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ABSTRACT 33 

This paper focuses on the analysis of the time series behaviour of the air quality in the 50 US 34 

states by looking at the statistical properties of the particulate matter (PM10 and PM2.5) datasets. 35 

We use long daily time series of outdoor air quality indices to examine issues such as the degree 36 

of persistence as well as the existence of time trends in data. For this purpose, we use a long 37 

memory fractionally integrated framework. The results show significant negative time trend 38 

coefficients in a number of states and evidence of long memory in the majority of the cases. In 39 

general, we observe heterogeneous results across counties though we notice higher degrees of 40 

persistence in the states on the West with respect to those on the East, where there is a general 41 

decreasing trend. It is hoped that the findings in the paper will continue to assist in quantitative 42 

evidence-based air quality regulation and policies. 43 
  44 

Keywords: Air pollution; fractional persistence; long memory; particulate matter; United 45 

States 46 

JEL Classifications: C22, Q53, Q58 47 

 48 

 49 
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1. Introduction 50 

Air quality in the United States has undergone a dramatic shift since 2016 when the level of 51 

particulate matter (particulate pollution) increased by 5.5 percent during the 2016-2018 time 52 

period, according to Environmental Protection Agency (EPA) datasets. In a report by the 53 

National Bureau of Economic Research (NBER), the worsening of air quality in the US is due 54 

to more wildfires, more economic growth and less enforcement of federal regulations (Clay and 55 

Muller, 2019). Particulate matter is in the form of solid particles and liquid droplets such as 56 

dust, dirt, and soot smoke with fine or coarse sizes. Two types of particulate matter are PM10 57 

and PM2.5, the former is coarse particulate with a particle of diameter 10 micrometres, and the 58 

latter is fine particulate with a particle of diameter 2.5 micrometres. These particles are emitted 59 

from construction sites, automobiles, unpaved roads, fields, smokestacks, or fires.       60 

Among the pollutants, PM2.5 is known to increase premature mortality risk (US EPA, 61 

2010; Muller, Mendelsohn, and Nordhaus, 2011). PM2.5 is majorly of concern to regulators and 62 

public health experts due to its microscopic size which aids easier inhaling and absorption into 63 

the bloodstream compared to the coarse type, PM10. Exposure of humans to particles can affect 64 

lungs and hearts, causing premature death, heart attacks, asthma, and other lung and respiratory 65 

malfunctioning (EPA, 2018). Fine particles easily accumulate in the brain, and this is linked to 66 

dementia and cognitive decline in adults, and these particles are the main cause of haze in many 67 

parts of the US. 68 

The Air Quality Index (AQI) gives the level of cleanliness of outdoor air, and data are 69 

synchronized daily. From these datasets, the EPA monitors the emission of pollutants using 70 

national and regional rules. 71 

Air quality in the US has improved significantly due to policies of the EPA and the 72 

World Health Organization (WHO) (Pope, Ezzati and Dockery, 2009). The effort was largely 73 

due to the health hazard posed by PM2.5 (Dockery, et al., 1993; Pope et al., 2002), while in 74 
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2015, about 9 percent of the Americans lived in counties with concentrations of PM2.5 above 75 

the WHO AQI standard of 10 ug/m3 and 89 percent lived in counties with concentrations of 5-76 

10 ug/m3.  Thus, further reducing PM2.5 will likely lower mortality caused by these health 77 

hazards.   78 

Studying the dynamics of values of PM10 and PM2.5 in the US case informs researchers 79 

and policymakers about life expectancy in their respective US counties or states. The literature 80 

we present in this paper comprises epidemiological studies (Choi et al., 2018; Lee et al., 2019), 81 

studies on pollutant concentration and seasonal variations in the dynamics of particulate 82 

pollution (Pryor and Barthelmie, 1996; Pillai et al., 2002), studies relating pollutants to climate 83 

change (Tai et al., 2010) and studies on the causes of air pollution (see, e.g., Ji et al., 2018). 84 

There also exists sparse literature on factors influencing exposure to air pollutants. The 85 

epidemiological studies investigate the existence of a relationship between human health-86 

related problems and exposure to air pollution. There are several strands of evidence from 87 

epidemiological research supporting health-related problems induced by exposure to air 88 

pollutants (Li et al., 2019). According to the report by the WHO, fine particulate matter is one 89 

of the air pollutants that is associated with a large number of health issues (WHO, 2013a; WHO, 90 

2013b). Shou et al. (2019) examine exposure to PM2.5 and the risk of neurodegenerative 91 

diseases. They provide evidence that PM2.5 induces neurodegenerative diseases. PM2.5 has also 92 

been found to induce respiratory problems (Choi et al., 2018; Weinmayr et al., 2018 and Wu et 93 

al., 2018). Maji et al., (2018) reveal evidence linking PM2.5 to cardiovascular diseases. 94 

Pillai et al. (2002) examine the concentration of PM2.5 and PM10. From their results, 95 

PM10 concentration is lower than limits given by various environmental standards, while PM2.5 96 

exceeds the threshold set by the US EPA. There is also seasonal variation in PM2.5 and PM10 97 

with the highest concentration during the winter season. Pryor and Barthelmie (1996) found 98 

that PM10 concentration in Canada is above the standard set in California (US), even though it 99 
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passes the WHO threshold. Ji et al. (2018) examine the socioeconomic drivers of PM2.5 in 79 100 

developing economies and findings from the study indicate that income, urbanization, and the 101 

service sector have a significant impact on PM2.5 concentration. There also exists an inverted U 102 

relationship between urbanization and PM2.5 in which the particulate matter positively 103 

correlates with a low-income level or urbanization but has a negative association at a high level. 104 

Chu and Paisie (2006) evaluate the current PM2.5 situation using the critical design values 105 

(CDV) application. Their findings suggest that California and some areas in the East stand the 106 

risk of potential future violation of the annual threshold for PM2.5 set by NAAQS. Also, the 24-107 

h standard is likewise at the risk of being violated by California and some areas in the West. 108 

Bell et al. (2007) reveal findings supporting strong and geographic variations in the 109 

concentrations of PM2.5 in the US. Tai et al. (2010) investigate the response of fine particulate 110 

matter (PM2.5) to meteorological variables using a multiple linear regression model; the study 111 

employs observational data for the period of 1998 to 2008. The concentration of PM2.5 and its 112 

various components are found to have an association with meteorological variables except for 113 

temperature, relative humidity (RH), and wind direction. Evidence reveals that climate change 114 

has potential effects on PM2.5. Other similar studies are Liao et al. (2006); Racherla and Adams 115 

(2006); Tagaris et al. (2007); Avise et al. (2009) and Pye et al. (2009); the studies used the 116 

General Circulation Model (GCM)-Chemical Transport Model (CTM) to simulate air pollutants 117 

concentrations. 118 

Hadley (2017) identifies marine-traffic residual fuel oil (RFO), biomass combustion 119 

emissions (BMC), seawater, and crustal materials as explaining the concentrations of PM2.5 in 120 

the North-western United States. The study makes use of a matrix factorization model by the 121 

US EPA to analyse seasonal and long-term trends. From January 2011 to December 2014, the 122 

period covered in the study, the effects of RFO were highest during late summer, while BMC 123 

and sea salt contributed the largest in winter. The crustal material does not indicate any seasonal 124 
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cycle. De Jesus et al. (2019) examine the ultrafine particles and PM2.5 for ten cities located in 125 

North America, Europe, Asia, and Australia for over twelve months. The seasonal variation in 126 

air pollutants is found to be associated with geographical locations of the cities and their 127 

features. Di et al. (2019) examine the concentration of PM2.5 across the contiguous United States 128 

from 2000 to 2015. Findings show that the PM2.5 prediction dataset allows an accurate estimate 129 

of the adverse effect of PM2.5 on health by epidemiologists. 130 

 The long memory feature in the air pollutant series has been previously studied by some 131 

authors. Thus, for example, Chen et al. (2016) examined four major cities in China, Beijing, 132 

Shanghai, Guangzhou and Shenzhen, with data between 2013 and 2015, and found high level 133 

of persistence in the four cities, especially in Guangzhou and Shenzhen. Meraz et al. (2015) 134 

used R/S analysis and found evidence of long range dependence in the air pollutants in Mexico 135 

City though this property was not found to be uniform across time scales. Other articles using 136 

the R/S method in the analysis of air pollutants include Chelani (2009, 2016), Meraz et al. 137 

(2015), Nikolopoulos et al. (2019). Other studies have used other non-parametric methods such 138 

as the Detrended Fluctuation Analysis (DFA) (Varotsos et al., 2005) and its generalization, the 139 

Multifractal Detrended Fluctuation Analysis (MF-DFA) (Xue et al., 2015), estimating the Hurst 140 

parameter (Hurst, 1951) and its potential change over time. Given the sensitiveness of these 141 

methods to the user-chosen parameters and the need for a large amount of data to obtain reliable 142 

estimates (Kantelhardt et al., 2002; Thompson et al., 2016), the fractional integration model is 143 

a useful approach with which to get reliable results for relatively short time series such as those 144 

employed in this work. Although the R/S analysis, DFA, MF-DFA, and the fractional 145 

integration take long memory into account, they are closely linked (see Beran, 1994). 146 

Our approach to the analysis of particulate pollutants is based on the anlaysis of the time 147 

series properties of the two pollutants (PM10 and PM2.5) by looking at its long memory structure. 148 

Findings from this paper will be useful in the econometric modelling of pollutant variables with 149 
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other macroeconomic, health-related, and demographic variables. Previous literature lacks 150 

knowledge of the time series properties of pollutant levels in the zones/cities under 151 

consideration. Specifically, we investigate the time series properties in PM10 and PM2.5 series, 152 

in each US state using fractional integration. The methodological approach employed in this 153 

work allows for fractional values in the degree of differentiation of the series, to render them 154 

stationary I(0), such that the degree of differentiation of the series (the persistence parameter) 155 

takes value in the long memory range. This allows us to have a much richer degree of flexibility 156 

in the dynamic specification of the data compared with the classical case of unit roots or more 157 

generally integer degrees of differentiation. In addition, the fractional integration framework 158 

allows for potential deterministic trends in order to determine if there is a systematic pattern in 159 

the data across time. The kind of time series analysis approach employed in this work is novel 160 

and has been rarely applied in the analysis of air quality datasets since it is also a mandatory 161 

step in the Box-Jenkins time series modelling (see Box et al., 2015). Furthermore, this approach 162 

provides a useful economic interpretation for air quality regulatory agencies regarding policy 163 

formation.  164 

 The contribution of this work is twofold: first, we investigate if long memory is a feature 165 

observed in the particulate matter pollution data in the US and for this purpose we use a 166 

parametric approach based on fractional integration methods. Secondly, and based on the 167 

previous feature, we investigate if time trends are present in the data and if the time trend 168 

coefficient changes according to this long memory feature. Implications of the results obtained 169 

are presented in the final part of the manuscript. 170 

 The rest of the paper is structured as follows: Section 2 presents the statistical methods 171 

applied in the paper and describes the datasets. Section 3 displays the main empirical results, 172 

while Section 4 renders the conclusions and policy recommendations.  173 

 174 
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2. Materials and Methods 175 

2.1 Statistical method 176 

During the analysis of time series, a crucial issue is to determine if the series is stationary or 177 

not. With nonstationary series, a standard approach is to take first differences, that is, if the 178 

original series, xt, is nonstationary but its first differences, yt = xt - xt-1 produce a stationary 179 

series. Then, we say that xt is integrated of order 1 or I(1). This concept has been generalized 180 

to the fractional case, and a time series can be integrated of order d or I(d) where d is a fractional 181 

value. In other words, we say that a time series xt is integrated of order d if it can be expressed 182 

as: 183 

         (1) 184 

where d can be any real value, L is the lag-operator (Lxt = xt-1) and ut is I(0) series, defined for 185 

our purposes as a covariance (or second-order) stationary process with a spectral density 186 

function that is positive and finite at the zero frequency. The polynomial (1 – L)d in the left-187 

hand-side of equation (1) can be expressed in terms of its binomial expansion, such that, for all 188 

real d, 189 

 190 

and thus, 191 
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Thus, if d is not an integer, xt depends on all its past history, and if d > 0, xt displays the property 193 

of long memory, based on the large degree of dependence between observations that are far 194 

apart. The concept of long memory is more general than fractional integration since it refers to 195 

the property that the spectral density function contains at least one singularity or pole in the 196 

interval [0, π). In the case of a model like (1), the singularity occurs at the smallest (zero) 197 

frequency. 198 
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 In this context of fractional integration or I(d) processes, the differencing parameter d 199 

is crucial on several fronts. For instance, if d = 0, the process is stationary and short memory, 200 

with little dependence between the observations and with shocks disappearing fast. If d belongs 201 

to the interval (0, 0.5), xt is still covariance stationary though with long memory and mean-202 

reverting properties, and the effects of the shocks disappear, at a relatively slower rate; if d 203 

belongs to the interval [0.5, 1), the series is no longer stationary but shocks are still mean 204 

reverting, though with long-lasting effects; d =1 refers to the classical I(1) case and values of d 205 

≥ 1 also imply lack of mean reversion. Thus, by using fractional values for the differencing 206 

parameter, we allow for a much richer structure in the dynamic specification of the data. Thus, 207 

classical methods based on AR(I)MA models only consider the stationary ARMA case that 208 

imposes d = 0 and the nonstationary ARIMA case with d = 1, and do not consider the fractional 209 

alternatives employed in this work. In addition, it is well known that the standard (unit root) 210 

methods that distinguish between stationarity and nonstationarity (i.e. Dickey and Fuller, 1979; 211 

Phillips and Perron, 1988; Kwiatkowski et al., 1992; Elliot et al., 1996) have very low power if 212 

the true data generating process is fractionally integrated (see, Diebold and Rudebush, 1991; 213 

Hassler and Wolters, 1994; Lee and Schmidt, 1996), this being another advantage of the 214 

fractional approach used in this article. 215 

 Finally, and to allow for a much richer modelling structure, we also permit deterministic 216 

components, and following here the approach of Bharghava (1986), Schmidt and Phillips 217 

(1992) and many others on the specification of unit roots, we permit for a constant and a linear 218 

time trend, such that, supposing that yt is the original data, 219 

   (3) 220 

where α and β are unknown coefficients referring, respectively, to the constant and the time 221 

trend, and xt is supposed to be given by (1), i.e., following an I(d) process. 222 

The estimation is carried out by using the Whittle function in the frequency domain (see, 223 
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e.g., Dahlhaus, 1989) and we use a version of the tests of Robinson (1994) that is very 224 

convenient in the context of the present data. Thus, we test the null hypothesis: 225 

     (4) 226 

for any real value do, in the model given by equations (3) and (1), reporting the confidence 227 

intervals of the non-rejection values of do. The test is based on the Lagrange Multiplier (LM) 228 

principle and thus, it does not require preliminary estimation of d, and more importantly, is 229 

valid for any real value d, including then, values in the nonstationary range (d ≥ 0.5). Moreover, 230 

the limiting distribution is standard normal, and this limiting behaviour is unaffected by the 231 

presence of the deterministic terms of the form as in (3). For further details, see Robinson (1994) 232 

or any of its numerous empirical applications (Gil-Alana and Robinson, 1997; Gil-Alana, 2005; 233 

Abbritti et al., 2016; etc.). 234 

 235 

2.2. Data 236 

The datasets used in this paper are daily outdoor air quality indices, based on fine and coarse 237 

particulate matter (PM2.5 and PM10), for all 50 US states. These datasets were retrieved from 238 

the database of the United States Environmental Protection Agency (EPA), on the website: 239 

https://www.epa.gov/outdoor-air-quality-data/air-data-multiyear-tile-plot. 240 

Table 1 presents the data description, with start and end dates for both time series of 241 

particulate matter. Most sites have datasets commencing from 1999 and ending in 2019. For 242 

those with shorter series length, recorded sample sizes are still long enough for time series 243 

analysis. These are the cases of Hawaii, Kentucky, Maine, Minnesota, Missouri, Nevada, and 244 

South Dakota States for PM2.5, while for PM10, we have the cases of Florida, Illinois, Kentucky, 245 

Michigan, Minnesota, Montana, New Hampshire, New Jersey, New Mexico, New York, North 246 

Dakota, Oklahoma, North Dakota, Washington, and West Virginia states with time series not 247 

commencing from 1999 nor ending in 2019. In the appendix (Table A), we have names of states 248 

https://www.epa.gov/outdoor-air-quality-data/air-data-multiyear-tile-plot
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and their capital cities with the total area, land, and water area of the states. Each capital city 249 

area represents the state with the given air pollutant, while in very few cases, other cities' data 250 

were reported for the corresponding states due to data unavailability. For example, in PM2.5, 251 

Hilo’s, Baltimore-Colombia-Townson’s, Albert Lea’s, Columbia’s and Rutland’s datasets were 252 

used to proxy data for Honolulu (Hawaii State), Annapolis (Maryland State), St Paul 253 

(Minnesota State), Jefferson City (Missouri State) and Montpelier (Vermont State), 254 

respectively. For PM10, Bowling Green’s, Philadelphia-Caden-Wilmington’s, Kingston’s, 255 

Urban Honolulu’s, Battle Creek’s, Joplins, Sioux City’s, Elko’s, Klamath Falls’ and Brooking’s 256 

datasets were used to proxy data for Frankfort (Kentucky State), Dover (Delaware State), 257 

Albany (New York State), Honolulu (Hawaii State), Lansing (Michigan State), Columbus 258 

(Missouri State), Lincoln (Nebraska State), Carson City (Nevada State), Salem (Oregon State) 259 

and Pierre (South Dakota State), respectively. 260 

[TABLE 1] 261 

As an illustration of the time series, in Figure 1 we display plots of the air pollution 262 

levels by fine and coarse particulate matter (PM2.5 and PM10), for only two states: Alabama and 263 

Wyoming. The four plots clearly indicate evidence supporting seasonal variation in the 264 

distribution of particulate matters over the sample periods.1   265 

[FIGURE 1 HERE] 266 

In Table 2, we summarize the data by using mean, minimum, and maximum values for 267 

both particulate matter. We found, in most cases 0 ug/m3 minimum value for both time series 268 

of particulate matter (PM2.5 and PM10), while the average PM2.5 value is above the exceedances 269 

limit of 35.4ug/m3 for the moderate category of AQI in 38 out of 50 states (see Appendix Table 270 

B), and the overall time series maximum value is found within unhealthy ranges, implying that 271 

US states are at the risk of high PM2.5. By looking at PM10, 154 ug/m3 is the limit for the 272 

 
1 Time plots of PM2.5 and PM10 for the remaining 48 US states are available on request. 
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moderate category of AQI and the value indicates that the average particulate matter level for 273 

PM10 is still within the moderate limit, even though the minimum and maximum values indicate 274 

that there are exceedances in a few cases. 275 

[TABLE 2 HERE] 276 

 277 

3. Empirical results and discussion 278 

Having explored the datasets, we conducted the empirical analysis using the fractional 279 

integration framework described above. Our estimated empirical model is the one given by 280 

equations (1) and (3), i.e., 281 

        (5) 282 

where yt is the observed time series, and ut is supposed to be a white noise process. We could 283 

also allow for weak autocorrelation in ut, though we have preferred to keep all the information 284 

on the dependence in the data by means of the differencing parameter d. 285 

Across Tables 3 and 5, we display the estimated values of d in equation (5) jointly with 286 

the 95% confidence intervals of the non-rejection values of d using Robinson’s (1994) tests, 287 

respectively for the PM10 and PM2.5 series. In each case, we consider three potential scenarios: 288 

i) imposing that α = β = 0 in (5); ii) imposing β = 0 in equation (5), i.e, including only an 289 

intercept; and finally, iii) with α and β freely estimated from the data, i.e., including a linear 290 

time trend. We have marked in the tables in bold, the selected specification for each case, this 291 

selection is made according to the t-values of the estimated coefficients. Tables 4 and 6 display 292 

the estimated coefficients for d, α and β for each series. 293 

[TABLES 3 AND 4 HERE] 294 

 We start by presenting the results for PM10 (Tables 3 & 4). The first thing we observe 295 

is that the time trend is required in 20 out of the 50 cases examined, being significantly negative 296 
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in almost all cases implying decreases in the level of particulate matter in these cases.2 297 

Focussing now on the estimated values of the differencing parameter d, we notice two states 298 

(Minnesota and Michigan) where the hypothesis of short memory (i.e., d = 0) cannot be 299 

rejected. For the majority of the states, the values of d are in the interval (0, 0.5) implying a 300 

stationary long memory pattern, though, in five states (Mississippi, Florida, West Virginia, 301 

North Carolina and Kentucky), the intervals include both stationary (d < 0.5) and nonstationary 302 

(d ≥ 0.5) values. 303 

[TABLES 5 AND 6 HERE] 304 

For the PM2.5 (Tables 5 and 6), the number of states with significant time trend 305 

coefficients is 23, again with a negative value in all cases, the values ranging from -0.00246 306 

(Massachusetts) to -0.00995 (West Virginia). For the values of d, we find a single state 307 

(Minnesota) with a short memory pattern (d = 0) 3, 39 states with values of d in the range (0. 308 

0.5), and five in the nonstationary mean-reverting range [0.5, 1). In another group of five states, 309 

the values of d include stationary and nonstationary cases. 310 

Table 7 summarizes the results of the two particulate pollutions in terms of the time 311 

trends, while Tables 8 and 9 comprise the results in terms of persistence, d, for PM10 and PM2.5, 312 

respectively. 313 

 We observe in Table 7 that Illinois displays the highest time trend coefficient for PM10 314 

and this state emerges second in the trend coefficient reduction for PM2.5 after West Virginia. 315 

We observe significant trends in both types of particulate matter in the following states: 316 

Arkansas, Delaware, Georgia, Illinois, Maine, Maryland, Massachusetts, South Carolina, 317 

Tennessee, Vermont, Virginia, and Wisconsin.; In addition, eight more states (Connecticut, 318 

Hawaii, Indiana, Iowa, Louisiana, Missouri, Rhode Island, and Utah) display a significant trend 319 

 
2 Illinois is the only state with a significant positive time trend coefficient though for this state we only have 115 

observations corresponding to the year 2000 in which no environmental policies had yet been implemented. 
3 For this series, Minnesota, PM2.5, the number of observations is also very small (76). 
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for PM10 and another eleven (Alabama, Kansas, Kentucky, Michigan, Nebraska, New 320 

Hampshire, New Jersey, New York, Ohio, West Virginia, and Wyoming) for PM2.5. Thus, the 321 

overall reduction in each state’ PM2.5 and PM10 levels indicate the effect of different air quality 322 

policies put in place by the regulatory body. 323 

[TABLES 7 - 9 HERE] 324 

 Table 8 focuses on the persistence level for PM10. We notice that the values range from 325 

the short memory cases of Minnesota (0.06) and Michigan (0.09) to the largest degrees of 326 

persistence in Idaho (0.48) and North Dakota (0.49). Thus, all the estimates of d are found to 327 

be smaller than 0.5 and thus being in the long memory stationary range (though as earlier 328 

mentioned, in some cases, we cannot reject nonstationary values in some states). For PM2.5, 329 

results in Table 9, the values are slightly more heterogeneous ranging from 0.10 (Minnesota) 330 

to some others in the nonstationary range (California, 0.55; Oregon, 0.56; Washington, 0.59; 331 

Nevada, 0.60, and Utah, 0.63). For these five states, we obtain values of d in the non-stationary 332 

mean-reverting range, the implication is that there is a long-lasting effect of shocks to pollution; 333 

thus even though strong policy action can still be applied, these actions will take long periods 334 

to have effects on the quality of air in those five states. The two maps in Figure 1 (upper for 335 

PM10 and lower for PM25) summarize the strong gap between the different kinds of persistence: 336 

the states on the West coast have a higher level of persistence with respect to those on the East, 337 

where there is a general decreasing trend. Thus, more effective measures seem to have been 338 

adopted in the eastern states and the higher level of persistence observed in the West implies 339 

that, in the event of exogenous negative shocks, stronger measures must be adopted to recover 340 

the original trends compared to the East.  341 

 [FIGURES 2 - 3 HERE] 342 

 343 

 344 
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 345 

4. Conclusions 346 

In this paper, we have examined air quality in the US by looking at the statistical properties of 347 

the time series corresponding to particulate matter (PM10 and PM2.5) in the 50 US states. For 348 

this purpose, we have used long memory and fractionally integrated techniques, and the results 349 

show significant negative time trend coefficients in a number of cases (19 states in the case of 350 

PM10 and 23 states in the case of PM2.5), implying that, in these states, adequate measures are 351 

being adopted to improve the air quality level by reducing the level of particulate matter. 352 

Focussing on the long memory issue with regard to this particulate pollution, we observe a large 353 

degree of heterogeneity in the degree of persistence across states, as shown in the map, moving 354 

from low degrees of persistence in states such as Minnesota (few data here) to others with high 355 

degrees of persistence such as Idaho, South Dakota and Utah. Meanwhile, since persistence 356 

estimates are, in general, within the long memory mean-reverting range, shocks will have 357 

transitory effects and weak policy actions will be required in the case of negative shocks 358 

increasing levels of pollution. In the case of PM2.5, eight states (Idaho, Montana, South Dakota, 359 

California, Oregon, Washington, Nevada, and Utah) have high levels of persistence (with 360 

values above 0.5) implying nonstationarity and long-lasting shocks. In these cases, strong 361 

policy actions are needed to recover the original level/trends. 362 

Bennett et al. (2019) investigated the effect of a reduction in PM2.5 levels between 1999 363 

and 2015 at the national and county level, stating that reductions in the particulate matter have 364 

lowered mortality rates in most US counties. Thus, in the US, where long memory evidence is 365 

detected in the time dynamics of PM2.5 (even in PM10) in all states, in the event of negative 366 

shocks increasing pollution, strong actions should be adopted to accelerate the reduction in the 367 

mortality rates. The current paper will continue to serve as a quantitative evidence-based air 368 

quality regulation and policy paper, meanwhile, further research may attempt to consider 369 
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different counties or cities in the US and elsewhere in the world, paying particular attention to 370 

industrialized areas. Besides, aggregated data at national level may also be worth examining, 371 

noting that aggregation is a typical argument that has been employed to justify the use of long 372 

memory processes in time series (Robinson, 1978; Granger, 1980; Altissimo et al., 2009; etc.). 373 

In this respect, the use of structural breaks is also worth studying. In fact, many authors have 374 

shown the links between fractional integration and breaks, arguing that the former can be a 375 

spurious phenomenon caused by the presence of breaks that have not been taken into account 376 

(Diebold and Inoue, 2001; Granger and Hyung, 2004; etc.). Work in all these directions is now 377 

in progress. 378 

 379 

Acknowledgments 380 

Prof. Luis A. Gil-Alana gratefully acknowledges financial support from MINEIC-AEI-FEDER 381 

ECO2017-85503-R project from ‘Ministerio de Economía, Industria y Competitividad’ 382 

(MINEIC), `Agencia Estatal de Investigación' (AEI) Spain and `Fondo Europeo de Desarrollo 383 
Regional' (FEDER). 384 

 385 

Comments from the Editor and two reviewers are gratefully acknowledged. 386 

 387 

 388 

Appendix A 389 

[TABLE A1 HERE] 390 

 391 

Appendix B 392 

[TABLE B1 HERE] 393 

 394 

 395 

 396 

 397 



17 
 

References 398 

 399 

Abbritti, M., L.A. Gil-Alana, Y. Lovcha and A. Moreno, (2016), Term Structure Persistence, 400 

Journal of Financial Econometrics 14, 2, 331-352.  401 
 402 

Altissimo, F. B., Mojon, P. and Zaffaroni, P. (2009). Can aggregation explain the persistence 403 

of inflation? Journal of Monetary Economics, 56: 231-241. 404 

 405 

Amato, Federico, et al. "Analysis of air pollution time series using complexity-invariant 406 

distance and information measures." Physica A: Statistical Mechanics and its Applications 407 

(2020): 124391. 408 

 409 

Avise, J., Chen, J., Lamb, B., Wiedinmyer, C., Guenther, A., Salathe, E. and Mass, C. (2009). 410 

Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global 411 

changes. Atmospheric Chemistry and Physics, 9: 1111-1124. 412 
 413 

Bhargava, A. (1986). On the Theory of Testing for Unit Roots in Observed Time Series. Review 414 

of Economic Studies, 53(3): 369-384. 415 

 416 

Bell, M. L., Dominici, F., Ebisu, L., Zeger, S. L. and Samet, J. M. (2007). Spatial and Temporal 417 

Variation in PM2.5 Chemical Composition in the United States for Health Effects Studies. 418 

Environmental Health Perspectives, 115(7): 989-995. 419 

 420 

Bennett, J. E., Tamura-Wicks, H., Parks, R. M., Burnett, R. T., Pope, C. A., III, Bechle, M. J., 421 

et al. (2019). Particulate matter air pollution and national and county life expectancy loss in the 422 
USA: A spatiotemporal analysis. PLoS Med 16(7): e1002856. 423 

https://doi.org/10.1371/journal.pmed.1002856 424 

 425 

Beran, J. (1994). Statistics for long-memory processes. 1st edition. Chapman and Hall/CRC 426 

press. UK. 427 

 428 

Box, G. E. P., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M. (2015). Time series analysis: 429 

Forecasting and Control. 5th Edition. John Wiley & Sons, UK. 430 

 431 

Chelani, A. (2009), Statistical persistence analysis of hourly ground level ozone concentrations 432 

in Delhi, Atmospheric Research 92, 2, 244-250. 433 
 434 

Chelani,  A. (2016) Long-memory property in air pollutant concentrations, Atmospheric 435 

Research 171, 1-4. 436 

 437 

Chen, Z., C.P. Barros and L.A. Gil-Alana (2016), The presence of air pollution in four mega-438 

cities in China, Habitat International 56, 103-108. 439 

 440 

Choi, J., Oh, J. Y., Lee, Y. S., Min, K. H., Hur, G. Y., Lee, S. Y., … Shim, J. J. (2018). Harmful 441 

impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: 442 

particulate matter is hazardous. International Journal of Chronic Obstructive Pulmonary 443 

Disease, 13: 1053–1059. 444 
 445 

Chu, S.-H., and Paisie, J. W. (2006). An evaluation of current PM2.5 conditions in the US. 446 

Atmospheric Environment, 40: 206–211.   447 

https://doi.org/10.1371/journal.pmed.1002856
https://www.researchgate.net/publication/234039018_Statistical_persistence_analysis_of_hourly_ground_level_ozone_concentrations_in_Delhi?_sg%5B0%5D=lU3cw1SLCaI8DOLLH2Vq8BLi1-ijWr4sPWSoBqjbKdYK_g4ajOsFFVq-a9MQEwRoHSuxtIMm-bxIpx0.yEt5KPIsF_K2Oga6ejU0fCRtxGMs_oVU8rDXqKiRbyuPU3RfxqkTh_K7x1USArKqJMBxWYTOSvb9b30PySthUA&_sg%5B1%5D=J4a3aQ8a87w5jIVPy-d08vx0A4fpbYnmLbW1BT5NynXoGR2yO2R-zDfdkogJrjLuEEzKvu9T1w9w8UmK9VgRcXIf1Oo.yEt5KPIsF_K2Oga6ejU0fCRtxGMs_oVU8rDXqKiRbyuPU3RfxqkTh_K7x1USArKqJMBxWYTOSvb9b30PySthUA&_sg%5B2%5D=3XIknoiWe2nPulwPVvI_tuijvQJIAj4825ZucScoTVECCHMbduZomGY1lqzFCADPy9aT8_3K3fjJIsrvXg.yEt5KPIsF_K2Oga6ejU0fCRtxGMs_oVU8rDXqKiRbyuPU3RfxqkTh_K7x1USArKqJMBxWYTOSvb9b30PySthUA&_sgd%5Bpr%5D=1
https://www.researchgate.net/publication/234039018_Statistical_persistence_analysis_of_hourly_ground_level_ozone_concentrations_in_Delhi?_sg%5B0%5D=lU3cw1SLCaI8DOLLH2Vq8BLi1-ijWr4sPWSoBqjbKdYK_g4ajOsFFVq-a9MQEwRoHSuxtIMm-bxIpx0.yEt5KPIsF_K2Oga6ejU0fCRtxGMs_oVU8rDXqKiRbyuPU3RfxqkTh_K7x1USArKqJMBxWYTOSvb9b30PySthUA&_sg%5B1%5D=J4a3aQ8a87w5jIVPy-d08vx0A4fpbYnmLbW1BT5NynXoGR2yO2R-zDfdkogJrjLuEEzKvu9T1w9w8UmK9VgRcXIf1Oo.yEt5KPIsF_K2Oga6ejU0fCRtxGMs_oVU8rDXqKiRbyuPU3RfxqkTh_K7x1USArKqJMBxWYTOSvb9b30PySthUA&_sg%5B2%5D=3XIknoiWe2nPulwPVvI_tuijvQJIAj4825ZucScoTVECCHMbduZomGY1lqzFCADPy9aT8_3K3fjJIsrvXg.yEt5KPIsF_K2Oga6ejU0fCRtxGMs_oVU8rDXqKiRbyuPU3RfxqkTh_K7x1USArKqJMBxWYTOSvb9b30PySthUA&_sgd%5Bpr%5D=1


18 
 

 448 

Clay, K. and Muller, N. Z. (2019). Recent increases in Air pollution: evidence and implications 449 

for mortality. NBER Working Paper No. 26381. DOI: 10.3386/w26381. 450 

 451 
Dahlhaus, R. (1989). Efficient parameter estimation for self-similar process. Annals of 452 

Statistics, 17: 1749-1766. 453 

 454 

De Jesus, A. L., Rahman, M. M., Mazaheri, M., Thompson, H., Knibbs, L. D., Jeong, C. and 455 

Morawska, L. (2019). Ultrafine particles and PM2.5 in the air of cities around the world: Are 456 

they representative of each other? Environment International, 129: 118–135. 457 
  458 

Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J. and Schwartz, J. (2019). An ensemble 459 

based model of PM2.5 concentration across the contiguous United States with high 460 

spatiotemporal resolution. Environment International, 130. doi:10.1016/j.envint.2019.104909. 461 
 462 

Dickey, D.A and Fuller, W. A. (1979). Distributions of the Estimators for Autoregressive Time 463 

Series with a Unit Root, Journal of American Statistical Association, 74(366): 427-481. 464 

 465 

Diebold, F. X. and Inoue, A. (2001). Long memory and regime switching. Journal of 466 

Econometrics 105: 131-159.  467 

 468 

Diebold, F. X. and Rudebusch, G. D. (1991). On the power of Dickey-Fuller test against 469 

fractional alternatives. Economics Letters, 35(1): 155–160. 470 

 471 

Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An 472 
association between air pollution and mortality in six U.S. cities. The New England Journal of 473 

Medicine, 329 (24): 1753–9. 474 

 475 

Elliot, G., Rothenberg, T. J. and Stock, J. H. (1996). Efficient Tests for an Autoregressive Unit 476 

Root, Econometrica, 64: 813-836. 477 

 478 

Gil-Alana, L.A. (2005). Statistical Modeling of the Temperatures in the Northern Hemisphere 479 

Using Fractional Integration Techniques. Journal of Climate 18 (24): 5357-5369. 480 

 481 

Gil-Alana, L. A. and Robinson, P. M. (1997). Testing of unit root and other nonstationary 482 

hypotheses in macroeconomic time series, Journal of Econometrics 80(2): 241-268. 483 
 484 

Granger, C.W.J. (1980). Long Memory Relationships and the Aggregation of Dynamic Models, 485 

Journal of Econometrics, 14: 227-238. 486 

 487 

Granger C.W.J and Hyung N (2004). Occasional structural breaks and long memory with an 488 

application to the S&P 500 absolute stock returns. Journal of Empirical Finance, 11: 399-421.  489 

 490 

Hadley, O. L. (2017). Background PM2.5 source apportionment in the remote North-Western 491 

United States. Atmospheric Environment, 167: 298–308. 492 

  493 
Hassler, U. and Wolters, J. (1995). Long memory inflation rates. International evidence, Journal 494 

of Business and Economic Statistics, 13: 37-45. 495 
  496 

Ji, X., Yao, Y. and Long, X. (2018). What causes PM2.5 pollution? Cross-economy empirical 497 



19 
 

analysis from socioeconomic perspective. Energy Policy, 119: 458–472. 498 

 499 

Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, 500 

H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica 501 
A: Statistical Mechanics and its Applications, 316(1-4): 87-114. 502 

 503 

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992). Testing the null 504 

hypothesis of stationarity against the alternative of a unit root: How sure are we that economic 505 

time series have a unit root? Journal of Econometrics, 54: 159-178. 506 

 507 

Lee, S., Lee, W., Kim, D., Kim, E., Myung, W., Kim, S. and Kim, H. (2019). Short-term PM2.5 508 

exposure and emergency hospital for mental disease. Environmental Research, 171: 313-320. 509 

 510 

Lee, D. and Schmidt, P. (1996). On the power of the KPSS test of stationarity against 511 

fractionally integrated alternatives. Journal of Econometrics, 73(1): 285–302. 512 
 513 

Li, N., Maesano, C. N., Friedrich, R., Medda, E., Brandstetter, S., Kabesch, M., … Sarigiannis, 514 

D. (2019). A model for estimating the lifelong exposure to PM2.5 and NO2 and the application 515 

to population studies. Environmental Research, doi:10.1016/j.envres.2019.108629 516 

 517 

Liao, H., Chen, W. T. and Seinfeld, J. H. (2006). Role of climate change in global predictions 518 

of future tropospheric ozone and aerosols. Journal of Geophysical Research Atmospheres, 111 519 

(D12304). doi:10.1029/2005jd006852. 520 

 521 

Maji, S., Ghosh, S. and Ahmed, S. (2018). Association of air quality with respiratory and 522 
cardiovascular morbidity rate in Delhi, India. International Journal of Environmental Health 523 

Research, 28(5): 471–490.   524 

 525 

Meraz, M., Rodriguez, E., Femat, R., Echeverria, J. C. and Alvarez-Ramirez, J. (2015). 526 

Statistical persistence of air pollutants (O3, SO2, NO2 and PM10) in Mexico City. Physica A: 527 

Statistical Mechanics and its Applications, 427: 202-217. 528 

 529 

Muller, N. Z., Mendelsohn, R. and Nordhaus, W. (2011). Environmental accounting for 530 

pollution in the United States economy. American Economic Review, 101(5): 1649-1675. 531 

 532 

Nikolopoulos, D., K. Moustris, E. Petraki, D. Koulougliotis and D. Cantzos, (2019), Fractal and 533 
Long-Memory Traces in PM10 Time Series in Athens, Greece, Environments 6, 1-14. 534 

 535 

Phillips, P.C.B. and Perron, P. (1988). Testing for a unit root in time series regression. 536 

Biometrika, 75(2): 335–346. 537 

 538 

Pillai, P., Babu, S. and Moorthy, K. (2002). A study of PM, PM10 and PM2.5 concentrations 539 

at a tropical coastal station. Atmospheric Research, 61: 149-167. 540 

 541 

Pope, C. A., Ezzati, M. and Dockery, D. W. (2009). Fine-particulate air pollution and life 542 

expectancy in the United States. New England Journal of Medicine, 360 (4): 376–86. 543 

 544 
Pope, C. A, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung 545 

Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air 546 

Pollution. Journal of American Medical Association, 287: 1132–41. 547 



20 
 

  548 

Pryor, S. C. and Barthelmie, R. J. (1996). PM10 in Canada. The Science of the Total 549 

Environment, 177: 57-71. 550 

 551 
Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, J. H. 552 

(2009). Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol 553 

levels in the United States. Journal of Geophysical Research, 114(D1). 554 

doi:10.1029/2008jd010701. 555 

 556 

Racherla, P. N. and Adams, P. J. (2006). Sensitivity of global tropospheric ozone and fine 557 

particulate matter concentrations to climate change. Journal of Geophysical Research, 558 

111(D24). doi:10.1029/2005jd006939. 559 

 560 

Robinson, P.M. (1978). Statistical Inference for a Random Coefficient Autoregressive Model, 561 
Scandinavian Journal of Statistics, 5: 163-168. 562 

 563 

Robinson P. M. (1994). Efficient tests of nonstationary hypotheses. Journal of the American 564 

Statistical Association, 89: 1420-1437. 565 

 566 

Schmidt, P. and Phillips, P.C.B. (1992). LM tests for a unit root in the presence of deterministic 567 

terms, Oxford Bulletin of Economics and Statistics 54: 257-287. 568 

 569 

Shou, Y., Huang, Y., Zhu, X., Liu, C., Hu, Y. and Wang, H. (2019). A review of the possible 570 

associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. 571 

Ecotoxicology and Environmental Safety, 174: 344-352 572 
 573 

Tagaris, E., Manomaiphiboon, K., Liao, K.J., Leung, L.R., Woo, J.H., He, S., Amar, P., Russell, 574 

A.G. (2007). Impacts of global climate change and emissions on regional ozone and fine 575 

particulate matter concentrations over the United States. Journal of Geophysical Research e 576 

Atmospheres 112 (D14312). doi:10.1029/2006jd008262. 577 

 578 

Tai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter 579 

(PM2.5) and   meteorological variables in the United States: Implications for the sensitivity of 580 

PM2.5 to climate change. Atmospheric Environment, 44(32): 3976–3984. 581 

 582 

Thompson, J. R., & Wilson, J. R. (2016). Multifractal detrended fluctuation analysis: Practical 583 
applications to financial time series. Mathematics and Computers in Simulation, 126, 63-88. 584 

 585 

United States Environmental Protection Agency (EPA, 2010). The Benefits and Costs of the 586 

Clean Air Act 1990 to 2020: EPA Report to Congress. Washington, DC: US Environmental 587 

Protection Agency, Office of Air and Radiation, Office of Air and Radiation: Office of Policy 588 

in Washington, DC.   589 

 590 

United States Environmental Protection Agency (EPA, 2018). https://www.epa.gov/pm-591 

pollution/health-and-environmental-effects-particulate-matter-pm. Retrieved 04.01.2020.   592 

 593 
Varotsos, C., Ondov, J., & Efstathiou, M. (2005). Scaling properties of air pollution in Athens, 594 

Greece and Baltimore, Maryland. Atmospheric Environment, 39(22), 4041-4047. 595 
        596 

Weinmayr, G., Pedersen, M., Stafoggia, M., Andersen, Z.J., Galassi, C., Munkenast, J., Nagel, 597 



21 
 

G., 2018. Particulate matter air pollution components and incidence of cancers of the stomach 598 

and the upper aerodigestive tract in the European study of cohorts of air pollution effects 599 

(ESCAPE). Environ. Int. 120, 163–171.   600 

 601 
World Health Organization (2013a). Health risks of air pollution in Europe - HRAPIE project: 602 

recommendations for concentration-response functions for cost-benefit analysis of particulate 603 

matter, ozone and nitrogen dioxide. Available online at. 604 

http://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HR605 

APIE_project.pdf. 606 

 607 

World Health Organization (2013b). Review of evidence on health aspects of air pollution - 608 

REVIHAAP project: final technical report. Available online at. 609 

http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-610 

report-final-version.pdf. 611 

 612 
Wu, J.-Z., Ge, D.-D., Zhou, L.-F., Hou, L.-Y., Zhou, Y. and Li, Q.-Y. (2018). Effects of 613 

particulate matter on allergic respiratory diseases. Chronic Diseases and Translational 614 

Medicine, 4(2): 95–102. 615 

 616 

Xue, Y., Pan, W., Lu, W. Z., & He, H. D. (2015). Multifractal nature of particulate matters 617 

(PMs) in Hong Kong urban air. Science of the Total Environment, 532, 744-751. 618 



22 
 

Table 1: Data Description and Sample   619 
No. Name of State Abv. PM2.5 PM10 

   Start date End date Start date End date 

1 Alabama AL 06/01/1999 03/12/2019 02/01/1999 26/07/2019 
2 Alaska AK 10/04/1999 05/12/2019 06/01/1999 30/06/2019 

3 Arizona AZ 06/01/1999 05/12/2019 01/01/1999 30/09/2019 

4 Arkansas AR 30/06/1999 05/12/2019 06/01/1999 30/09/2019 

5 California CA 03/01/1999 05/12/2019 01/01/1999 30/09/2019 

6 Colorado CO 01/01/1999 05/12/2019 01/01/1999 01/09/2019 

7 Connecticut CT 09/01/1999 05/12/2019 01/01/1999 30/09/2019 

8 Delaware DE 03/01/1999 05/12/2019 06/01/1999 30/09/2019 

9 Florida FL 03/01/1999 05/12/2019 01/01/1999 30/07/2003 

10 Georgia GA 01/01/1999 05/12/2019 01/01/1999 31/08/2019 

11 Hawaii HI 19/01/2001 05/12/2019 01/01/1999 30/09/2019 

12 Idaho ID 03/01/1999 05/12/2019 01/01/1999 30/06/2019 

13 Illinois IL 07/01/1999 05/12/2019 13/01/1999 26/12/2000 

14 Indiana IN 22/01/1999 05/12/2019 06/01/1999 30/09/2019 

15 Iowa IA 05/02/1999 05/12/2019 04/01/1999 30/09/2019 

16 Kansas KS 27/01/1999 05/12/2019 18/01/1999 30/06/2019 

17 Kentucky KY 30/01/1999 08/11/2011 06/01/1999 31/12/2005 

18 Louisiana LA 01/01/1999 17/11/2019 06/01/1999 31/01/2019 

19 Maine ME 05/06/2015 14/06/2019 06/01/1999 14/06/2019 

20 Maryland MD 12/05/1999 05/12/2019 06/01/1999 26/06/2019 

21 Massachusetts MA 03/01/1999 05/12/2019 06/01/1999 16/07/2019 

22 Michigan MI 15/01/1999 05/12/2019 06/01/1999 26/03/2001 

23 Minnesota MN 08/11/1999 30/06/2001 03/10/1999 27/09/2000 

24 Mississippi MS 14/02/1999 05/12/2019 01/01/1999 31/10/2019 

25 Missouri MO 02/04/2002 28/06/2006 03/01/1999 30/09/2019 

26 Montana MT 09/01/1999 06/12/2019 01/01/1999 26/12/2008 

27 Nebraska NE 03/01/1999 30/09/2019 03/01/1999 30/06/2019 

28 Nevada NV 01/04/2003 06/12/2019 01/01/1999 30/06/2019 

29 New Hampshire NH 06/01/1999 31/12/2014 06/01/1999 28/12/2002 

30 New Jersey NJ 03/01/1999 06/12/2019 06/01/1999 28/03/2011 

31 New Mexico NM 06/01/1999 06/12/2019 02/01/1999 12/04/2015 

32 New York NY 02/07/1999 06/12/2019 06/01/1999 29/03/2005 

33 North Carolina NC 01/01/1999 06/12/2019 06/01/1999 30/09/2019 

34 North Dakota ND 20/02/1999 06/12/2019 07/01/2001 30/09/2019 

35 Ohio OH 01/01/1999 06/12/2019 01/01/1999 30/09/2019 

36 Oklahoma OK 01/04/1999 06/12/2019 01/01/2000 31/10/2019 

37 Oregon OR 01/01/1999 06/12/2019 01/01/1999 31/03/2019 

38 Pennsylvania PA 01/01/1999 06/12/2019 02/08/2000 11/06/2019 

39 Rhode Island RI 03/01/1999 06/12/2019 06/01/1999 30/09/2019 

40 South Carolina SC 03/01/1999 06/12/2019 01/01/1999 30/09/2019 

41 South Dakota SD 01/01/2015 06/12/2019 03/01/1999 30/06/2019 

42 Tennessee TN 01/01/1999 06/12/2019 03/01/1999 13/06/2019 

43 Texas TX 12/03/1999 06/12/2019 21/10/1999 26/06/2019 

44 Utah UT 01/01/1999 06/12/2019 01/01/1999 31/10/2019 

45 Vermont VT 03/01/1999 06/12/2019 06/02/1999 26/06/2019 

46 Virginia VA 27/01/1999 30/09/2019 06/01/1999 05/11/2019 

47 Washington WA 03/01/1999 06/12/2019 06/01/1999 29/04/2006 

48 West Virginia WV 03/01/1999 12/11/2019 06/01/1999 22/12/2015 

49 Wisconsin WI 03/01/1999 06/12/2019 06/01/1999 31/08/2019 

50 Wyoming WY 06/01/1999 06/12/2019 06/01/1999 30/09/2019 

  620 
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Table 2: Data Summary and Category 621 
No State Abbrev PM2.5 PM10 

   Mean Min. Max. Mean Min. Max. 

1  Alabama AL 47.54 0 221 18.30 0 66 
2  Alaska AK 26.68 0 145 7.84 0 42.0 

3  Arizona AZ 52.18 6 249 78.22 5.0 2212.0 

4  Arkansas AR 48.79 4 235 20.12 2.0 60.7 

5  California CA 51.88 4 314 22.25 3.0 169.0 

6  Colorado CO 40.12 0 195 32.49 2.0 103.0 

7  Connecticut CT 38.90 0 158 50.22 0.0 70.0 

8  Delaware DE 37.36 0 181 22.41 1.0 168 

9  Florida FL 45.85 0 326 15.09 3.0 71.00 

10  Georgia GA 58.59 6 197 20.33 0.0 99.0 

11  Hawaii HI 48.82 0 172 17.06 5.0 121.00 

12  Idaho ID 42.13 0 243 23.94 1.0 215.0 

13  Illinois IL 41.30 4 124 21.03 4.0 64.0 

14  Indiana IN 56.25 10 191 20.35 0 75 

15  Iowa IA 38.65 3 138 21.57 1.0 92 

16  Kansas KS 38.26 0 158 18.85 0.00 80.00 

17  Kentucky KY 47.96 4 144 16.20 1.0 51.00 

18  Louisiana LA 51.20 8 181 24.10 3.0 99 

19  Maine ME 22.92 3 80 13.52 0 73 

20  Maryland MD 51.85 2 169 20.42 0 70 

21  Massachusetts MA 50.19 0 172 14.77 1.0 67.0 

22  Michigan MI 37.53 1 144 22.5 58.0 6.0 

23  Minnesota MN 45.68 4            106 22.05 8.0 59 

24  Mississippi MS 46.49 10            168 19.17 4 79 

25  Missouri MO 44.80 1 113 25.37 506 0 

26  Montana MT 32.71 0 171 19.54 1 104 

27  Nebraska NE 34.04 0 168 18.90 89.0           1.0 

28  Nevada NV 23.48 0 220 21.30 1.0      4.0 

29  New Hampshire NH 35.74 0 151 13.51 0      56 

30  New Jersey NJ 57.38 12 167 20.03 1      86 

31  New Mexico NM 15.87 0 109 11.42 1     65 

32  New York NY 34.72 0 162 10.24 0       60.0 

33  North Carolina NC 47.30 0 173 16.31 0    76 

34  North Dakota ND 27.82 0 198 14.35 0 156 

35  Ohio OH 48.10 2 208 23.75 0 93 

36  Oklahoma OK 41.41 3 152 19.86          0 86 

37  Oregon OR 26.81 0 170 21.25 0 122.0 

38  Pennsylvania PA 50.71 3 187 16.70 1       89 

39  Rhode Island RI 42.20 0 170 19.29 2 71 

40  South Carolina SC 45.72 0 253        26.38 1.0 130 

41  South Dakota SD 16.20 0 152 18.54 0 125.0 

42  Tennessee TN 49.77 5 154 19.41 2 64 

43  Texas TX 39.29 5 152 18.82 3 73 

44  Utah UT 44.41 5 171 30.6 2.0 501 

45  Vermont VT 36.58 0 160 13.80 0 65 

46  Virginia VA 44.07 2 152 14.90 2 100 

47  Washington WA 29.72 2 173 13.33 3 53 

48  West Virginia WV 47.93 0 162 17.04 0 77 

49  Wisconsin WI 40.13 0 154 16.20 0 70 

50  Wyoming WY 18.66 0 160 12.23 0        82 

 622 

  623 
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Table 3: Estimated d-coefficients and 95% confidence bands: PM10 624 

No State No terms An intercept A linear time trend 
1 Alabama 0.32   (0.29,  0.35) 0.29   (0.26,  0.33) 0.29   (0.26,  0.33) 
2 Alaska 0.24   (0.20,  0.28) 0.23   (0.19,  0.27) 0.23   (0.19,  0.27) 
3 Arizona 0.28   (0.27,  0.30) 0.29   (0.27,  0.31) 0.29   (0.27,  0.31) 
4 Arkansas 0.31   (0.28,  0.33) 0.23   (0.20,  0.26) 0.19   (0.16,  0.23) 
5 California 0.45   (0.43,  0.48) 0.45   (0.42,  0.47) 0.45   (0.42,  0.47) 
6 Colorado 0.41   (0.39,  0.43) 0.40   (0.38,  0.42) 0.40   (0.38,  0.43) 
7 Connecticut 0.34   (0.31,  0.37) 0.30   (0.27,  0.33) 0.30   (0.27,  0.33) 
8 Delaware 0.29   (0.27,  0.31) 0.26   (0.24,  0.28) 0.26   (0.23,  0.28) 
9 Florida 0.49   (0.44,  0.53) 0.47   (0.42,  0.52) 0.47   (0.42,  0.52) 

10 Georgia 0.40   (0.38,  0.43) 0.38   (0.36,  0.41) 0.38   (0.36,  0.41) 
11 Hawaii 0.41   (0.39,  0.43) 0.40   (0.38,  0.43) 0.40   (0.38,  0.43) 
12 Idaho 0.49   (0.46,  0.51) 0.48   (0.45,  0.50) 0.48   (0.45,  0.50) 
13 Illinois 0.21   (0.10,  0.39) 0.26   (0.15,  0.41) 0.22   (0.09,  0.40) 
14 Indiana 0.34   (0.31,  0.36) 0.29   (0.26,  0.32) 0.28   (0.25,  0.31) 
15 Iowa 0.34   (0.32,  0.37) 0.31   (0.29,  0.34) 0.31   (0.28,  0.34) 
16 Kansas 0.46   (0.44,  0.49) 0.45   (0.42,  0.48) 0.45   (0.42,  0.48) 
17 Kentucky 0.50   (0.46,  0.55) 0.48   (0.44,  0.53) 0.48   (0.44,  0.53) 
18 Louisiana 0.43   (0.40,  0.46) 0.40   (0.37,  0.43) 0.40   (0.37,  0.43) 
19 Maine 0.30   (0.27,  0.34) 0.25   (0.21,  0.29) 0.23   (0.18,  0.27) 
20 Maryland 0.31   (0.28,  0.34) 0.25   (0.22,  0.28) 0.22   (0.19,  0.25) 
21 Massachusetts 0.32   (0.31,  0.34) 0.27   (0.25,  0.29) 0.22   (0.20,  0.25) 
22 Michigan 0.07   (-0.02,  0.29) 0.09  (-0.04,  0.27) 0.08   (-0.05,  0.27) 
23 Minnesota 0.18   (-0.14,  0.45) 0.06   (-0.09,  0.26) 0.07   (-0.08,  0.28) 
24 Mississippi 0.47   (0.43,  0.52) 0.46   (0.41,  0.51) 0.46   (0.41,  0.51) 
25 Missouri 0.25   (0.23,  0.27) 0.22   (0.20,  0.25) 0.22   (0.19,  0.24) 
26 Montana 0.41   (0.37,  0.44) 0.40   (0.37,  0.44) 0.40   (0.37,  0.44) 
27 Nebraska 0.40   (0.38,  0.43) 0.39   (0.36,  0.41) 0.39   (0.36,  0.41) 
28 Nevada 0.44   (0.42,  0.47) 0.44   (0.41,  0.46) 0.44   (0.41,  0.46) 
29 New Hampshire 0.22   (0.09,  0.34) 0.15   (0.06,  0.27) 0.15   (0.05,  0.27) 
30 New Jersey 0.23   (0.18,  0.28) 0.19   (0.14,  0.24) 0.19   (0.14,  0.24) 
31 New Mexico 0.31   (0.27,  0.35) 0.27   (0.23,  0.32) 0.27   (0.23,  0.32) 
32 New York 0.27   (0.20,  0.34) 0.26   (0.19,  0.33) 0.26   (0.19,  0.33) 
33 North Carolina 0.46   (0.44,  0.49) 0.44   (0.42,  0.48) 0.44   (0.41,  0.48) 
34 North Dakota 0.49   (0.46,  0.52) 0.49   (0.46,  0.51) 0.48   (0.46,  0.50) 
35 Ohio 0.38   (0.35,  0.41) 0.37   (0.34,  0.40) 0.37   (0.34,  0.40) 
36 Oklahoma 0.39   (0.36,  0.42) 0.37   (0.33,  0.40) 0.37   (0.33,  0.40) 
37 Oregon 0.45   (0.40,  0.50) 0.43   (0.38,  0.48) 0.43   (0.38,  0.48) 
38 Pennsylvania 0.47   (0.44,  0.50) 0.45   (0.42,  0.49) 0.45   (0.42,  0.49) 
39 Rhode Island 0.29   (0.26,  0.32) 0.21   (0.18,  0.24) 0.16   (0.13,  0.21) 
40 South Carolina 0.40   (0.38,  0.42) 0.36   (0.33,  0.39) 0.34   (0.31,  0.37) 
41 South Dakota 0.37   (0.35,  0.40) 0.35   (0.33,  0.38) 0.35   (0.33,  0.38) 
42 Tennessee 0.37   (0.35,  0.40) 0.33   (0.30,  0.35) 0.30   (0.27,  0.33) 
43 Texas 0.26   (0.22,  0.30) 0.20   (0.16,  0.24) 0.20   (0.16,  0.24) 
44 Utah 0.40   (0.37,  0.42) 0.38   (0.35,  0.40) 0.37   (0.35,  0.40) 
45 Vermont 0.22   (0.19,  0.27) 0.15   (0.11,  0.19) 0.10   (0.06,  0.15) 
46 Virginia 0.31   (0.28,  0.33) 0.22   (0.20,  0.26) 0.22   (0.20,  0.26) 
47 Washington 0.23   (0.14,  0.32) 0.17   (0.10,  0.25) 0.17   (0.10,  0.25) 
48 West Virginia 0.49   (0.46,  0.52) 0.47   (0.44,  0.51) 0.47   (0.44,  0.51) 
49 Wisconsin 0.30   (0.26,  0.33) 0.23   (0.19,  0.27) 0.21   (0.17,  0.25) 
50 Wyoming 0.39   (0.36,  0.41) 0.38   (0.35,  0.40) 0.38   (0.35,  0.40) 

Note, confidence limits in parentheses 625 
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Table 4: Estimated coefficients for each series: PM10 626 
No State No terms An intercept A linear time trend 
1 Alabama 0.29   (0.26,  0.33) 17.2796   (11.61) --- 
2 Alaska 0.23   (0.19,  0.27) 7.8790   (11.57) --- 
3 Arizona 0.29   (0.27,  0.31) 70.2758   (6.61) --- 
4 Arkansas 0.19   (0.16,  0.23) 26.5720   (21.83) -0.00701   (-6.02) 
5 California 0.45   (0.42,  0.47) 24.3394   (6.59) --- 
6 Colorado 0.40   (0.38,  0.42) 20.2032   (11.58) --- 
7 Connecticut 0.30   (0.27,  0.33) 19.1985   (9.72) -0.00228   (-1.81) 
8 Delaware 0.26   (0.23,  0.28) 26.5493   (16.18) -0.00116   (-2.88) 
9 Florida 0.47   (0.42,  0.52) 13.0903   (4.96) --- 
10 Georgia 0.38   (0.36,  0.41) 23.2157   (9.22) -0.00108   (-1.66) 
11 Hawaii 0.40   (0.38,  0.43) 22.2647   (10.53) -0.00095   (-1.80) 
12 Idaho 0.48   (0.45,  0.50) 28.5326   (6.04) --- 
13 Illinois 0.22   (0.09,  0.40) 14.3576   (3.72) 0.10560   (1.90) 
14 Indiana 0.28   (0.25,  0.31) 25.7129   (13.71) -0.00237   (-2.95) 
15 Iowa 0.31   (0.28,  0.34) 25.6919   (10.28) -0.00242   (-2.08) 
16 Kansas 0.45   (0.42,  0.48) 20.1905   (6.37) --- 
17 Kentucky 0.48   (0.44,  0.53) 15.5667   (5.28) --- 
18 Louisiana 0.40   (0.37,  0.43) 28.6425   (9.04) -0.00245   (-1.75) 
19 Maine 0.23   (0.18,  0.27) 20.0008   (10.94) -0.01020   (-3.97) 
20 Maryland 0.22   (0.19,  0.25) 28.4817   (17.34) -0.00762   (-5.79) 
21 Massachusetts 0.22   (0.20,  0.25) 25.0263   (22.77) -0.00606   (-10.39) 
22 Michigan 0.09  (-0.04,  0.27) 22.3934   (13.14) --- 
23 Minnesota 0.06   (-0.09,  0.26) 22.1955   (13.27) --- 
24 Mississippi 0.46   (0.41,  0.51) 17.4952   (5.25) --- 
25 Missouri 0.22   (0.19,  0.24) 30.8592   (14.11) -0.00163   (-2.95) 
26 Montana 0.40   (0.37,  0.44) 17.1230   (5.18) --- 
27 Nebraska 0.39   (0.36,  0.41) 19.2983   (6.68) --- 
28 Nevada 0.44   (0.41,  0.46) 18.8045   (4.98) --- 
29 New Hampshire 0.15   (0.06,  0.27) 13.6835   (11.34) --- 
30 New Jersey 0.19   (0.14,  0.24) 19.8264   (15.39) --- 
31 New Mexico 0.27   (0.23,  0.32) 11.0846   (12.41) --- 
32 New York 0.26   (0.19,  0.33) 9.9455   (6.27) --- 
33 North Carolina 0.44   (0.42,  0.48) 17.8403   (7.62) --- 
34 North Dakota 0.49   (0.46,  0.51) 12.7550   (3.78) --- 
35 Ohio 0.37   (0.34,  0.40) 21.9157   (7.73) --- 
36 Oklahoma 0.37   (0.33,  0.40) 21.3063   (8.94) --- 
37 Oregon 0.43   (0.38,  0.48) 27.3899   (5.35) --- 
38 Pennsylvania 0.45   (0.42,  0.49) 18.9998   (6.74) --- 
39 Rhode Island 0.16   (0.13,  0.21) 26.8347   (21.21) -0.01126   (-6.90) 
40 South Carolina 0.34   (0.31,  0.37) 42.0332   (13.48) -0.00426   (-5.69) 
41 South Dakota 0.35   (0.33,  0.38) 18.5579   (7.76) --- 
42 Tennessee 0.30   (0.27,  0.33) 25.7787   (13.43) -0.00646   (-4.43) 
43 Texas 0.20   (0.16,  0.24) 19.1547   (20.95) --- 
44 Utah 0.37   (0.35,  0.40) 39.1423   (8.63) -0.00259   (-2.36) 
45 Vermont 0.10   (0.06,  0.15) 17.3939   (21.27) -0.00661   (-5.15) 
46 Virginia 0.22   (0.20,  0.26) 19.3022   (17.24) -0.00500   (-4.79) 
47 Washington 0.17   (0.10,  0.25) 13.3469   (14.03) --- 
48 West Virginia 0.47   (0.44,  0.51) 16.2894   (5.40) --- 
49 Wisconsin 0.21   (0.17,  0.25) 19.4885   (14.56) -0.00528   (-2.93) 
50 Wyoming 0.38   (0.35,  0.40) 12.9041   (7.30) --- 

Note, confidence limits of d in parentheses in the 3rd column, and t-statistic estimates for intercept and trend 627 
coefficients in parentheses in 4th and 5th columns, respectively. 628 

629 
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Table 5: Estimated d-coefficients and 95% confidence bands: PM2.5 630 
No State No terms An intercept A linear time trend 
1  Alabama 0.40   (0.37,  0.42) 0.35   (0.32,  0.38) 0.35   (0.32,  0.37) 
2  Alaska 0.48   (0.45,  0.51) 0.48   (0.45,  0.51) 0.48   (0.45,  0.51) 
3  Arizona 0.34   (0.32,  0.36) 0.32   (0.30,  0.33) 0.31   (0.30,  0.33) 
4  Arkansas 0.46   (0.43,  0.48) 0.42   (0.40,  0.45) 0.42   (0.40,  0.45) 
5  California 0.55   (0.53,  0.55) 0.55   (0.52,  0.57) 0.55   (0.52,  0.57) 
6  Colorado 0.35   (0.33,  0.37) 0.33   (0.30,  0.35) 0.33   (0.30,  0.35) 
7  Connecticut 0.39   (0.36,  0.41) 0.36   (0.34,  0.39) 0.36   (0.34,  0.39) 
8  Delaware 0.31   (0.29,  0.34) 0.26   (0.24,  0.28) 0.23   (0.21,  0.26) 
9  Florida 0.42   (0.40,  0.45) 0.39   (0.36,  0.42) 0.39   (0.36,  0.42) 
10  Georgia 0.43   (0.41,  0.46) 0.40   (0.37,  0.42) 0.39   (0.37,  0.42) 
11  Hawaii 0.46   (0.44,  0.48) 0.46   (0.44,  0.48) 0.46   (0.44,  0.48) 
12  Idaho 0.51   (0.48,  0.53) 0.50   (0.48,  0.53) 0.50   (0.48,  0.53) 
13  Illinois 0.28   (0.26,  0.31) 0.20   (0.18,  0.23) 0.16   (0.13,  0.20) 
14  Indiana 0.48   (0.45,  0.51) 0.45   (0.42,  0.49) 0.45   (0.42,  0.49) 
15  Iowa 0.49   (0.46,  0.55) 0.47   (0.44,  0.51) 0.47   (0.44,  0.50) 
16  Kansas 0.32   (0.29,  0.34) 0.26   (0.23,  0.29) 0.25   (0.22,  0.29) 
17  Kentucky 0.30   (0.28,  0.33) 0.23   (0.20,  0.27) 0.22   (0.19,  0.26) 
18  Louisiana 0.48   (0.45,  0.50) 0.45   (0.42,  0.48) 0.45   (0.42,  0.48) 
19  Maine 0.21   (0.11,  0.31) 0.14   (0.06,  0.24) 0.12   (0.05,  0.22) 
20  Maryland 0.45   (0.42,  0.48) 0.42   (0.39,  0.45) 0.41   (0.38,  0.45) 
21  Massachusetts 0.37   (0.35,  0.39) 0.33   (0.31,  0.33) 0.32   (0.30,  0.35) 
22  Michigan 0.27   (0.25,  0.29) 0.20   (0.18,  0.22) 0.17   (0.15,  0.20) 
23  Minnesota 0.16   (-0.05,  0.44) 0.10   (-0.06,  0.33) 0.10   (-0.06,  0.33) 
24  Mississippi 0.48   (0.45,  0.51) 0.45   (0.42,  0.48) 0.45   (0.42,  0.48) 
25  Missouri 0.24   (0.17,  0.32) 0.14   (0.08,  0.22) 0.14   (0.08,  0.22) 
26  Montana 0.51   (0.48,  0.53) 0.50   (0.48,  0.53) 0.50   (0.48,  0.53) 
27  Nebraska 0.25   (0.23,  0.28) 0.19   (0.16,  0.22) 0.17   (0.14,  0.20) 
28  Nevada 0.64   (0.60,  0.68) 0.64   (0.60,  0.68) 0.64   (0.60,  0.68) 
29  New Hampshire 0.20   (0.17,  0.24) 0.14   (0.11,  0.17) 0.13   (0.10,  0.16) 
30  New Jersey 0.39   (0.36,  0.41) 0.35   (0.32,  0.38) 0.35   (0.32,  0.37) 
31  New Mexico 0.40   (0.38,  0.42) 0.38   (0.36,  0.40) 0.38   (0.36,  0.40) 
32  New York 0.35   (0.33,  0.37) 0.31   (0.29,  0.34) 0.31   (0.28,  0.33) 
33  North Carolina 0.45   (0.43,  0.48) 0.43   (0.40,  0.46) 0.43   (0.40,  0.46) 
34  North Dakota 0.40   (0.38,  0.43) 0.39   (0.36,  0.42) 0.38   (0.36,  0.41) 
35  Ohio 0.43   (0.41,  0.45) 0.39   (0.36,  0.42) 0.38   (0.36,  0.41) 
36  Oklahoma 0.45   (0.42,  0.48) 0.43   (0.41,  0.46) 0.43   (0.41,  0.46) 
37  Oregon 0.56   (0.53,  0.59) 0.56   (0.53,  0.59) 0.56   (0.53,  0.59) 
38  Pennsylvania 0.41   (0.39,  0.44) 0.39   (0.36,  0.42) 0.39   (0.36,  0.42) 
39  Rhode Island 0.40   (0.37,  0.42) 0.37   (0.35,  0.40) 0.37   (0.34,  0.40) 
40  South Carolina 0.45   (0.43,  0.48) 0.42   (0.39,  0.45) 0.42   (0.39,  0.45) 
41  South Dakota 0.51   (0.47,  0.56) 0.50   (0.46,  0.55) 0.50   (0.46,  0.55) 
42  Tennessee 0.49   (0.46,  0.51) 0.46   (0.43,  0.49) 0.46   (0.43,  0.49) 
43  Texas 0.47   (0.44,  0.50) 0.45   (0.42,  0.48) 0.45   (0.42,  0.48) 
44  Utah 0.63   (0.61,  0.66) 0.63   (0.60,  0.66) 0.63   (0.60,  0.66) 
45  Vermont 0.38   (0.35,  0.40) 0.35   (0.33,  0.38) 0.35   (0.33,  0.38) 
46  Virginia 0.46   (0.43,  0.49) 0.43   (0.41,  0.46) 0.43   (0.40,  0.46) 
47  Washington 0.59   (0.56,  0.62) 0.59   (0.56,  0.62) 0.59   (0.56,  0.62) 
48  West Virginia 0.38   (0.36,  0.40) 0.32   (0.30,  0.35) 0.30   (0.27,  0.33) 
49  Wisconsin 0.40   (0.38,  0.43) 0.37   (0.34,  0.40) 0.37   (0.34,  0.40) 
50  Wyoming 0.31   (0.28,  0.33) 0.23   (0.20,  0.26) 0.19   (0.16,  0.23) 

Note, confidence limits in parentheses 631 

 632 
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Table 6: Estimated coefficients for each series: PM2.5 633 
No State No terms An intercept A linear time trend 
1  Alabama 0.35   (0.32,  0.37) 56.8952   (12.96) -0.00320   (-1.80) 
2  Alaska 0.48   (0.45,  0.51) 22.8311   (3.06) --- 
3  Arizona 0.32   (0.30,  0.33) 53.4817   (17.04) --- 
4  Arkansas 0.42   (0.40,  0.45) 59.1584  (10.54) -0.00264   (-1.77) 
5  California 0.55   (0.52,  0.57) 71.4470   (5.87) --- 
6  Colorado 0.33   (0.30,  0.35) 38.2575   (10.44) --- 
7  Connecticut 0.36   (0.34,  0.39) 40.8074   (11.02) --- 
8  Delaware 0.23   (0.21,  0.26) 50.5373   (21.55) -0.00610   (-6.58) 
9  Florida 0.39   (0.36,  0.42) 46.9244   (11.01) --- 
10  Georgia 0.39   (0.37,  0.42) 72.4035   (13.32) -0.00360   (-2.70) 
11  Hawaii 0.46   (0.44,  0.48) 21.9707   (3.55) --- 
12  Idaho 0.50   (0.48,  0.53) 53.4019   (6.22) --- 
13  Illinois 0.16   (0.13,  0.20) 52.1074   (28.01) -0.00920   (-6.92) 
14  Indiana 0.45   (0.42,  0.49) 62.9697   (8.57) --- 
15  Iowa 0.47   (0.44,  0.51) 44.8293   (6.26) --- 
16  Kansas 0.25   (0.22,  0.29) 45.5988   (16.35) -0.00427   (-2.76) 
17  Kentucky 0.22   (0.19,  0.26) 53.6037   (16.94) -0.00800   (-2.27) 
18  Louisiana 0.45   (0.42,  0.48) 57.7868   (9.46) --- 
19  Maine 0.12   (0.05,  0.22) 26.5053   (9.87) -0.0309   (-1.65) 
20  Maryland 0.41   (0.38,  0.45) 66.1003   (10.56) -0.00400   (-2.40) 
21  Massachusetts 0.32   (0.30,  0.35) 59.6733   (17.32) -0.00246   (-3.10) 
22  Michigan 0.17   (0.15,  0.20) 47.2078   (28.09) -0.00486   (-6.72) 
23  Minnesota 0.10   (-0.06,  0.33) 45.1945   (6.42) --- 
24  Mississippi 0.45   (0.42,  0.48) 56.8522   (9.70) --- 
25  Missouri 0.14   (0.08,  0.22) 47.1770   (15.01) --- 
26  Montana 0.50   (0.48,  0.53) 28,3140 (3.20) --- 
27  Nebraska 0.17   (0.14,  0.20) 40.8903   (21.44) -0.00550   (-4.20) 
28  Nevada 0.64   (0.60,  0.68) 12.8073   (1.96) --- 
29  New Hampshire 0.13   (0.10,  0.16) 40.6726   (21.85) -0.00520   (-3.15) 
30  New Jersey 0.35   (0.32,  0.37) 66.4176   (13.52) -0.00255   (-2.19) 
31  New Mexico 0.38   (0.36,  0.40) 17.3624   (9.15) --- 
32  New York 0.31   (0.28,  0.33) 45.4411   (12.52) -0.00352   (-3.10) 
33  North Carolina 0.43   (0.40,  0.46) 52.7887   (8.90) --- 
34  North Dakota 0.39   (0.36,  0.42) 33.8361   (7.42) --- 
35  Ohio 0.38   (0.36,  0.41) 63.6265   (12.49) -0.00473   (-3.23) 
36  Oklahoma 0.43   (0.41,  0.46) 43.8001   (7.68) --- 
37  Oregon 0.56   (0.53,  0.59) 43.6885   (4.58) --- 
38  Pennsylvania 0.39   (0.36,  0.42) 55.6072   (8.90) --- 
39  Rhode Island 0.37   (0.35,  0.40) 44.2762   (11.74) --- 
40  South Carolina 0.42   (0.39,  0.45) 56.6492   (10.13) -0.00341   (-2.07) 
41  South Dakota 0.50   (0.46,  0.55) 15.3274   (2.76) --- 
42  Tennessee 0.46   (0.43,  0.49) 64.2001   (10.25) -0.00356   (-1.94) 
43  Texas 0.45   (0.42,  0.48) 43.9724   (7.48) --- 
44  Utah 0.63   (0.60,  0.66) 57.9306   (4.24) --- 
45  Vermont 0.35   (0.33,  0.38) 44.1075   (9.25) -0.00297   (-1.82) 
46  Virginia 0.43   (0.40,  0.46) 56.7748   (9.39) -0.00337   (-1.99) 
47  Washington 0.59   (0.56,  0.62) 74.4716   (7.52) --- 
48  West Virginia 0.30   (0.27,  0.33) 65.8890   (18.79) -0.00995   (-6.12) 
49  Wisconsin 0.37   (0.34,  0.40) 50.3533   (9.76) -0.00701   (-6.02) 
50  Wyoming 0.19   (0.16,  0.23) 26.5719   (21.83) -0.00360   (-2.13) 

Note, confidence limits of d in parentheses in the 3rd column, and t-statistic estimates for intercept and 634 
trend coefficients in parentheses in 4th and 5th columns, respectively. 635 
  636 
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Table 7: Classification based on the time trend coefficients 637 

Significant time trend coefficients 

PM10 Time trend 

coeff. 
PM2.5 Time trend coeff. 

Illinois 0.10560 West Virginia -0.00995 

Rhode Island -0.01126 Illinois -0.00920 

Maine -0.01020 Kentucky -0.00800 

Maryland -0.00762 Wisconsin -0.00701 

Arkansas -0.00701 Delaware -0.00610 

Vermont -0.00661 Nebraska -0.00550 

Tennessee -0.00646 New Hampshire -0.00520 

Massachusetts -0.00606 Michigan -0.00486 

Wisconsin -0.00528 Ohio -0.00473 

Virginia -0.00500 Kansas -0.00427 

South Carolina -0.00426 Maryland -0.00400 

Utah -0.00259 Georgia -0.00360 

Louisiana -0.00245 Wyoming -0.00360 

Iowa -0.00242 Tennessee -0.00356 

Indiana -0.00237 New York -0.00352 

Connecticut -0.00228 South Carolina -0.00341 

Missouri -0.00163 Virginia -0.00337 

Delaware -0.00116 Alabama -0.00320 

Georgia -0.00108 Maine -0.00309 

Hawaii -0.00095 Vermont -0.00297 

  Arkansas -0.00264 

  New Jersey -0.00255 

  Massachusetts -0.00246 
 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 
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 652 

Table 8: Classification based on the degree of persistence: PM10 653 

d  =  0 0  <  d <  0.5 0.5  ≤  d  <  1 

Minnesota   (0.06) 
Michigan   (0.09) 

Vermont   (0.10) 
Rhode Island   (0.16) 
Washington   (0.17) 
Arkansas   (0.19) 
New Jersey  (0.19) 
Texas   (0.20) 
Wisconsin   (0.21) 
Illinois   (0.22) 
Maryland   (0.22) 
Massachusetts   (0.22) 
Virginia   (0.22) 
Alaska   (0,23) 
Maine   (0.23) 
Delaware   (0.26) 
New York   (0.26) 
New Mexico   (0.27) 
Indiana   (0.28) 
Alabama   (0.29) 
Arizona   (0.29) 
Connecticut   (0.30) 
Tennessee   (0.30) 
Iowa   (0.31) 
South Carolina   (0.34) 
South Dakota   (0.35) 
Ohio   (0.37) 
Oklahoma   (0.37) 
Utah   (0.37) 
Georgia   (0.38) 
Wyoming   (0.38) 
Colorado   (0.40) 
Hawaii   (0.40) 
Louisiana   (0.40) 
Oregon   (0.43) 
North Carolina  (0.44) 
California   (0.45) 
Kansas   (0.45) 
Pennsylvania   (0.45) 

 

 0  <  d <  1 

 Mississippi   (0.46) 
Florida   (0.47) 
West Virginia   (0.47) 
Idaho   (0.48) 
Kentucky (0.48) 
North Dakota   (0.49) 

 654 
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Table 9: Classification based on the degree of persistence: PM2.5 655 

d  =  0 0  <  d <  0.5 0.5  ≤  d  <  1 

Minnesota   (0.10) Mayne   (0.12) 
New Hampshire   (0.13) 
Missouri   (0.14) 
Illinois   (0.16) 
Michigan   (0.17) 
Nebraska   (0.17) 
Wyoming   (0.19) 
Kentucky   (0.22) 
Delaware   (0.23) 
Kansas   (0.25) 
West Virginia   (0.30) 
New York   (0.31) 
Massachusetts   (0.32) 
Colorado   (0.33) 
Arizona   (0.34) 
Alabama   (0.35) 
Vermont   (0.35) 
New Jersey   (0.35) 
Connecticut   (0.36) 
Wisconsin   (0.37) 
Rhode Island   (0.37) 
Ohio   (0.38) 
New Mexico   (0.38) 
Florida   (0.39) 
Georgia   (0.39) 
Pennsylvania   (0.39) 
North Dakota   (0.39) 
Maryland  (0.41) 
Arkansas   (0.42) 
South Carolina   (0.42) 
Virginia   (0.43) 
Oklahoma   (0.43) 
North Carolina   (0.43) 
Indiana   (0.45) 
Louisiana   (0.45) 
Mississippi   (0.45) 
Texas   (0.45) 
Hawii   (0.46) 
Tennessee  (0.46) 

California   (0.55) 
Oregon   (0.56) 
Washington   (0.59) 
Nevada   (0.60) 
Utah   (0.63) 

 0  <  d   <   1 

 Iowa   (0.47) 
Alaska  (0.48) 
Idaho   (0.50) 
Montana   (0.50) 
South Dakota   (0.50) 

 656 
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APPENDIX A: Table A1: US States 657 
No Name of State  Abbv. Capital Cities Estab. Dates Total a. Land a. Water a. 

1  Alabama AL Montgomery Dec 14, 1819 135767 131171 4597 

2  Alaska AK Juneau Jan 3, 1959 1723337 1477953 245384 

3  Arizona AZ Phoenix Feb 14, 1912 295234 294207 1026 

4  Arkansas AR Little Rock Jun 15, 1836 137732 134771 2961 

5  California CA Sacramento Sep 9, 1850 423967 403466 20501 

6  Colorado CO Denver Aug 1, 1876 269601 268431 1170 

7  Connecticut CT Hartford Jan 9, 1788 14357 12542 1816 

8  Delaware DE Dover Dec 7, 1787 6446 5047 1399 

9  Florida FL Tallahassee Mar 3, 1845 170312 138887 31424 

10  Georgia GA Atlanta Jan 2, 1788 153910 148959 4951 

11  Hawaii HI Honolulu Aug 21, 1959 28313 16635 11678 

12  Idaho ID Boise Jul 3, 1890 216443 214045 2398 

13  Illinois IL Springfield Dec 3, 1818 149995 143793 6202 

14  Indiana IN Indianapolis Dec 11, 1816 94326 92789 1537 

15  Iowa IA Des Moines Dec 28, 1846 145746 144669 1077 

16  Kansas KS Topeka Jan 29, 1861 213100 211754 1346 

17  Kentucky KY Frankfort Jun 1, 1792 104656 102269 2387 

18  Louisiana LA Baton Rouge Apr 30, 1812 135659 111898 23761 

19  Maine ME Augusta Mar 15, 1820 91633 79883 11750 

20  Maryland MD Annapolis Apr 28, 1788 32131 25142 6990 

21  Massachusetts MA Boston Feb 6, 1788 27336 20202 7134 

22  Michigan MI Lansing Jan 26, 1837 250487 146435 104052 

23  Minnesota MN St. Paul May 11, 1858 225163 206232 18930 

24  Mississippi MS Jackson Dec 10, 1817 125438 121531 3907 

25  Missouri MO Jefferson City Aug 10, 1821 180540 178040 2501 

26  Montana MT Helena Nov 8, 1889 380831 376962 3869 

27  Nebraska NE Lincoln Mar 1, 1867 200330 198974 1356 

28  Nevada NV Carson City Oct 31, 1864 286380 284332 2048 

29  New Hampshire NH Concord Jun 21, 1788 24214 23187 1027 

30  New Jersey NJ Trenton Dec 18, 1787 22591 19047 3544 

31  New Mexico NM Santa Fe Jan 6, 1912 314917 314161 757 

32  New York NY Albany Jul 26, 1788 141297 122057 19240 

33  North Carolina NC Raleigh Nov 21, 1789 139391 125920 13471 

34  North Dakota ND Bismarck Nov 2, 1889 183108 178711 4397 

35  Ohio OH Columbus Mar 1, 1803 116098 105829 10269 

36  Oklahoma OK Oklahoma City Nov 16, 1907 181037 177660 3377 

37  Oregon OR Salem Feb 14, 1859 254799 248608 6191 

38  Pennsylvania PA Harrisburg Dec 12, 1787 119280 115883 3397 

39  Rhode Island RI Providence May 29, 1790 4001 2678 1324 

40  South Carolina SC Columbia May 23, 1788 82933 77857 5076 

41  South Dakota SD Pierre Nov 2, 1889 199729 196350 3379 

42  Tennessee TN Nashville Jun 1, 1796 109153 106798 2355 

43  Texas TX Austin Dec 29, 1845 695662 676587 19075 

44  Utah UT Salt Lake City Jan 4, 1896 219882 212818 7064 

45  Vermont VT Montpelier Mar 4, 1791 24906 23871 1035 

46  Virginia[E] VA Richmond Jun 25, 1788 110787 102279 8508 

47  Washington WA Olympia Nov 11, 1889 184661 172119 12542 

48  West Virginia WV Charleston Jun 20, 1863 62756 62259 497 

49  Wisconsin WI Madison May 29, 1848 169635 140268 29367 

50  Wyoming WY Cheyenne Jul 10, 1890 253335 251470 1864 

Source: https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_States#cite_note-11 . 658 
Retrieved on 07 December 2019.   659 
 660 
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 665 

APPENDIX B: Table B1: Air Quality Index (AQI) Category for PM2.5 and PM10 666 

 Pollutants 

Category PM2.5 (ug/m3) PM10 (ug/m3) 

Good ≤ 12.0 ≤ 54 

Moderate 12.1 – 35.4 55 – 154 

Unhealthy for Sensitive Groups 35.5 – 55.4 155 – 254   

Unhealthy 55.5 – 150.4 255 – 354 

Very Unhealthy 150.5 – 250.4 355 – 424 

Hazardous ≥ 250.5 ≥ 425 

 667 

 668 

 669 

 670 
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Figure 1: Time plots of fine and coarse particulate matter (PM2.5 and PM10) for only   676 

Alabama and Wyoming (Other 48 US states cannot be represented due to space) 677 

  678 
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Figure 2: US states and degrees of persistence: PM10 683 
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Figure 3: US states and degrees of persistence: PM2.5 693 
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