lithium mining companies per market capitalization, market share and are 

listed in the stock markets. This criterion ensures that the chosen firms will be among the 

largest players on the market and their stocks will be highly liquid. Following this 

criterion, our final dataset includes the three largest U.S. lithium companies, namely, 

 
1 FMC’s decision to spin out and rename its lithium business Livent Corporation in 2018 means FMC is now focused on agricultural 
products. 
2 Information related to market share was obtained from IG for 2019 (https://www.ig.com/uk/trading-strategies/what-are-the-best-

lithium-stocks-to-watch--200824). 
 

https://www.ig.com/uk/trading-strategies/what-are-the-best-lithium-stocks-to-watch--200824
https://www.ig.com/uk/trading-strategies/what-are-the-best-lithium-stocks-to-watch--200824
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Albemarle, FMC Corp and SQM. Table 1 describes the market capitalization and market 

share of the selected companies. 

[Insert Table 1 about here] 

We use daily data due to the richer information provided (see Bannigidadmath and 

Narayan, 2016; Pal and Mitra, 2019). Other frequencies such as weekly or monthly have 

also been used in this analysis. The dataset is obtained from Thomson Reuters Eikon 

database and covers the period from 16th July 2010 to 14th March 20193. Data are 

expressed in US dollars.4 

We use the exchange index (New York Stock Exchange) to calculate the daily, weekly 

and monthly beta of each company5. According to Momcilovic, et al. (2014) there are no 

statistically significant differences between betas calculated on the basis of daily, weekly 

and monthly return intervals, something we also show in the present work. For the lithium 

industry, we use the Solactive Global Lithium Index and to represent crude oil prices in 

the United States we use WTI crude oil prices.  

 

2.2.  Unit roots methods 

There exist many different ways of testing for unit-roots. The most common ones are 

those of Fuller (1976) and Dickey and Fuller (1979), the ADF tests. They are 

asymptotically optimal when the data are stationary. Other unit root methods are those 

proposed in Phillips and Perron (PP, 1988), Kwiatkowski et al. (KPSS, 1992) and Elliot 

et al. (ERS, 1996) and more recently by Ng and Perron (NP, 2001) and others. The unit 

 
3 The reason to use the selected time period is that according to Kilian (2016) and Monge et al (2017), in March 2014, the United 

States economy produced on average 8.2 million of barrels/day (mbd) and imported 7.3 mbd. Thus, from this date, United States 

displaced the Arab oil producing countries and with their crude oil exports (see Kilian, 2017), became a net exporter. This is an 
interesting reason to see how the lithium industry, linked to the manufacture of batteries for hybrid and electric cars, affects the price 

of WTI oil. According to BP (2017), most of the world liquid fuel is employed in the transport sector. 

 
4 The data that support the findings of this study are available from the authors upon request. 

 
5 We have calculated the beta term as the division between the covariance of the return on the asset and the market, divided by the 
variance of the return on the market. 
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root methods were later extended to the fractional case by authors such as Gil-Alana and 

Robinson (1997) and numerous authors have found the low power of classical unit root 

tests if the alternatives are of a fractional form (Diebold and Rudebusch, 1991; Hassler 

and Wolters, 1994; Lee and Schmidt, 1996; etc.). The natural generalization of fractional 

integration to the multivariate case refers to the concept of fractional cointegration also 

presented below. 

 

2.3. ARFIMA (p, d, q) model 

We employ in this research long memory methods based on fractional integration, where 

the number of differences required to render a series I(0) stationary is fractional. 

Following a mathematical notation, given a time series 𝑥𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1, 2, …, it is said to 

be integrated of order d (and denoted as 𝑥𝑡 ≈ 𝐼(𝑑)) if 

(1 − 𝐿)𝑑𝑥𝑡 = 𝑢𝑡 ,        𝑡 = 1, 2, …,                          (1) 

where 𝑑 can be any real value, 𝐿 is the lag-operator (𝐿𝑥𝑡 = 𝑥𝑡−1) and 𝑢𝑡 is I(0), defined 

as a covariance stationary process with a spectral density function that is positive and 

finite at the zero frequency. Thus, 𝑢𝑡 may display some type of time dependence of the 

weak form, i.e., the type of an Autoregressive Moving Average (ARMA) form such that, 

for example, if 𝑢𝑡 is ARMA (p, q), xt is said to be ARFIMA (p, d, q). 

Depending on the value of the parameter d, several specifications based on (1) can 

be observed. The process would be short memory or I(0) when 𝑑 = 0 in (1). This occurs 

because 𝑥𝑡 = 𝑢𝑡. The high degree of association between observations which are far 

distant in time receives the name of long memory and occurs when 𝑑 > 0. Within this 

last assumption, the process is still covariance stationary if 𝑑 < 0.5 and the 

autocorrelations decay hyperbolically fast. An interpretation that we can make on the 

value of d is that a process presents mean reversion with shocks disappearing in the long 
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run if d is smaller than 1. In contrast to the above, shocks are expected to be permanent 

when 𝑑 ≥ 1. 

Although there are several procedures to estimate the degree of long memory and 

fractional integration (see Geweke & Porter-Hudak, 1983; Phillips, 1999, 2007; Sowell, 

1992; Robinson, 1994: 1995; etc.). We base our results on the maximum likelihood 

procedure (see Sowell, 1992) and use Akaike information criterion (AIC, Akaike, 1973) 

and Bayesian information criterion (BIC; Akaike, 1979) to select the right ARFIMA 

model. 

 

2.4. Fractional Cointegrated VAR 

Johansen (2008) introduced a method to check for a multivariate fractional cointegration 

model denominated Fractionally Cointegrated Vector AutoRegressive (FCVAR), and 

Johansen and Nielsen (2010, 2012) expanded it. It is a step forward on the Cointegrated 

Vector AutoRegressive model (Johansen, 1996), named CVAR, and it allows for series 

which are integrated of order d and that cointegrate with order d - b, with b > 0. To 

introduce the FCVAR model, we should start first by refering to the non-fractional CVAR 

model. 

Let 𝑌𝑡, 𝑡 = 1, … , 𝑇 be a p-dimensional I(1) time series. The CVAR model is:  

Δ𝑌𝑡 = 𝛼𝛽′𝑌𝑡−1 + ∑ Γ𝑖
𝑘
𝑖=1 Δ𝑌𝑡−𝑖 + 𝜀𝑡 = 𝛼𝛽′𝐿𝑌𝑡 + ∑ Γ𝑖

𝑘
𝑖=1 Δ𝐿𝑖𝑌𝑡 + 𝜀𝑡. (1) 

To derive the FCVAR model we must replace the difference and lag operators  by ∆𝑏 and 

𝐿𝑏 = 1 − ∆𝑏, respectively. We then obtain: 

∆𝑏𝑌𝑡 =  𝛼𝛽′𝐿𝑏𝑌𝑡 + ∑ Γ𝑖
𝑘
𝑖=1 Δ𝐿𝑏

𝑖 𝑌𝑡 + 𝜀𝑡,   (2) 

which is applied to 𝑌𝑡 = ∆𝑑−𝑏𝑋𝑡 such that 

    ∆𝑑𝑋𝑡 =  𝛼𝛽′𝐿𝑏∆𝑑−𝑏𝑋𝑡 + ∑ Γ𝑖
𝑘
𝑖=1 Δ𝑏𝐿𝑏

𝑖 𝑌𝑡 + 𝜀𝑡,   (3) 
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where 𝜀𝑡 is p-dimensional independent and identically distributed, with mean zero and 

covariance matrix Ω. From the CVAR model we can interpret the parameters. Thus 𝛼 and 

𝛽 are 𝑝 × 𝑟 matrices, where 0 ≤ 𝑟 ≤ 𝑝. The columns of 𝛽 are the cointegrating 

relationships in the system, that is to say the long-run equilibria. Γ𝑖 is the parameter that 

governs the short-run behaviour of the variables. The coefficients in 𝛼 represent the speed 

of adjustment responses to deviations from the equilibria and the short-run dynamics of 

the system. 

Matlab computer programs, provided by Nielsen and Popiel (2018) for the calculation 

of estimators and test statistics in the FCVAR model, have been employed in numerous 

empirical papers (Baruník and Dvořáková, 2015; Maciel, 2017; Aye et al., 2017; 

Dolatabadi et al., 2018; Jones, Nielsen and Popiel, 2018; Gil-Alana and Carcel, 2018; 

etc.). 

 

2.5. Wavelet Analysis 

The wavelet methodology is used to analyse time series in the time-frequency domain. 

Following Vacha and Barunik (2012), Aguiar-Conraria and Soares (2011, 2014), 

Dewandaru et al. (2016), Tiwari et al. (2016), Jammazi et al. (2017), and others who apply 

Continuous Wavelet Transform (CWT) in finance and economics research, two tools are 

used in this paper: wavelet coherency and wavelet phase-difference.  

There are various reasons for using this methodology: first, stationarity is not a 

requirement to carry out a wavelet analysis and, second, it is interesting to study the 

interaction of both the time and the frequency domains of the time series themselves to 

find evidence of the potential changes in its pattern. Kyrtsou et al. (2009) presented 

evidence showing that several energy markets display consistent non-linear 

dependencies. Based on their analysis, the authors call for non-linear methods to analysis 
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the impact of oil shocks. Wavelet analysis is one such method. We should also note that 

wavelets have already proven to be insightful when studying business cycles 

synchronizations, e.g. see Aguiar-Conraria and Soares (2014) and Crowley and Mayes 

(2008). In addition, the economic time series are an aggregation of components operating 

on different frequencies and we need the frequency information because the most 

distinguished information is hidden in the frequency content of the signal. Finally, the 

application of the usual cross-correlation to investigate statistical relationships between 

two multifractal time series often produces misleading results. (see Zhou 2008; Podobnik 

and Stanley 2008; Gu and Zhou 2010; Jiang and Zhou 2011). 

The wavelet coherency plot is a two-dimensional diagram that correlates time 

series and identifies hidden patterns or information in the domain of time and frequency.  

The 𝑊𝑇𝑥(𝑎, 𝜏) of a time series 𝑥(𝑡), that is obtained by projecting a mother wavelet ψ, 

is defined as: 

 𝑊𝑇𝑥(𝑎, 𝜏) = ∫ 𝑥(𝑡)
1

√𝑎
𝜓∗ (

𝑡−𝜏

𝑎
) 𝑑𝑡

+∞

−∞
,   

where 𝑊𝑇𝑥(𝑎, 𝜏) are the wavelet coefficients of 𝑥(𝑡); the position of a wavelet in the 

frequency domain is defined by a, and  is the position in the time domain. Thus, the 

wavelet transform provides information concurrently on time and frequency by mapping 

the original series onto a function of  and a. The Morlet wavelet has been chosen as a 

mother wavelet to carry out our analysis since it is a complex sine wave within a Gaussian 

envelope, and thus we will be able to measure the synchronism between time series. (see 

Aguiar-Conraria and Soares, 2014 for the properties of this wavelet). 

To understand the interaction and the integration between the two series we use 

the wavelet coherence defined as: 

𝑊𝐶𝑂𝑥𝑦 =
𝑆𝑂(𝑊𝑇𝑥(𝑎,𝜏)𝑊𝑇𝑦(𝑎,𝜏)∗)

√𝑆𝑂(|𝑊𝑇𝑥(𝑎,𝜏)|2)𝑆𝑂(|𝑊𝑇𝑦(𝑎,𝜏)|
2

)

 , 
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where SO is a smoothing operator in both time and scale. Without the smoothing operator, 

the wavelet coherency would always be one for all times and scales (see Aguiar-Conraria 

et al. (2008) for details). Matlab computer programs for the calculation of estimators and 

test statistics in the CWT are provided in Aguiar-Conraria’s website6. 

 

3. Empirical Results 

We start the analysis by performing the three standard unit root tests outlined in Section 

2. We select the Augmented Dickey-Fuller test (ADF), Phillips and Perrron (PP, 1988) 

and Kwiatkowski et al. (KPSS, 1992) to examine the statistical properties of the original 

series and its differences to obtain robust results. Table 2 displays the results, which 

suggest that the original data are nonstationary I(1) in the original values and thus I(0) 

stationary in its first differences. 

[Insert Table 2 about here] 

Identical results are obtained if other more updated unit root methods are used, 

such as those mentioned in the previous section.  Employing the fractional integration 

approach, Table 3 displays the results of the ARFIMA (p, d, q) models.7  

[Insert Table 3 about here] 

We observe in Table 3 that the results are very similar for the three data 

frequencies used (daily, weekly or monthly). We observe that the behaviour of the beta 

of the company FMC supports the I(1) hypotheis, while the betas of the companies 

Albermarle and SQM are I(d; d < 1), implying fractional integration and a mean reverting 

behaviour, with shocks having temporary effects and disappearing by themselves in the 

long run. 

 
6 https://sites.google.com/site/aguiarconraria/joanasoares-wavelets 
7 The configurations that we have made of the ARFIMA model have been "(0, d, 0)", "(1, d, 0)", "(2, d, 0)", "(0, d, 1)", "(0, d, 2)", 

"(1, d, 1)", "(1, d, 2)", "(2, d, 1)", "(2, d, 2)". The selection criteria have been the AIC and BIC. 
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The next step is to calculate the FCVAR model proposed by Johansen and Nielsen 

(2012), this is the classical CVAR model extended to fractional integration in order to 

contrast the possible existence of persistence in the spread. Considering that an overly 

long lag length could distort the data and lead to a decrease in the estimation power, we 

have followed Jones, Nielsen and Popiel (2014) by using a lag value 𝑘 = 3. We also 

follow two additional elements in the specification of the FCVAR model: the 

deterministic components and the cointegration rank (𝑟). In this paper, we impose d = b 

in equation (3).  

[Insert Table 4 about here] 

Table 4 displays the estimated parameters. Panels I – III refer to the daily data; 

Panels IV – VI to weekly and VII – IX to monthly data. We observe from Panels I and II 

that the values of the fractional differencing parameter of this cointegrating structure are 

0.980 (0.024) and 0.985 (0.024) respectively for the unlogged and logged data, meaning 

that the series are clearly non-stationary and close to I(1).7 Note that since we impose d = 

b in the model, the residuals must be I(0) and thus, cointegration errors are mean 

reverting, meaning that in the long term there are no deviations in the stock prices. On 

the other side, Panel III shows us the fractional differencing parameter of the beta term 

structure is 0.828 (0.013), implying a smaller degree of integration but still in the 

nonstationary region, though now being mean reverting. Using weekly and monthly data 

the results are similar to the daily case and we cannot reject the hypothesis of I(1) in any 

of the panels examined in Table 4. Thus, we find the same behaviour again, regardless of 

the time frequency used for the calculation. 

In order to check whether the strength of correlation and co-movement have 

varied before and after the crisis period we also test the existence of possible structural 

 
7 These results are in line with the literature (see for example Baruník & Dvoráková, 2015) in which the asset prices are considered 
integrated of order 1, i.e. I(1). 



13 

 

breaks in crude oil prices, following Pal and Mitra (2018). For this purpose, we use Perron 

and Vogelsan (1992) and Bai and Perron (2003) approaches for detecting breaks in the 

data. In addition, Gil-Alana’s (2008) method, which extends the previous methods to the 

fractional case was also employed. The results were almost identical in the three cases. 

The break dates, for the daily case are reported in the third colum of Table 5 where 

we observe 5 structural breaks, identified at the following periods: 02.11.2011; 

26.06.2013; 27.11.2014; 13.05.2016, and 02.11.2017  

[Insert Table 5 about here] 

Next we perform the FCVAR analysis for each of the subsamples according to the 

breaks displayed in Table 5. The results are presented in Tables 6, 7 and 8, respectively 

for the stock prices, logged stock prices and the beta term. 

[Insert Tables 6, 7 and 8 about here] 

            The first thing we observe is that the results are very similar for the stock prices 

and logged stock prices, and the unit root null hypothesis of d = b = 1 cannot be rejected 

in the first, second, third and last (xixth) subsamples, while it is rejected in favour of 

smaller degrees of integration in the fourth and fifth subsamples. For the betas, the degree 

of integration is smaller in all cases increasing sharply during the last two subsamples. 

This variability in the behaviour in the analyzed periods could be caused by the high 

instability and by the number of data used in the analysis. 

Next we examine how the price of oil (WTI) affects the behaviour of each 

company dedicated to lithium mining and then the behaviour of the lithium industry in 

general. Figures 2 - 5 display the wavelet coherency and the phase difference for the stock 

prices of each of the U.S. lithium mining companies that together represent 53% of the 

market, and WTI crude oil prices in daily frequency data, showing evidence of varying 

dependence between both time series across different frequencies and over time. 
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The left panel (a) displays the wavelet coherency between each U.S. lithium 

mining company, including the Solactive Global Lithium Index and WTI crude oil prices. 

Frequencies are shown on the vertical axis, from scale 1 (a single day) up to scale 512 

(approximately two market years), whereas time is shown in the horizontal axis, from the 

beginning to the end of the sample period. The statistical significance of local correlations 

in the time-frequency domain was evaluated using Monte Carlo simulations. The regions 

surrounded by the black contour are the high coherence regions with significant values at 

5%, which are the obtained outcomes.  

This analysis presents regions in time-frequency space where two time series are 

highly dependent, plotting those regions with cooler colors and plotting less dependence 

using warmer colors. The right panel has the phase differences: on the top (b) is the phase 

difference in the 1.5-31.5 frequency band for daily data; at the bottom (c) is the phase 

difference in the 32-512 frequency band for daily data. The frequency band helps to 

understand the movement of both time series, one in relation to the other. 

[Insert Figure 2 about here] 

Analyzing the wavelet coherency between the stock prices of the firm Albemarle 

and WTI crude oil prices (in Figure 2), we appreciate that the time series were weakly 

related at the short-time (higher frequencies) and this weakness persists throughout the 

sample period. However, at lower frequencies, WTI crude oil prices dependence on the 

lithium industry increased. In the case of the first examined firm, Albemarle, the level of 

dependence starts in late 2012, reaching high levels of dependence centered at lower 

frequencies (from 240 to 275 days) in the year 2015. In the same year, 2015, the degree 

of dependence changed, reaching high levels of dependence in the same lower 

frequencies (from 48 to 96 days) in early 2016. After 2016 dependence for both the short 

and the long run dissipated. 
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Focusing now on the phase difference during the period of dependence, between 

0 and 𝜋/2, the correlation of the series is positive, and they move together, suggesting 

that the WTI crude oil prices are lagging behind the Albemarle stock prices. 

[Insert Figure 3 about here] 

In the case of the FMC Corporation stock prices versus WTI oil prices and 

analyzing the wavelet coherency between the two (in Figure 3), we can conclude by 

saying that the level of dependence starts in early 2014, reaching high levels of 

dependence centered at lower frequencies (from 64 to 128 days) in mid-2016. Analyzing 

the phase difference during the period of dependence, the same pattern is seen as with the 

other security: the correlation of the two series suggests that WTI crude oil prices are 

influencing FMC stock prices in mid-2015. 

[Insert Figure 4 about here] 

Finally, analyzing Figure 4 which corresponds to SQM stock prices and WTI oil 

prices and analyzing the wavelet coherency between the two, we observe that the level of 

dependence in this case occurs at lower frequencies than in the other two cases. The 

highest level of dependence occurred in 2015 centered at lower frequencies, from 48 to 

67 days. Analyzing the phase difference, we conclude that the correlation of the two time 

series suggests that WTI crude oil prices are influencing FMC stock prices by early-2015. 

Figure 5 displays the wavelet coherency and the phase difference for the daily 

prices of Solactive Lithium Index and WTI crude oil prices, showing evidence of varying 

dependence between the two time series across different frequencies and over time. 

[Insert Figure 5 about here] 

Analyzing the wavelet coherency between Solactive Global Lithium Index and 

WTI crude oil prices, we notice that the time series were weakly related at higher 

frequencies and this weakness persisted throughout the sample period. However, at lower 
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frequencies, WTI crude oil prices dependence on lithium industry increased. The level of 

dependence starts in early 2014, reaching high levels of dependence centred at lower 

frequencies (from 48 to 70 days) in the year 2015. After 2015 dependence for both the 

short and the long run dissipated. The phase difference during the period of dependence 

is between 0 and 𝜋/2, the correlation of the series is positive, and they move together, 

suggesting that the WTI crude oil prices are lagging behind the lithium industry. The 

policy and prices of alternative fuels and vehicles could be behind this result. A process 

of technological transition could very well upend the oil sector, suggesting that alternative 

energy sources and storage such as lithium could produce oil demand to peak. 

Identical results using this wavelet approach were obtained when using data with 

weekly and monthly frequencies and they are not reported in the paper though are 

available from the authors upon request. 

These results are in line with the statement made by Cherif and Hasanov (2017) 

about the third energy transition and renewable energies in relation to the transport sector, 

in which 35% of all new cars by 2040 will be powered by electricity bringing about the 

next oil crisis (see Randall, 2016). Finally, BP (2020) ruled in its report that the liquid 

fuel demand is dominated by the electrification of transport thanks in part to the lithium 

industry that is causing falls in the demand for transport fuel in the developed world of 

around 90%. 

 

4. Concluding comments 

We have examined in this article the interconnections between lithium mining companies 

in the U.S. and their beta risk, the lithium industry and WTI crude oil prices. In doing so 

we have investigated what type of relationship exists between them in the long run in 

order to know if lithium is really a substitute for oil. 
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For this purpose, we have selected the largest lithium mining companies listed in 

the U.S. per market capitalization, market share and which are listed in the stock markets, 

calculating daily, weekly and monthly betas for each one. Finally, to analyze the lithium 

industry and crude oil prices, we have used Solactive Lithium Index and West Texas 

Intermediate crude oil prices, respectively. On the other hand, we have also used 

ARFIMA (p, d, q) models to measure the degree of persistence and calculate the 

differencing parameter of each series. Using three different time frequencies (daily, 

weekly and monthly) we get the same results, in which the behaviour of the beta of the 

company FMC supports the unit root or I(1) hypothesis, while the betas of the companies 

Albermarle and SQM are I(d, d < 1), implying fractional integration and mean reverting 

behaviour, with shocks having temporary effects and disappearing in the long run. 

Using the Fractional Cointegration Vector AutoRegressive (FCVAR) approach 

we find evidence of cointegration and thus in the long term there should not be any 

deviations in the stock prices. The same results are obtained when using data for the beta 

term structure though the order of integration is then found to be slightly smaller. 

Perfoming tests for structural breaks, five breaks were found in the three series 

and though there is some instability across the subsamples, the FCVAR approach was 

supported for the stock prices and logged stock prices with orders of integration around 

1 and being lower in case of the beta series. 

Finally, we have used Continuous Wavelet Transform (CWT) techniques to study 

the main components of the stock prices of lithium mining companies, the lithium 

industry and WTI crude oil prices in the time-frequency space. The common result 

obtained in this work is that, for the cases of stock prices of lithium mining companies 

and the lithium industry with WTI, crude oil prices have the same behaviour, with the 

relationship between these time series weakly related at higher frequencies (short-run) 
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and the weakness persisting throughout the sample period. Also, at lower frequencies 

(long-term), WTI crude oil prices dependence on lithium securities and the lithium 

industry increased, on average, in late 2012, reaching the highest levels of dependence in 

the year 2016. After this, the dependence dissipated. Analyzing the phase difference, we 

can conclude that the lithium mining companies and the lithium industry reflect and 

foreshadow the responsiveness of the WTI crude oil prices during the period mentioned 

above. Similar results were obtained when we use weekly and monthly frequency data 

arriving at the same conclusion as Momcilovic, et al. (2014) who stated that there are no 

statistically significant differences between betas calculated on the basis of daily, weekly 

and monthly return intervals.  

According to Cherif and Hasanov (2017), this behaviour of the largest lithium 

mining companies and the effects in the long-run of the lithium industry and WTI crude 

oil prices localized in the wavelet coherence could be explained by the third energy 

transition and with the renewable energies in relation to the transport sector. Randall 

(2016) predicts that 35% of all new cars by 2040 will be powered by electricity and this 

rapid transformation from regular gasoline driven cars to EVs may be enough to cause 

the next oil crisis. On the other hand, BP (2020), in the Energy Outlook, concludes that 

the demand for oil for transportation in emerging markets will continue to increase until 

the early 2030s but this is increasingly offset by falls in the developing world since the 

share of oil in total final consumption has fallen from over 90% of transport demand in 

2018 due to the increasing use of electricity, especially in passenger cars and light and 

medium-duty trucks. BP (2020) concludes in this outlook that liquid fuel demand is 

dominated by the electrification of transport thanks in part to the lithium industry as the 

authors in this research paper state. 
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This paper can be very helpful to institutions and companies that are exposed to 

crude oil market changes. Our findings might help market participants to understand 

better what the impact of the lithium industry on crude oil price movements may be and 

its subsequent potential effects on hedging strategies. It would be also reasonable to 

extend this research to other influence groups in the oil industry or high producing 

countries such as OPEC countries, the U.S. or Russia. 
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Table 1: market capitalization and market share of the selected companies 

 Market Capitalization 1 Market Share 2 

Albemarle 10.801 19% 

SQM 8.383 17% 

FMC 1.271 10% 

1. Information related to market capitalization was obtained from Yahoo Finance for 2020 expressed in 

billions. 

2. Information related to market share was obtained from IG for 2019 (https://www.ig.com/uk/trading-

strategies/what-are-the-best-lithium-stocks-to-watch--200824). 

 

Table 2: Unit root test results 

 ADF PP KPSS 

Daily Results 

 (i) (ii) (iii) (i) (ii) (i) (ii) 

ß_Albemarle -1.3539 -6.3667 -6.3398 -5.2318 -5.226 2.2104 2.0086 

ß_FMC -0.9916 0.9742 1.3802 1.6276 2.1286 3.7784 2.7784 

ß_SQM -0.9075 -4.7906 -6.0316 -5.3538 -6.7903 11.9994 1.1056 

Weekly Results 

ß_Albemarle -0.4848 -5.7592 -6.4097 -5.6042 -6.3735 2.3056 0.4074 

ß_FMC -1.1104 2.951 3.069 5.2243 5.7481 0.1233 0.1362 

ß_SQM -0.1775 -5.032 -5.5701 -5.5082 -6.1375 1.3753 0.1639 

Monthly Results 

ß_Albemarle 0.1484 -1.2348 -0.0742 -2.038 -1.1703 0.5462 0.1253 

ß_FMC -0.3567 -1.2101 -2.1418 -3.5027 -3.7245 0.8972 0.3315 

ß_SQM -0.6532 -2.2219 -2.767 -3.6062 -4.9946 0.9172 0.2393 
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Table 3: Fractional Integration results 

Data analyzed Model Selected d Std. Error Interval I(d) 

Daily Results 

ß_Albemarle ARFIMA (2, d, 2) 0.74 0.038 [0.68, 0.80] I(d) 

ß_FMC ARFIMA (2, d, 2) 0.99 0.025 [0.95, 1.03] I(1) 

ß_SQM ARFIMA (1, d, 1) 0.61 0.055 [0.55, 0.70] I(d) 

Weekly Results 

ß_Albemarle ARFIMA (2, d, 2) 0.60 0.036 [0.54, 0.66] I(d) 

ß_FMC ARFIMA (2, d, 0) 1.35 0.043 [1.28, 1.42] I(1) 

ß_SQM ARFIMA (2, d, 2) 0.88 0.057 [0.79, 0.98] I(d) 

Monthly Results 

ß_Albemarle ARFIMA (0, d, 0) 0.54 0.1921 [0.22, 0.85] I(d) 

ß_FMC ARFIMA (1, d, 1) 1.02 0.243 [0.62, 1.42] I(1) 

ß_SQM ARFIMA (1, d, 0) 0.75 0.133 [0.53, 0.97] I(d) 
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Table 4. Fractionally Cointegrating Vector Autorregression: Estimation Results. 

 d 
Cointegrating equation beta 

Albermale FMC SQM 

Panel I (daily): Lithium 

mining companies stock 

prices 

0.980 (0.024) 1.000 -1.153 0.157 

∆𝑑 ([
𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒

𝐹𝑀𝐶
SQM

] − [
40.259
25.168
33.697

]) = 𝐿𝑑 [
−0.001
0.002
0.002

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel II (daily): log-lithium 

mining companies stock 

prices 

0.985 (0.024) 1.000 -0.802 -0.012 

∆𝑑 ([

log _𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
log _𝐹𝑀𝐶
log _SQM

] − [
1.605
1.401
1.527

]) = 𝐿𝑑 [
−0.001
0.003
0.007

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel III (daily): beta 

lithium mining companies 

0.828 (0.013) 1.000 -2.228 3.824 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.453
1.220
1.102

]) = 𝐿𝑑 [
0.002

−0.003
−0.004

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel IV (weekly):  Lithium 

mining companies stock 

prices 

1.014 (0.042) 1.000 -1.155 0.034 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
40.520
25.528
33.687

]) = 𝐿𝑑 [
−0.006
0.009
0.010

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel V (weekly):   log-

lithium mining companies 

stock prices 

0.967 (0.051) 1.000 -0.783 0.064 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.605
1.404
1.528

]) = 𝐿𝑑 [
−0.006
0.015
0.027

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel VI (weekly): beta 

lithium mining companies 

1.095 (0.048) 1.000 0.031 5.372 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.553
1.210
1.137

]) = 𝐿𝑑 [
−0.027
−0.018
−0.031

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel VII (monthly):  

Lithium mining companies 

stock prices 

0.997 (0.012) 1.000 10.374 5.333 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
40.915
26.222
42.419

]) = 𝐿𝑑 [
23.840
13.996
−0.813

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel VIII (monthly):   log-

lithium mining companies 

stock prices 

0.976 (0.000) 1.000 -1.767 0.221 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.656
1.439
1.665

]) = 𝐿𝑑 [
−67.128
−57.475
59.269

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

1.269 (0.087) 1.000 0.243 -2.387 
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Table 5: Structural breaks 

 

Series 

No. of 

breaks 

Break dates 

WTI crude oil prices 5 

02.11.2011; 26.06.2013; 27.11.2014; 

13.05.2016;02.11.2017 

 

 

Table 6. Fractionally Cointegrating Vector Autorregression: Estimation Results 

for the structural breaks in stock prices. 

Panel IX (monthly): beta 

lithium mining companies 
∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.613
1.296
1.339

]) = 𝐿𝑑 [
−0.088
−0.094
0.198

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

 d 
Cointegrating equation beta 

Albermale FMC SQM 

Panel I : 1st break period  

(16/07/2010 – 02/11/2011) 

0.959 (0.085) 1.000 -12.849 4.734 

∆𝑑 ([
𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒

𝐹𝑀𝐶
SQM

] − [
40.261
25.156
33.740

]) = 𝐿𝑑 [
−0.004
0.003

−0.001
] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑

𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel II: 2nd break point 

(02/11/2011–26/06/2013) 

0.921 (0.052) 1.000 -0.424 0.074 

∆𝑑 ([

log _𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
log _𝐹𝑀𝐶
log _SQM

] − [
53.243
35.269
56.557

]) = 𝐿𝑑 [
−0.078
0.000
0.025

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel III: 3rd break point 

(26/06/2013–26/11/2014) 

1.085 (0.051) 1.000 -0.428 -0.077 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
62.710
53.837
38.398

]) = 𝐿𝑑 [
−0.056
−0.032
−0.005

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel IV:  4th break point 

(26/11/2014–13/05/2016) 

0.543 (0.067) 1.000 -33.704 37.755 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
62.160
48.325
25.300

]) = 𝐿𝑑 [
0.001
0.001
0.000

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel V: 5th break point 0.201 (0.021) 1.000 -2.607 -9.106 
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Table 7. Fractionally Cointegrating Vector Autorregression: Estimation Results 

for the structural breaks in log stock prices. 

 

 

(13/05/2016–02/11/2017) 
∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
78.350
40.192
21.002

]) = 𝐿𝑑 [
−0.180
−0.116
−0.103

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel VI: 6th break point 

(02/11/2017–14/03/2019) 

0.956 (0.080) 1.000 -4.505 -1.460 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
136.684
78.321
57.966

]) = 𝐿𝑑 [
0.009
0.007
0.009

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

 d 
Cointegrating equation beta 

Albermale FMC SQM 

Panel I : 1st break period  

(16/07/2010 – 02/11/2011) 

1.003 (0.074) 1.000 -5.028 2.475 

∆𝑑 ([
𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒

𝐹𝑀𝐶
SQM

] − [
1.605
1.401
1.528

]) = 𝐿𝑑 [
−0.004
0.008
0.000

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel II: 2nd break point 

(02/11/2011–26/06/2013) 

1.170 (0.057) -0.474 0.699 0.559 

∆𝑑 ([

log _𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
log _𝐹𝑀𝐶
log _SQM

] − [
1.732
1.551
1.757

]) = 𝐿𝑑 [
0.222

−0.200
0.000

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel III: 3rd break point 

(26/06/2013–26/11/2014) 

1.077 (0.053) 1.000 -0.393 -0.043 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.797
1.731
1.584

]) = 𝐿𝑑 [
−0.058
−0.041
−0.010

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel IV:  4th break point 

(26/11/2014–13/05/2016) 

0.475 (0.135) 1.000 3.501 -2.207 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.792
1.684
1.402

]) = 𝐿𝑑 [
−0.012
−0.006
−0.005

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel V: 5th break point 

(13/05/2016–02/11/2017) 

0.234 (0.023) 1.000 -0.940 5.869 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.889
1.604
1.325

]) = 𝐿𝑑 [
0.042
0.063
0.072

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel VI: 6th break point 

(02/11/2017–14/03/2019) 

0.921 (0.099) 1.000 -3.295 -0.544 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
2.136
1.895
1.764

]) = 𝐿𝑑 [
0.006
0.009
0.019

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 
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Table 8. Fractionally Cointegrating Vector Autorregression: Estimation Results 

for the structural breaks in beta term. 

 

 d 
Cointegrating equation beta 

Albermale FMC SQM 

Panel I : 1st break 

period  

(16/07/2010 – 

02/11/2011) 

0.298 (0.036) 1.000 3.657 -4.114 

∆𝑑 ([
𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒

𝐹𝑀𝐶
SQM

] − [
1.482
1.222
1.175

]) = 𝐿𝑑 [
0.034

−0.008
−0.080

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel II: 2nd break point 

(02/11/2011–

26/06/2013) 

0.287 (0.025) 1.000 -4.367 -1.227 

∆𝑑 ([

log _𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
log _𝐹𝑀𝐶
log _SQM

] − [
1.362
1.169
0.798

]) = 𝐿𝑑 [
0.039
0.040

−0.118
] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑

𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel III: 3rd break point 

(26/06/2013–

26/11/2014) 

0.278 (0.026) 1.000 -0.219 -2.201 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
0.980
0.964
1.121

]) = 𝐿𝑑 [
−0.006
0.030
0.095

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel IV:  4th break 

point 

(26/11/2014–

13/05/2016) 

0.305 (0.037) 1.000 -1.559 1.302 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.312
1.375
1.073

]) = 𝐿𝑑 [
−0.268
−0.096
−0.069

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel V: 5th break point 

(13/05/2016–

02/11/2017) 

1.062 (0.052) 1.000 0.852 2.626 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.271
1.471
1.228

]) = 𝐿𝑑 [
−0.005
−0.004
−0.012

] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑
𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 

Panel VI: 6th break point 

(02/11/2017–

14/03/2019) 

0.584 (0.031) 1.000 1.217 0.515 

∆𝑑 ([

β_𝐴𝑙𝑏𝑒𝑟𝑚𝑎𝑙𝑒
β_𝐹𝑀𝐶
β_SQM

] − [
1.293
1.296
1.246

]) = 𝐿𝑑 [
0.142
0.079

−0.169
] 𝜈𝑡 + ∑ Γ̂𝑖Δ𝑑𝐿𝑑

𝑖 (𝑋𝑡 − 𝜇

2

𝑖=1

) + 𝜀𝑡 


