1	Long Memory and T	ime Trends in Particulate Matter Pollution (PM _{2.5}
2		and PM ₁₀) in the US States
3		
4		
5		Luis A. Gil-Alana
6	Faculty of Ec	onomics, University of Navarra, Pamplona, Spain &
7	τ	Universidad Francisco de Vitoria, Spain
8		
9		OlaOluwa S. Yaya
10	Environmental Statistics Un	nit, Department of Statistics, University of Ibadan, Ibadan, Nigeria
11	& Unive	rsity of Economics Ho Chi Minh City, Vietnam
12		
13		Oladapo G. Awolaja
14	Department of F	Sconomics, Babcock University, Ilishan-Remo, Nigeria
15		Laura Cristafana
16	E1	Lorenzo Cristolaro
10	Facul	ty of Mathematics, University of Turin, Italy
10		
20 19		
20 21		
21 22		
23		
24	Corresponding author:	Prof. Luis A. Gil-Alana
25		University of Navarra
26		Faculty of Economics and ICS-NCID
27		31009 Pamplona
28		Spain
29		
30		Email: <u>alana@unav.es</u>
31		
32		

ABSTRACT

This paper focuses on the analysis of the time series behaviour of the air quality in the 50 US 34 states by looking at the statistical properties of the particulate matter (PM₁₀ and PM_{2.5}) datasets. 35 36 We use long daily time series of outdoor air quality indices to examine issues such as the degree 37 of persistence as well as the existence of time trends in data. For this purpose, we use a long memory fractionally integrated framework. The results show significant negative time trend 38 coefficients in a number of states and evidence of long memory in the majority of the cases. In 39 40 general, we observe heterogeneous results across counties though we notice higher degrees of persistence in the states on the West with respect to those on the East, where there is a general 41 decreasing trend. It is hoped that the findings in the paper will continue to assist in quantitative 42 evidence-based air quality regulation and policies. 43

- 45 **Keywords:** Air pollution; fractional persistence; long memory; particulate matter; United
- 46 States
- 47 **JEL Classifications:** C22, Q53, Q58
- 48

44

33

50 **1.** Introduction

Air quality in the United States has undergone a dramatic shift since 2016 when the level of 51 particulate matter (particulate pollution) increased by 5.5 percent during the 2016-2018 time 52 period, according to Environmental Protection Agency (EPA) datasets. In a report by the 53 National Bureau of Economic Research (NBER), the worsening of air quality in the US is due 54 to more wildfires, more economic growth and less enforcement of federal regulations (Clay and 55 Muller, 2019). Particulate matter is in the form of solid particles and liquid droplets such as 56 dust, dirt, and soot smoke with fine or coarse sizes. Two types of particulate matter are PM_{10} 57 and PM_{2.5}, the former is coarse particulate with a particle of diameter 10 micrometres, and the 58 latter is fine particulate with a particle of diameter 2.5 micrometres. These particles are emitted 59 from construction sites, automobiles, unpaved roads, fields, smokestacks, or fires. 60

Among the pollutants, PM_{2.5} is known to increase premature mortality risk (US EPA, 61 2010; Muller, Mendelsohn, and Nordhaus, 2011). PM_{2.5} is majorly of concern to regulators and 62 63 public health experts due to its microscopic size which aids easier inhaling and absorption into the bloodstream compared to the coarse type, PM₁₀. Exposure of humans to particles can affect 64 lungs and hearts, causing premature death, heart attacks, asthma, and other lung and respiratory 65 malfunctioning (EPA, 2018). Fine particles easily accumulate in the brain, and this is linked to 66 dementia and cognitive decline in adults, and these particles are the main cause of haze in many 67 parts of the US. 68

69 The Air Quality Index (AQI) gives the level of cleanliness of outdoor air, and data are 70 synchronized daily. From these datasets, the EPA monitors the emission of pollutants using 71 national and regional rules.

Air quality in the US has improved significantly due to policies of the EPA and the World Health Organization (WHO) (Pope, Ezzati and Dockery, 2009). The effort was largely due to the health hazard posed by PM_{2.5} (Dockery, et al., 1993; Pope et al., 2002), while in 2015, about 9 percent of the Americans lived in counties with concentrations of $PM_{2.5}$ above the WHO AQI standard of 10 ug/m³ and 89 percent lived in counties with concentrations of 5-10 ug/m³. Thus, further reducing $PM_{2.5}$ will likely lower mortality caused by these health hazards.

Studying the dynamics of values of PM_{10} and $PM_{2.5}$ in the US case informs researchers 79 and policymakers about life expectancy in their respective US counties or states. The literature 80 we present in this paper comprises epidemiological studies (Choi et al., 2018; Lee et al., 2019). 81 studies on pollutant concentration and seasonal variations in the dynamics of particulate 82 pollution (Pryor and Barthelmie, 1996; Pillai et al., 2002), studies relating pollutants to climate 83 change (Tai et al., 2010) and studies on the causes of air pollution (see, e.g., Ji et al., 2018). 84 There also exists sparse literature on factors influencing exposure to air pollutants. The 85 epidemiological studies investigate the existence of a relationship between human health-86 related problems and exposure to air pollution. There are several strands of evidence from 87 88 epidemiological research supporting health-related problems induced by exposure to air pollutants (Li et al., 2019). According to the report by the WHO, fine particulate matter is one 89 90 of the air pollutants that is associated with a large number of health issues (WHO, 2013a; WHO, 91 2013b). Shou et al. (2019) examine exposure to PM_{2.5} and the risk of neurodegenerative diseases. They provide evidence that PM_{2.5} induces neurodegenerative diseases. PM_{2.5} has also 92 been found to induce respiratory problems (Choi et al., 2018; Weinmayr et al., 2018 and Wu et 93 al., 2018). Maji et al., (2018) reveal evidence linking PM_{2.5} to cardiovascular diseases. 94

Pillai et al. (2002) examine the concentration of $PM_{2.5}$ and PM_{10} . From their results, PM₁₀ concentration is lower than limits given by various environmental standards, while $PM_{2.5}$ exceeds the threshold set by the US EPA. There is also seasonal variation in $PM_{2.5}$ and PM_{10} with the highest concentration during the winter season. Pryor and Barthelmie (1996) found that PM_{10} concentration in Canada is above the standard set in California (US), even though it

passes the WHO threshold. Ji et al. (2018) examine the socioeconomic drivers of PM_{2.5} in 79 100 developing economies and findings from the study indicate that income, urbanization, and the 101 service sector have a significant impact on PM_{2.5} concentration. There also exists an inverted U 102 relationship between urbanization and $PM_{2.5}$ in which the particulate matter positively 103 correlates with a low-income level or urbanization but has a negative association at a high level. 104 Chu and Paisie (2006) evaluate the current PM_{2.5} situation using the critical design values 105 (CDV) application. Their findings suggest that California and some areas in the East stand the 106 risk of potential future violation of the annual threshold for PM_{2.5} set by NAAQS. Also, the 24-107 h standard is likewise at the risk of being violated by California and some areas in the West. 108 Bell et al. (2007) reveal findings supporting strong and geographic variations in the 109 concentrations of PM_{2.5} in the US. Tai et al. (2010) investigate the response of fine particulate 110 matter (PM_{2.5}) to meteorological variables using a multiple linear regression model; the study 111 employs observational data for the period of 1998 to 2008. The concentration of PM_{2.5} and its 112 113 various components are found to have an association with meteorological variables except for temperature, relative humidity (RH), and wind direction. Evidence reveals that climate change 114 115 has potential effects on PM_{2.5}. Other similar studies are Liao et al. (2006); Racherla and Adams (2006); Tagaris et al. (2007); Avise et al. (2009) and Pye et al. (2009); the studies used the 116 General Circulation Model (GCM)-Chemical Transport Model (CTM) to simulate air pollutants 117 concentrations. 118

Hadley (2017) identifies marine-traffic residual fuel oil (RFO), biomass combustion emissions (BMC), seawater, and crustal materials as explaining the concentrations of PM_{2.5} in the North-western United States. The study makes use of a matrix factorization model by the US EPA to analyse seasonal and long-term trends. From January 2011 to December 2014, the period covered in the study, the effects of RFO were highest during late summer, while BMC and sea salt contributed the largest in winter. The crustal material does not indicate any seasonal 125 cycle. De Jesus et al. (2019) examine the ultrafine particles and $PM_{2.5}$ for ten cities located in 126 North America, Europe, Asia, and Australia for over twelve months. The seasonal variation in 127 air pollutants is found to be associated with geographical locations of the cities and their 128 features. Di et al. (2019) examine the concentration of $PM_{2.5}$ across the contiguous United States 129 from 2000 to 2015. Findings show that the $PM_{2.5}$ prediction dataset allows an accurate estimate 130 of the adverse effect of $PM_{2.5}$ on health by epidemiologists.

The long memory feature in the air pollutant series has been previously studied by some 131 authors. Thus, for example, Chen et al. (2016) examined four major cities in China, Beijing, 132 Shanghai, Guangzhou and Shenzhen, with data between 2013 and 2015, and found high level 133 of persistence in the four cities, especially in Guangzhou and Shenzhen. Meraz et al. (2015) 134 used R/S analysis and found evidence of long range dependence in the air pollutants in Mexico 135 City though this property was not found to be uniform across time scales. Other articles using 136 the R/S method in the analysis of air pollutants include Chelani (2009, 2016). Meraz et al. 137 138 (2015), Nikolopoulos et al. (2019). Other studies have used other non-parametric methods such as the Detrended Fluctuation Analysis (DFA) (Varotsos et al., 2005) and its generalization, the 139 140 Multifractal Detrended Fluctuation Analysis (MF-DFA) (Xue et al., 2015), estimating the Hurst parameter (Hurst, 1951) and its potential change over time. Given the sensitiveness of these 141 methods to the user-chosen parameters and the need for a large amount of data to obtain reliable 142 estimates (Kantelhardt et al., 2002; Thompson et al., 2016), the fractional integration model is 143 a useful approach with which to get reliable results for relatively short time series such as those 144 employed in this work. Although the R/S analysis, DFA, MF-DFA, and the fractional 145 integration take long memory into account, they are closely linked (see Beran, 1994). 146

147 Our approach to the analysis of particulate pollutants is based on the anlaysis of the time 148 series properties of the two pollutants (PM_{10} and $PM_{2.5}$) by looking at its long memory structure. 149 Findings from this paper will be useful in the econometric modelling of pollutant variables with

other macroeconomic, health-related, and demographic variables. Previous literature lacks 150 knowledge of the time series properties of pollutant levels in the zones/cities under 151 consideration. Specifically, we investigate the time series properties in PM₁₀ and PM_{2.5} series, 152 in each US state using fractional integration. The methodological approach employed in this 153 work allows for fractional values in the degree of differentiation of the series, to render them 154 stationary I(0), such that the degree of differentiation of the series (the persistence parameter) 155 takes value in the long memory range. This allows us to have a much richer degree of flexibility 156 in the dynamic specification of the data compared with the classical case of unit roots or more 157 generally integer degrees of differentiation. In addition, the fractional integration framework 158 allows for potential deterministic trends in order to determine if there is a systematic pattern in 159 the data across time. The kind of time series analysis approach employed in this work is novel 160 and has been rarely applied in the analysis of air quality datasets since it is also a mandatory 161 step in the Box-Jenkins time series modelling (see Box et al., 2015). Furthermore, this approach 162 163 provides a useful economic interpretation for air quality regulatory agencies regarding policy formation. 164

The contribution of this work is twofold: first, we investigate if long memory is a feature observed in the particulate matter pollution data in the US and for this purpose we use a parametric approach based on fractional integration methods. Secondly, and based on the previous feature, we investigate if time trends are present in the data and if the time trend coefficient changes according to this long memory feature. Implications of the results obtained are presented in the final part of the manuscript.

The rest of the paper is structured as follows: Section 2 presents the statistical methods applied in the paper and describes the datasets. Section 3 displays the main empirical results, while Section 4 renders the conclusions and policy recommendations.

2. Materials and Methods

176 2.1 Statistical method

During the analysis of time series, a crucial issue is to determine if the series is stationary or not. With nonstationary series, a standard approach is to take first differences, that is, if the original series, x_t , is nonstationary but its first differences, $y_t = x_t - x_{t-1}$ produce a stationary series. Then, we say that x_t is integrated of order 1 or I(1). This concept has been generalized to the fractional case, and a time series can be integrated of order d or I(d) where d is a fractional value. In other words, we say that a time series x_t is integrated of order d if it can be expressed as:

$$(1-L)^{a} x_{t} = u_{t}, \quad t = 0, \pm 1, ...,$$
(1)

where d can be any real value, L is the lag-operator ($Lx_t = x_{t-1}$) and u_t is I(0) series, defined for our purposes as a covariance (or second-order) stationary process with a spectral density function that is positive and finite at the zero frequency. The polynomial $(1 - L)^d$ in the lefthand-side of equation (1) can be expressed in terms of its binomial expansion, such that, for all real d,

$$(1-L)^{d} = \sum_{j=0}^{\infty} {\binom{d}{j}} (-1)^{j} L^{j} = 1 - dL + \frac{d(d-1)}{2} L^{2} - \frac{d(d-1)(d-2)}{6} L^{3} \dots$$

190

and thus,

192
$$(1-L)^d x_t = x_t - dx_{t-1} + \frac{d(d-1)}{2}x_{t-2} - \frac{d(d-1)(d-2)}{6}x_{t-3} + \dots$$
 (2)

193 Thus, if d is not an integer, x_t depends on all its past history, and if d > 0, x_t displays the property 194 of long memory, based on the large degree of dependence between observations that are far 195 apart. The concept of long memory is more general than fractional integration since it refers to 196 the property that the spectral density function contains at least one singularity or pole in the 197 interval [0, π). In the case of a model like (1), the singularity occurs at the smallest (zero) 198 frequency.

In this context of fractional integration or I(d) processes, the differencing parameter d 199 is crucial on several fronts. For instance, if d = 0, the process is stationary and short memory, 200 with little dependence between the observations and with shocks disappearing fast. If d belongs 201 to the interval (0, 0.5), x_t is still covariance stationary though with long memory and mean-202 reverting properties, and the effects of the shocks disappear, at a relatively slower rate; if d 203 belongs to the interval [0.5, 1), the series is no longer stationary but shocks are still mean 204 reverting, though with long-lasting effects: d = 1 refers to the classical I(1) case and values of d 205 \geq 1 also imply lack of mean reversion. Thus, by using fractional values for the differencing 206 207 parameter, we allow for a much richer structure in the dynamic specification of the data. Thus, classical methods based on AR(I)MA models only consider the stationary ARMA case that 208 imposes d = 0 and the nonstationary ARIMA case with d = 1, and do not consider the fractional 209 alternatives employed in this work. In addition, it is well known that the standard (unit root) 210 methods that distinguish between stationarity and nonstationarity (i.e. Dickey and Fuller, 1979: 211 212 Phillips and Perron, 1988; Kwiatkowski et al., 1992; Elliot et al., 1996) have very low power if the true data generating process is fractionally integrated (see, Diebold and Rudebush, 1991; 213 Hassler and Wolters, 1994; Lee and Schmidt, 1996), this being another advantage of the 214 215 fractional approach used in this article.

Finally, and to allow for a much richer modelling structure, we also permit deterministic components, and following here the approach of Bharghava (1986), Schmidt and Phillips (1992) and many others on the specification of unit roots, we permit for a constant and a linear time trend, such that, supposing that y_t is the original data,

$$y_t = \alpha + \beta t + x_t \quad t = 1, 2, ...,$$
 (3)

where α and β are unknown coefficients referring, respectively, to the constant and the time trend, and x_t is supposed to be given by (1), i.e., following an I(d) process.

223 The estimation is carried out by using the Whittle function in the frequency domain (see,

e.g., Dahlhaus, 1989) and we use a version of the tests of Robinson (1994) that is veryconvenient in the context of the present data. Thus, we test the null hypothesis:

$$H_o: d = d_o, (4)$$

for any real value d_0 , in the model given by equations (3) and (1), reporting the confidence 227 intervals of the non-rejection values of d_o. The test is based on the Lagrange Multiplier (LM) 228 principle and thus, it does not require preliminary estimation of d, and more importantly, is 229 valid for any real value d, including then, values in the nonstationary range ($d \ge 0.5$). Moreover, 230 the limiting distribution is standard normal, and this limiting behaviour is unaffected by the 231 presence of the deterministic terms of the form as in (3). For further details, see Robinson (1994) 232 or any of its numerous empirical applications (Gil-Alana and Robinson, 1997; Gil-Alana, 2005; 233 Abbritti et al., 2016; etc.). 234

235

236 **2.2. Data**

The datasets used in this paper are daily outdoor air quality indices, based on fine and coarse particulate matter (PM_{2.5} and PM₁₀), for all 50 US states. These datasets were retrieved from the database of the United States Environmental Protection Agency (EPA), on the website: <u>https://www.epa.gov/outdoor-air-quality-data/air-data-multiyear-tile-plot</u>.

Table 1 presents the data description, with start and end dates for both time series of 241 particulate matter. Most sites have datasets commencing from 1999 and ending in 2019. For 242 those with shorter series length, recorded sample sizes are still long enough for time series 243 analysis. These are the cases of Hawaii, Kentucky, Maine, Minnesota, Missouri, Nevada, and 244 South Dakota States for PM_{2.5}, while for PM₁₀, we have the cases of Florida, Illinois, Kentucky, 245 Michigan, Minnesota, Montana, New Hampshire, New Jersey, New Mexico, New York, North 246 Dakota, Oklahoma, North Dakota, Washington, and West Virginia states with time series not 247 commencing from 1999 nor ending in 2019. In the appendix (Table A), we have names of states 248

and their capital cities with the total area, land, and water area of the states. Each capital city 249 area represents the state with the given air pollutant, while in very few cases, other cities' data 250 were reported for the corresponding states due to data unavailability. For example, in PM_{25} . 251 Hilo's, Baltimore-Colombia-Townson's, Albert Lea's, Columbia's and Rutland's datasets were 252 used to proxy data for Honolulu (Hawaii State), Annapolis (Maryland State), St Paul 253 (Minnesota State), Jefferson City (Missouri State) and Montpelier (Vermont State), 254 respectively. For PM₁₀, Bowling Green's, Philadelphia-Caden-Wilmington's, Kingston's, 255 Urban Honolulu's, Battle Creek's, Joplins, Sioux City's, Elko's, Klamath Falls' and Brooking's 256 datasets were used to proxy data for Frankfort (Kentucky State), Dover (Delaware State), 257 Albany (New York State), Honolulu (Hawaii State), Lansing (Michigan State), Columbus 258 (Missouri State), Lincoln (Nebraska State), Carson City (Nevada State), Salem (Oregon State) 259 and Pierre (South Dakota State), respectively. 260

261

[TABLE 1]

As an illustration of the time series, in Figure 1 we display plots of the air pollution levels by fine and coarse particulate matter ($PM_{2.5}$ and PM_{10}), for only two states: Alabama and Wyoming. The four plots clearly indicate evidence supporting seasonal variation in the distribution of particulate matters over the sample periods.¹

266

[FIGURE 1 HERE]

In Table 2, we summarize the data by using mean, minimum, and maximum values for both particulate matter. We found, in most cases 0 ug/m³ minimum value for both time series of particulate matter ($PM_{2.5}$ and PM_{10}), while the average $PM_{2.5}$ value is above the exceedances limit of 35.4ug/m³ for the moderate category of AQI in 38 out of 50 states (see Appendix Table B), and the overall time series maximum value is found within unhealthy ranges, implying that US states are at the risk of high $PM_{2.5}$. By looking at PM_{10} , 154 ug/m³ is the limit for the

¹ Time plots of PM_{2.5} and PM₁₀ for the remaining 48 US states are available on request.

moderate category of AQI and the value indicates that the average particulate matter level for PM₁₀ is still within the moderate limit, even though the minimum and maximum values indicate that there are exceedances in a few cases.

276

[TABLE 2 HERE]

- 277
- 278

3. Empirical results and discussion

Having explored the datasets, we conducted the empirical analysis using the fractional integration framework described above. Our estimated empirical model is the one given by equations (1) and (3), i.e.,

282
$$y_t = \alpha + \beta t + x_t, \quad (1 - L)^a x_t = u_t, \quad t = 1, 2, ...,$$
 (5)

where y_t is the observed time series, and u_t is supposed to be a white noise process. We could also allow for weak autocorrelation in u_t , though we have preferred to keep all the information on the dependence in the data by means of the differencing parameter d.

Across Tables 3 and 5, we display the estimated values of d in equation (5) jointly with 286 the 95% confidence intervals of the non-rejection values of d using Robinson's (1994) tests, 287 respectively for the PM_{10} and $PM_{2.5}$ series. In each case, we consider three potential scenarios: 288 i) imposing that $\alpha = \beta = 0$ in (5); ii) imposing $\beta = 0$ in equation (5), i.e., including only an 289 intercept; and finally, iii) with α and β freely estimated from the data, i.e., including a linear 290 time trend. We have marked in the tables in bold, the selected specification for each case, this 291 292 selection is made according to the t-values of the estimated coefficients. Tables 4 and 6 display the estimated coefficients for d, α and β for each series. 293

294

[TABLES 3 AND 4 HERE]

We start by presenting the results for PM_{10} (Tables 3 & 4). The first thing we observe is that the time trend is required in 20 out of the 50 cases examined, being significantly negative in almost all cases implying decreases in the level of particulate matter in these cases.² Focussing now on the estimated values of the differencing parameter d, we notice two states (Minnesota and Michigan) where the hypothesis of short memory (i.e., d = 0) cannot be rejected. For the majority of the states, the values of d are in the interval (0, 0.5) implying a stationary long memory pattern, though, in five states (Mississippi, Florida, West Virginia, North Carolina and Kentucky), the intervals include both stationary (d < 0.5) and nonstationary ($d \ge 0.5$) values.

304

[TABLES 5 AND 6 HERE]

For the PM_{2.5} (Tables 5 and 6), the number of states with significant time trend coefficients is 23, again with a negative value in all cases, the values ranging from -0.00246 (Massachusetts) to -0.00995 (West Virginia). For the values of d, we find a single state (Minnesota) with a short memory pattern (d = 0) ³, 39 states with values of d in the range (0. 0.5), and five in the nonstationary mean-reverting range [0.5, 1). In another group of five states, the values of d include stationary and nonstationary cases.

Table 7 summarizes the results of the two particulate pollutions in terms of the time trends, while Tables 8 and 9 comprise the results in terms of persistence, d, for PM_{10} and $PM_{2.5}$, respectively.

We observe in Table 7 that Illinois displays the highest time trend coefficient for PM₁₀ and this state emerges second in the trend coefficient reduction for PM_{2.5} after West Virginia. We observe significant trends in both types of particulate matter in the following states: Arkansas, Delaware, Georgia, Illinois, Maine, Maryland, Massachusetts, South Carolina, Tennessee, Vermont, Virginia, and Wisconsin.; In addition, eight more states (Connecticut, Hawaii, Indiana, Iowa, Louisiana, Missouri, Rhode Island, and Utah) display a significant trend

² Illinois is the only state with a significant positive time trend coefficient though for this state we only have 115 observations corresponding to the year 2000 in which no environmental policies had yet been implemented. ³ For this series, Minnesota, $PM_{2.5}$, the number of observations is also very small (76).

for PM_{10} and another eleven (Alabama, Kansas, Kentucky, Michigan, Nebraska, New Hampshire, New Jersey, New York, Ohio, West Virginia, and Wyoming) for $PM_{2.5}$. Thus, the overall reduction in each state' $PM_{2.5}$ and PM_{10} levels indicate the effect of different air quality policies put in place by the regulatory body.

324

[TABLES 7 - 9 HERE]

Table 8 focuses on the persistence level for PM_{10} . We notice that the values range from 325 the short memory cases of Minnesota (0.06) and Michigan (0.09) to the largest degrees of 326 persistence in Idaho (0.48) and North Dakota (0.49). Thus, all the estimates of d are found to 327 be smaller than 0.5 and thus being in the long memory stationary range (though as earlier 328 mentioned, in some cases, we cannot reject nonstationary values in some states). For PM_{2.5}, 329 results in Table 9, the values are slightly more heterogeneous ranging from 0.10 (Minnesota) 330 to some others in the nonstationary range (California, 0.55; Oregon, 0.56; Washington, 0.59; 331 Nevada, 0.60, and Utah, 0.63). For these five states, we obtain values of d in the non-stationary 332 333 mean-reverting range, the implication is that there is a long-lasting effect of shocks to pollution; thus even though strong policy action can still be applied, these actions will take long periods 334 335 to have effects on the quality of air in those five states. The two maps in Figure 1 (upper for 336 PM_{10} and lower for PM_{25}) summarize the strong gap between the different kinds of persistence: the states on the West coast have a higher level of persistence with respect to those on the East, 337 where there is a general decreasing trend. Thus, more effective measures seem to have been 338 adopted in the eastern states and the higher level of persistence observed in the West implies 339 that, in the event of exogenous negative shocks, stronger measures must be adopted to recover 340 the original trends compared to the East. 341

- 342
- 343
- 344

[FIGURES 2 - 3 HERE]

346 **4.** Conclusions

In this paper, we have examined air quality in the US by looking at the statistical properties of 347 the time series corresponding to particulate matter (PM₁₀ and PM_{2.5}) in the 50 US states. For 348 this purpose, we have used long memory and fractionally integrated techniques, and the results 349 show significant negative time trend coefficients in a number of cases (19 states in the case of 350 PM_{10} and 23 states in the case of $PM_{2.5}$), implying that, in these states, adequate measures are 351 being adopted to improve the air quality level by reducing the level of particulate matter. 352 Focussing on the long memory issue with regard to this particulate pollution, we observe a large 353 degree of heterogeneity in the degree of persistence across states, as shown in the map, moving 354 from low degrees of persistence in states such as Minnesota (few data here) to others with high 355 degrees of persistence such as Idaho, South Dakota and Utah. Meanwhile, since persistence 356 estimates are, in general, within the long memory mean-reverting range, shocks will have 357 358 transitory effects and weak policy actions will be required in the case of negative shocks increasing levels of pollution. In the case of PM_{2.5}, eight states (Idaho, Montana, South Dakota, 359 360 California, Oregon, Washington, Nevada, and Utah) have high levels of persistence (with values above 0.5) implying nonstationarity and long-lasting shocks. In these cases, strong 361 policy actions are needed to recover the original level/trends. 362

Bennett et al. (2019) investigated the effect of a reduction in $PM_{2.5}$ levels between 1999 and 2015 at the national and county level, stating that reductions in the particulate matter have lowered mortality rates in most US counties. Thus, in the US, where long memory evidence is detected in the time dynamics of $PM_{2.5}$ (even in PM_{10}) in all states, in the event of negative shocks increasing pollution, strong actions should be adopted to accelerate the reduction in the mortality rates. The current paper will continue to serve as a quantitative evidence-based air quality regulation and policy paper, meanwhile, further research may attempt to consider

370	different counties or cities in the US and elsewhere in the world, paying particular attention to
371	industrialized areas. Besides, aggregated data at national level may also be worth examining,
372	noting that aggregation is a typical argument that has been employed to justify the use of long
373	memory processes in time series (Robinson, 1978; Granger, 1980; Altissimo et al., 2009; etc.).
374	In this respect, the use of structural breaks is also worth studying. In fact, many authors have
375	shown the links between fractional integration and breaks, arguing that the former can be a
376	spurious phenomenon caused by the presence of breaks that have not been taken into account
377	(Diebold and Inoue, 2001; Granger and Hyung, 2004; etc.). Work in all these directions is now
378	in progress.
379	
380	Acknowledgments
381 382 383 384 385 386	Prof. Luis A. Gil-Alana gratefully acknowledges financial support from MINEIC-AEI-FEDER ECO2017-85503-R project from 'Ministerio de Economía, Industria y Competitividad' (MINEIC), `Agencia Estatal de Investigación' (AEI) Spain and `Fondo Europeo de Desarrollo Regional' (FEDER). Comments from the Editor and two reviewers are gratefully acknowledged.
387	
388	
389	Appendix A
390	[TABLE A1 HERE]
391	
392	Appendix B
393	[TABLE B1 HERE]
394	
395	
396	
397	

398 399	References
400 401 402	Abbritti, M., L.A. Gil-Alana, Y. Lovcha and A. Moreno, (2016), Term Structure Persistence, Journal of Financial Econometrics 14, 2, 331-352.
402 403 404	Altissimo, F. B., Mojon, P. and Zaffaroni, P. (2009). Can aggregation explain the persistence of inflation? Journal of Monetary Economics, 56: 231-241.
405 406 407 408	Amato, Federico, et al. "Analysis of air pollution time series using complexity-invariant distance and information measures." Physica A: Statistical Mechanics and its Applications (2020): 124391.
409 410 411 412 413	Avise, J., Chen, J., Lamb, B., Wiedinmyer, C., Guenther, A., Salathe, E. and Mass, C. (2009). Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes. Atmospheric Chemistry and Physics, 9: 1111-1124.
414 415 416	Bhargava, A. (1986). On the Theory of Testing for Unit Roots in Observed Time Series. Review of Economic Studies, 53(3): 369-384.
417 418 419 420	Bell, M. L., Dominici, F., Ebisu, L., Zeger, S. L. and Samet, J. M. (2007). Spatial and Temporal Variation in PM2.5 Chemical Composition in the United States for Health Effects Studies. Environmental Health Perspectives, 115(7): 989-995.
421 422 423 424 425	Bennett, J. E., Tamura-Wicks, H., Parks, R. M., Burnett, R. T., Pope, C. A., III, Bechle, M. J., et al. (2019). Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis. PLoS Med 16(7): e1002856. https://doi.org/10.1371/journal.pmed.1002856
425 426 427	Beran, J. (1994). Statistics for long-memory processes. 1st edition. Chapman and Hall/CRC press. UK.
428 429 430 431	Box, G. E. P., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M. (2015). Time series analysis: Forecasting and Control. 5 th Edition. John Wiley & Sons, UK.
431 432 433 434	Chelani, A. (2009), Statistical persistence analysis of hourly ground level ozone concentrations in Delhi, Atmospheric Research 92, 2, 244-250.
435 436 437	Chelani, A. (2016) Long-memory property in air pollutant concentrations, Atmospheric Research 171, 1-4.
438 439 440	Chen, Z., C.P. Barros and L.A. Gil-Alana (2016), The presence of air pollution in four mega- cities in China, Habitat International 56, 103-108.
441 442 443 444	Choi, J., Oh, J. Y., Lee, Y. S., Min, K. H., Hur, G. Y., Lee, S. Y., Shim, J. J. (2018). Harmful impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: particulate matter is hazardous. International Journal of Chronic Obstructive Pulmonary Disease, 13: 1053–1059.
445 446 447	Chu, SH., and Paisie, J. W. (2006). An evaluation of current PM2.5 conditions in the US. Atmospheric Environment, 40: 206–211.

- 448
- Clay, K. and Muller, N. Z. (2019). Recent increases in Air pollution: evidence and implications
 for mortality. NBER Working Paper No. 26381. DOI: 10.3386/w26381.
- 451
- 452 Dahlhaus, R. (1989). Efficient parameter estimation for self-similar process. Annals of
 453 Statistics, 17: 1749-1766.
- 454
- De Jesus, A. L., Rahman, M. M., Mazaheri, M., Thompson, H., Knibbs, L. D., Jeong, C. and
 Morawska, L. (2019). Ultrafine particles and PM2.5 in the air of cities around the world: Are
 they representative of each other? Environment International, 129: 118–135.
- 458
- Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J. and Schwartz, J. (2019). An ensemble
 based model of PM2.5 concentration across the contiguous United States with high
 spatiotemporal resolution. Environment International, 130. doi:10.1016/j.envint.2019.104909.
- 462
 463 Dickey, D.A and Fuller, W. A. (1979). Distributions of the Estimators for Autoregressive Time
 464 Series with a Unit Root, Journal of American Statistical Association, 74(366): 427-481.
- 465
- Diebold, F. X. and Inoue, A. (2001). Long memory and regime switching. Journal ofEconometrics 105: 131-159.
- 468
- Diebold, F. X. and Rudebusch, G. D. (1991). On the power of Dickey-Fuller test against
- 470 fractional alternatives. Economics Letters, 35(1): 155–160.
- 471
- Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An
 association between air pollution and mortality in six U.S. cities. The New England Journal of
 Medicine, 329 (24): 1753–9.
- 475
 476 Elliot, G., Rothenberg, T. J. and Stock, J. H. (1996). Efficient Tests for an Autoregressive Unit
 477 Root, Econometrica, 64: 813-836.
- 478
- Gil-Alana, L.A. (2005). Statistical Modeling of the Temperatures in the Northern Hemisphere
 Using Fractional Integration Techniques. Journal of Climate 18 (24): 5357-5369.
- 481
 482 Gil-Alana, L. A. and Robinson, P. M. (1997). Testing of unit root and other nonstationary
 483 hypotheses in macroeconomic time series, Journal of Econometrics 80(2): 241-268.
- 484
- Granger, C.W.J. (1980). Long Memory Relationships and the Aggregation of Dynamic Models,
 Journal of Econometrics, 14: 227-238.
- 487
- Granger C.W.J and Hyung N (2004). Occasional structural breaks and long memory with an
 application to the S&P 500 absolute stock returns. Journal of Empirical Finance, 11: 399-421.
- Hadley, O. L. (2017). Background PM2.5 source apportionment in the remote North-Western
 United States. Atmospheric Environment, 167: 298–308.
- 493
- Hassler, U. and Wolters, J. (1995). Long memory inflation rates. International evidence, Journal
 of Business and Economic Statistics, 13: 37-45.
- 497 Ji, X., Yao, Y. and Long, X. (2018). What causes PM2.5 pollution? Cross-economy empirical

- 498 analysis from socioeconomic perspective. Energy Policy, 119: 458–472.
- 499
- Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley,
 H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica
 A: Statistical Mechanics and its Applications, 316(1-4): 87-114.
- Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992). Testing the null
 hypothesis of stationarity against the alternative of a unit root: How sure are we that economic
 time series have a unit root? Journal of Econometrics, 54: 159-178.
- Lee, S., Lee, W., Kim, D., Kim, E., Myung, W., Kim, S. and Kim, H. (2019). Short-term PM2.5
 exposure and emergency hospital for mental disease. Environmental Research, 171: 313-320.
- 510
- Lee, D. and Schmidt, P. (1996). On the power of the KPSS test of stationarity against
 fractionally integrated alternatives. Journal of Econometrics, 73(1): 285–302.
- Li, N., Maesano, C. N., Friedrich, R., Medda, E., Brandstetter, S., Kabesch, M., ... Sarigiannis,
 D. (2019). A model for estimating the lifelong exposure to PM2.5 and NO2 and the application
 to population studies. Environmental Research, doi:10.1016/j.envres.2019.108629
- Liao, H., Chen, W. T. and Seinfeld, J. H. (2006). Role of climate change in global predictions
 of future tropospheric ozone and aerosols. Journal of Geophysical Research Atmospheres, 111
 (D12304). doi:10.1029/2005jd006852.
- 521

- Maji, S., Ghosh, S. and Ahmed, S. (2018). Association of air quality with respiratory and
 cardiovascular morbidity rate in Delhi, India. International Journal of Environmental Health
 Research, 28(5): 471–490.
- Meraz, M., Rodriguez, E., Femat, R., Echeverria, J. C. and Alvarez-Ramirez, J. (2015).
 Statistical persistence of air pollutants (O3, SO2, NO2 and PM10) in Mexico City. Physica A:
 Statistical Mechanics and its Applications, 427: 202-217.
- 529

- Muller, N. Z., Mendelsohn, R. and Nordhaus, W. (2011). Environmental accounting for
 pollution in the United States economy. American Economic Review, 101(5): 1649-1675.
- Nikolopoulos, D., K. Moustris, E. Petraki, D. Koulougliotis and D. Cantzos, (2019), Fractal and
 Long-Memory Traces in PM10 Time Series in Athens, Greece, Environments 6, 1-14.
- 535
 536 Phillips, P.C.B. and Perron, P. (1988). Testing for a unit root in time series regression.
 537 Biometrika, 75(2): 335–346.
- 538
 539 Pillai, P., Babu, S. and Moorthy, K. (2002). A study of PM, PM10 and PM2.5 concentrations
 540 at a tropical coastal station. Atmospheric Research, 61: 149-167.
- 541
- Pope, C. A., Ezzati, M. and Dockery, D. W. (2009). Fine-particulate air pollution and life
 expectancy in the United States. New England Journal of Medicine, 360 (4): 376–86.
- 544
- Pope, C. A, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung
 Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air
- 547Pollution. Journal of American Medical Association, 287: 1132–41.

- 548
- 549 Pryor, S. C. and Barthelmie, R. J. (1996). PM_{10} in Canada. The Science of the Total 550 Environment, 177: 57-71.
- 551

Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, J. H. 552 (2009). Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol 553 554 levels in the United States. Journal of Geophysical Research, 114(D1). 555 doi:10.1029/2008jd010701.

- 556
- Racherla, P. N. and Adams, P. J. (2006). Sensitivity of global tropospheric ozone and fine
 particulate matter concentrations to climate change. Journal of Geophysical Research,
 111(D24). doi:10.1029/2005jd006939.
- 560

563

566

- Robinson, P.M. (1978). Statistical Inference for a Random Coefficient Autoregressive Model,
 Scandinavian Journal of Statistics, 5: 163-168.
- Robinson P. M. (1994). Efficient tests of nonstationary hypotheses. Journal of the AmericanStatistical Association, 89: 1420-1437.
- 567 Schmidt, P. and Phillips, P.C.B. (1992). LM tests for a unit root in the presence of deterministic 568 terms, Oxford Bulletin of Economics and Statistics 54: 257-287.
- Shou, Y., Huang, Y., Zhu, X., Liu, C., Hu, Y. and Wang, H. (2019). A review of the possible
 associations between ambient PM2.5 exposures and the development of Alzheimer's disease.
 Ecotoxicology and Environmental Safety, 174: 344-352
- 573
- Tagaris, E., Manomaiphiboon, K., Liao, K.J., Leung, L.R., Woo, J.H., He, S., Amar, P., Russell,
 A.G. (2007). Impacts of global climate change and emissions on regional ozone and fine
 particulate matter concentrations over the United States. Journal of Geophysical Research e
 Atmospheres 112 (D14312). doi:10.1029/2006jd008262.
- 578

Tai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter
(PM2.5) and meteorological variables in the United States: Implications for the sensitivity of
PM2.5 to climate change. Atmospheric Environment, 44(32): 3976–3984.

- 582
- Thompson, J. R., & Wilson, J. R. (2016). Multifractal detrended fluctuation analysis: Practical applications to financial time series. Mathematics and Computers in Simulation, 126, 63-88.
- United States Environmental Protection Agency (EPA, 2010). The Benefits and Costs of the
 Clean Air Act 1990 to 2020: EPA Report to Congress. Washington, DC: US Environmental
 Protection Agency, Office of Air and Radiation, Office of Air and Radiation: Office of Policy
 in Washington, DC.
- 590
- 591 United States Environmental Protection Agency (EPA, 2018). https://www.epa.gov/pm 592 pollution/health-and-environmental-effects-particulate-matter-pm. Retrieved 04.01.2020.
- 593
- Varotsos, C., Ondov, J., & Efstathiou, M. (2005). Scaling properties of air pollution in Athens,
 Greece and Baltimore, Maryland. *Atmospheric Environment*, *39*(22), 4041-4047.
- 596
- 597 Weinmayr, G., Pedersen, M., Stafoggia, M., Andersen, Z.J., Galassi, C., Munkenast, J., Nagel,

- 598 G., 2018. Particulate matter air pollution components and incidence of cancers of the stomach 599 and the upper aerodigestive tract in the European study of cohorts of air pollution effects 500 (ESCAPE) Environ Int 120 163 171
- 600 (ESCAPE). Environ. Int. 120, 163–171.
- 601
- World Health Organization (2013a). Health risks of air pollution in Europe HRAPIE project:
 recommendations for concentration-response functions for cost-benefit analysis of particulate
 matter, ozone and nitrogen dioxide. Available online at.
- http://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HR
 APIE project.pdf.
- 607
- World Health Organization (2013b). Review of evidence on health aspects of air pollution REVIHAAP project: final technical report. Available online at.
- 610 http://www.euro.who.int/ data/assets/pdf file/0004/193108/REVIHAAP-Final-technical-
- 611 report-final-version.pdf.
- 612
- 613 Wu, J.-Z., Ge, D.-D., Zhou, L.-F., Hou, L.-Y., Zhou, Y. and Li, Q.-Y. (2018). Effects of
- particulate matter on allergic respiratory diseases. Chronic Diseases and Translational
 Medicine, 4(2): 95–102.
- 616
- Kue, Y., Pan, W., Lu, W. Z., & He, H. D. (2015). Multifractal nature of particulate matters
- 618 (PMs) in Hong Kong urban air. *Science of the Total Environment*, 532, 744-751.

619 Table 1: Data Description and Sample

No	Name of State	Aby	 	[a.e.	DV	110
110.	Name of State	AUV.	Start date	End date	Start date	Fnd date
1	Alahama	AI	06/01/1999	03/12/2019	02/01/1999	26/07/2019
2	Alaska	AK	10/04/1999	05/12/2019	06/01/1999	30/06/2019
3	Arizona	AZ	06/01/1999	05/12/2019	01/01/1999	30/09/2019
1	Arkansas		30/06/1999	05/12/2019	06/01/1999	30/09/2019
5	California		03/01/1999	05/12/2019	01/01/1999	30/09/2019
6	Colorado	CO	01/01/1999	05/12/2019	01/01/1999	01/09/2019
7	Connecticut	CT	00/01/1999	05/12/2019	01/01/1999	30/09/2019
8	Delaware	DE	03/01/1999	05/12/2019	06/01/1999	30/09/2019
9	Florida	FI	03/01/1999	05/12/2019	00/01/1999	30/07/2003
10	Georgia	GA	01/01/1999	05/12/2019	01/01/1999	31/08/2019
11	Hawaii	HI	19/01/2001	05/12/2019	01/01/1999	30/09/2019
12	Idaho		03/01/1999	05/12/2019	01/01/1999	30/06/2019
12	Illinois	П	07/01/1999	05/12/2019	13/01/1999	26/12/2000
13	Indiana	IL IN	22/01/1999	05/12/2019	06/01/1999	30/09/2019
14	Iowa		05/02/1999	05/12/2019	0//01/1999	30/09/2019
15	Kansas	KS	27/01/1999	05/12/2019	18/01/1999	30/06/2019
10	Kentucky	KY	30/01/1999	08/11/2011	06/01/1999	31/12/2005
18	Louisiana		01/01/1999	17/11/2019	06/01/1999	31/01/2019
10	Maine	ME	05/06/2015	1//06/2019	06/01/1999	14/06/2019
20	Maryland	MD	12/05/1999	05/12/2019	06/01/1999	26/06/2019
20	Massachusetts	MA	03/01/1000	05/12/2019	06/01/1999	16/07/2019
$\frac{21}{22}$	Michigan	MI	15/01/1999	05/12/2019	06/01/1999	26/03/2001
22	Minnesota	MN	08/11/1000	30/06/2001	03/10/1999	27/09/2000
23 24	Mississippi	MS	14/02/1999	05/12/2019	01/01/1999	31/10/2019
25	Missouri	MO	02/04/2002	28/06/2006	03/01/1999	30/09/2019
25	Montana	MT	02/04/2002	06/12/2019	01/01/1999	26/12/2008
20	Nebraska	NF	03/01/1999	30/09/2019	03/01/1999	30/06/2019
28	Nevada	NV	01/04/2003	06/12/2019	01/01/1999	30/06/2019
20	New Hampshire	NH	06/01/1999	31/12/2014	06/01/1999	28/12/2002
30	New Jersey	NI	03/01/1999	06/12/2014	06/01/1999	28/03/2011
31	New Mexico	NM	06/01/1999	06/12/2019	02/01/1999	12/04/2015
32	New York	NY	02/07/1999	06/12/2019	06/01/1999	29/03/2005
33	North Carolina	NC	01/01/1999	06/12/2019	06/01/1999	30/09/2019
34	North Dakota	ND	20/02/1999	06/12/2019	07/01/2001	30/09/2019
35	Ohio	OH	01/01/1999	06/12/2019	01/01/1999	30/09/2019
36	Oklahoma	OK	01/04/1999	06/12/2019	01/01/2000	31/10/2019
37	Oregon	OR	01/01/1999	06/12/2019	01/01/1999	31/03/2019
38	Pennsylvania	PA	01/01/1999	06/12/2019	02/08/2000	11/06/2019
39	Rhode Island	RI	03/01/1999	06/12/2019	06/01/1999	30/09/2019
40	South Carolina	SC	03/01/1999	06/12/2019	01/01/1999	30/09/2019
41	South Dakota	SD	01/01/2015	06/12/2019	03/01/1999	30/06/2019
42	Tennessee	TN	01/01/1999	06/12/2019	03/01/1999	13/06/2019
43	Texas	TX	12/03/1999	06/12/2019	21/10/1999	26/06/2019
44	Utah	UT	01/01/1999	06/12/2019	01/01/1999	31/10/2019
45	Vermont	VT	03/01/1999	06/12/2019	06/02/1999	26/06/2019
46	Virginia	VA	27/01/1999	30/09/2019	06/01/1999	05/11/2019
47	Washington	WA	03/01/1999	06/12/2019	06/01/1999	29/04/2006
48	West Virginia	WV	03/01/1999	12/11/2019	06/01/1999	22/12/2015
49	Wisconsin	WI	03/01/1999	06/12/2019	06/01/1999	31/08/2019
50	Wyoming	WY	06/01/1999	06/12/2019	06/01/1999	30/09/2019

621 Table 2: Data Summary and Category

No	State	Abbrev	<i>.</i>	PM2.5			PM10	
			Mean	Min.	Max.	Mean	Min.	Max.
1	Alabama	AL	47.54	0	221	18.30	0	66
2	Alaska	AK	26.68	0	145	7.84	0	42.0
3	Arizona	AZ	52.18	6	249	78.22	5.0	2212.0
4	Arkansas	AR	48.79	4	235	20.12	2.0	60.7
5	California	CA	51.88	4	314	22.25	3.0	169.0
6	Colorado	CO	40.12	0	195	32.49	2.0	103.0
7	Connecticut	СТ	38.90	0	158	50.22	0.0	70.0
8	Delaware	DE	37.36	0	181	22.41	1.0	168
9	Florida	FL	45.85	0	326	15.09	3.0	71.00
10	Georgia	GA	58.59	6	197	20.33	0.0	99.0
11	Hawaii	HI	48.82	0	172	17.06	5.0	121.00
12	Idaho	ID	42.13	0	243	23.94	1.0	215.0
13	Illinois	IL	41.30	4	124	21.03	4.0	64.0
14	Indiana	IN	56.25	10	191	20.35	0	75
15	Iowa	IA	38.65	3	138	21.57	1.0	92
16	Kansas	KS	38.26	0	158	18.85	0.00	80.00
17	Kentucky	KY	47.96	4	144	16.20	1.0	51.00
18	Louisiana	LA	51.20	8	181	24.10	3.0	99
19	Maine	ME	22.92	3	80	13.52	0	73
20	Maryland	MD	51.85	2	169	20.42	0	70
21	Massachusetts	MA	50.19	0	172	14.77	1.0	67.0
22	Michigan	MI	37.53	1	144	22.5	58.0	6.0
23	Minnesota	MN	45.68	4	106	22.05	8.0	59
24	Mississippi	MS	46.49	10	168	19.17	4	79
25	Missouri	MO	44.80	1	113	25.37	506	0
26	Montana	MT	32.71	0	171	19.54	1	104
27	Nebraska	NE	34.04	0	168	18.90	89.0	1.0
28	Nevada	NV	23.48	0	220	21.30	1.0	4.0
29	New Hampshire	NH	35.74	0	151	13.51	0	56
30	New Jersey	NJ	57.38	12	167	20.03	1	86
31	New Mexico	NM	15.87	0	109	11.42	1	65
32	New York	NY	34.72	0	162	10.24	0	60.0
33	North Carolina	NC	47.30	0	173	16.31	0	76
34	North Dakota	ND	27.82	0	198	14.35	0	156
35	Ohio	OH	48.10	2	208	23.75	0	93
36	Oklahoma	OK	41.41	3	152	19.86	0	86
37	Oregon	OR	26.81	0	170	21.25	0	122.0
38	Pennsylvania	PA	50.71	3	187	16.70	1	89
39	Rhode Island	RI	42.20	0	170	19.29	2	71
40	South Carolina	SC	45.72	0	253	26.38	1.0	130
41	South Dakota	SD	16.20	0	152	18.54	0	125.0
42	Tennessee	TN	49.77	5	154	19.41	2	64
43	Texas	TX	39.29	5	152	18.82	3	73
44	Utah	UT	44.41	5	171	30.6	2.0	501
45	Vermont	VT	36.58	0	160	13.80	0	65
46	Virginia	VA	44.07	2	152	14.90	2	100
47	Washington	WA	29.72	2	173	13.33	3	53
48	West Virginia	WV	47.93	0	162	17.04	0	77
49	Wisconsin	WI	40.13	0	154	16.20	0	70
50	Wyoming	WY	18.66	0	160	12.23	0	82

624 Table 3: Estimated d-coefficients and 95% confidence bands: PM₁₀

				1
No	State	No terms	An intercept	A linear time trend
1	Alabama	0.32 (0.29, 0.35)	0.29 (0.26, 0.33)	0.29 (0.26, 0.33)
2	Alaska	0.24 (0.20, 0.28)	0.23 (0.19, 0.27)	0.23 (0.19, 0.27)
3	Arizona	0.28 (0.27, 0.30)	0.29 (0.27, 0.31)	0.29 (0.27, 0.31)
4	Arkansas	0.31 (0.28, 0.33)	0.23 (0.20, 0.26)	0.19 (0.16, 0.23)
5	California	0.45 (0.43, 0.48)	0.45 (0.42, 0.47)	0.45 (0.42, 0.47)
6	Colorado	0.41 (0.39, 0.43)	0.40 (0.38, 0.42)	0.40 (0.38, 0.43)
7	Connecticut	0.34 (0.31, 0.37)	0.30 (0.27, 0.33)	0.30 (0.27, 0.33)
8	Delaware	0.29 (0.27, 0.31)	0.26 (0.24, 0.28)	0.26 (0.23, 0.28)
9	Florida	0.49 (0.44, 0.53)	0.47 (0.42, 0.52)	0.47 (0.42, 0.52)
10	Georgia	0.40 (0.38, 0.43)	0.38 (0.36, 0.41)	0.38 (0.36, 0.41)
11	Hawaii	0.41 (0.39, 0.43)	0.40 (0.38, 0.43)	0.40 (0.38, 0.43)
12	Idaho	0.49 (0.46, 0.51)	0.48 (0.45, 0.50)	0.48 (0.45, 0.50)
13	Illinois	0.21 (0.10, 0.39)	0.26 (0.15, 0.41)	0.22 (0.09, 0.40)
14	Indiana	0.34 (0.31, 0.36)	0.29 (0.26, 0.32)	0.28 (0.25, 0.31)
15	Iowa	0.34 (0.32, 0.37)	0.31 (0.29, 0.34)	0.31 (0.28, 0.34)
16	Kansas	0.46 (0.44, 0.49)	0.45 (0.42, 0.48)	0.45 (0.42, 0.48)
17	Kentucky	0.50 (0.46, 0.55)	0.48 (0.44, 0.53)	0.48 (0.44, 0.53)
18	Louisiana	0.43 (0.40, 0.46)	0.40 (0.37, 0.43)	0.40 (0.37, 0.43)
19	Maine	0.30 (0.27, 0.34)	0.25 (0.21, 0.29)	0.23 (0.18, 0.27)
20	Maryland	0.31 (0.28, 0.34)	0.25 (0.22, 0.28)	0.22 (0.19, 0.25)
21	Massachusetts	0.32 (0.31, 0.34)	0.27 (0.25, 0.29)	0.22 (0.20, 0.25)
22	Michigan	0.07 (-0.02, 0.29)	0.09 (-0.04, 0.27)	0.08 (-0.05, 0.27)
23	Minnesota	0.18 (-0.14, 0.45)	0.06 (-0.09, 0.26)	0.07 (-0.08, 0.28)
24	Mississippi	0.47 (0.43, 0.52)	0.46 (0.41, 0.51)	0.46 (0.41, 0.51)
25	Missouri	0.25 (0.23, 0.27)	0.22 (0.20, 0.25)	0.22 (0.19, 0.24)
26	Montana	0.41 (0.37, 0.44)	0.40 (0.37, 0.44)	0.40 (0.37, 0.44)
27	Nebraska	0.40 (0.38, 0.43)	0.39 (0.36, 0.41)	0.39 (0.36, 0.41)
28	Nevada	0.44 (0.42, 0.47)	0.44 (0.41, 0.46)	0.44 (0.41, 0.46)
29	New Hampshire	0.22 (0.09, 0.34)	0.15 (0.06, 0.27)	0.15 (0.05, 0.27)
30	New Jersey	0.23 (0.18, 0.28)	0.19 (0.14, 0.24)	0.19 (0.14, 0.24)
31	New Mexico	0.31 (0.27, 0.35)	0.27 (0.23, 0.32)	0.27 (0.23, 0.32)
32	New York	0.27 (0.20, 0.34)	0.26 (0.19, 0.33)	0.26 (0.19, 0.33)
33	North Carolina	0.46 (0.44, 0.49)	0.44 (0.42, 0.48)	0.44 (0.41, 0.48)
34	North Dakota	0.49 (0.46, 0.52)	0.49 (0.46, 0.51)	0.48 (0.46, 0.50)
35	Ohio	0.38 (0.35, 0.41)	0.37 (0.34, 0.40)	0.37 (0.34, 0.40)
36	Oklahoma	0.39 (0.36, 0.42)	0.37 (0.33, 0.40)	0.37 (0.33, 0.40)
37	Oregon	0.45 (0.40, 0.50)	0.43 (0.38, 0.48)	0.43 (0.38, 0.48)
38	Pennsylvania	0.47 (0.44, 0.50)	0.45 (0.42, 0.49)	0.45 (0.42, 0.49)
39	Rhode Island	0.29 (0.26, 0.32)	0.21 (0.18, 0.24)	0.16 (0.13, 0.21)
40	South Carolina	0.40 (0.38, 0.42)	0.36 (0.33, 0.39)	0.34 (0.31, 0.37)
41	South Dakota	0.37 (0.35, 0.40)	0.35 (0.33, 0.38)	0.35 (0.33, 0.38)
42	Tennessee	0.37 (0.35, 0.40)	0.33 (0.30, 0.35)	0.30 (0.27, 0.33)
43	Texas	0.26 (0.22, 0.30)	0.20 (0.16, 0.24)	0.20 (0.16, 0.24)
44	Utah	0.40 (0.37, 0.42)	0.38 (0.35, 0.40)	0.37 (0.35, 0.40)
45	Vermont	0.22 (0.19, 0.27)	0.15 (0.11, 0.19)	0.10 (0.06, 0.15)
46	Virginia	0.31 (0.28, 0.33)	0.22 (0.20, 0.26)	0.22 (0.20, 0.26)
47	Washington	0.23 (0.14, 0.32)	0.17 (0.10, 0.25)	0.17 (0.10, 0.25)
48	West Virginia	0.49 (0.46, 0.52)	0.47 (0.44, 0.51)	0.47 (0.44, 0.51)
49	Wisconsin	0.30 (0.26, 0.33)	0.23 (0.19, 0.27)	0.21 (0.17, 0.25)
50	Wyoming	0.39 (0.36, 0.41)	0.38 (0.35, 0.40)	0.38 (0.35, 0.40)

625 Note, confidence limits in parentheses

Table 4: Estimated coefficients for each series: PM10

14	Die 4. Estimateu (eoemeients for each ser		A 11
No	State	No terms	An intercept	A linear time trend
1	Alabama	0.29 (0.26, 0.33)	17.2796 (11.61)	
2	Alaska	0.23 (0.19, 0.27)	7.8790 (11.57)	
3	Arizona	0.29 (0.27, 0.31)	70.2758 (6.61)	
4	Arkansas	0.19 (0.16, 0.23)	26.5720 (21.83)	-0.00701 (-6.02)
5	California	0.45 (0.42, 0.47)	24.3394 (6.59)	
6	Colorado	0.40 (0.38, 0.42)	20.2032 (11.58)	
7	Connecticut	0.30 (0.27, 0.33)	19.1985 (9.72)	-0.00228 (-1.81)
8	Delaware	0.26 (0.23, 0.28)	26.5493 (16.18)	-0.00116 (-2.88)
9	Florida	0.47 (0.42, 0.52)	13.0903 (4.96)	
10	Georgia	0.38 (0.36, 0.41)	23.2157 (9.22)	-0.00108 (-1.66)
11	Hawaii	0.40 (0.38, 0.43)	22.2647 (10.53)	-0.00095 (-1.80)
12	Idaho	0.48 (0.45, 0.50)	28.5326 (6.04)	
13	Illinois	0.22 (0.09, 0.40)	14.3576 (3.72)	0.10560 (1.90)
14	Indiana	0.28 (0.25, 0.31)	25.7129 (13.71)	-0.00237 (-2.95)
15	Iowa	0.31 (0.28, 0.34)	25.6919 (10.28)	-0.00242 (-2.08)
16	Kansas	0.45 (0.42, 0.48)	20.1905 (6.37)	
17	Kentucky	0.48 (0.44, 0.53)	15.5667 (5.28)	
18	Louisiana	0.40 (0.37, 0.43)	28.6425 (9.04)	-0.00245 (-1.75)
19	Maine	0.23 (0.18, 0.27)	20.0008 (10.94)	-0.01020 (-3.97)
20	Maryland	0.22 (0.19, 0.25)	28.4817 (17.34)	-0.00762 (-5.79)
$\frac{-3}{21}$	Massachusetts	0.22 (0.20, 0.25)	25.0263 (22.77)	-0.00606 (-10.39)
$\frac{21}{22}$	Michigan	0.09 (-0.04 0.27)	223934 (13 14)	
$\frac{22}{23}$	Minnesota	0.05 (0.01, 0.27) 0.06 (-0.09, 0.26)	22.0951 (13.11) 22.1955 (13.27)	
$\frac{23}{24}$	Mississinni	0.00 (0.00, 0.20) 0.46 (0.41, 0.51)	174952 (5.25)	
$\frac{24}{25}$	Missouri	0.22 (0.19 0.24)	30.8592 (14.11)	-0.00163 (-2.95)
$\frac{25}{26}$	Montana	0.22 (0.1), 0.24) 0.40 (0.37 0.44)	17 1230 (5 18)	0.00105 (2.95)
$\frac{20}{27}$	Nebraska	0.39 (0.36 0.41)	19 2983 (6.68)	
$\frac{27}{28}$	Nevada	0.44 (0.41 0.46)	18 8045 (4 98)	
$\frac{20}{29}$	New Hampshire	0.15 (0.06 0.27)	13 6835 (11 34)	
30	New Jersey	0.19 (0.00, 0.27) 0.19 (0.14 0.24)	19.8264 (15.39)	
31	New Mexico	0.17 (0.14, 0.24) 0.27 (0.23, 0.32)	11.0846 (12.41)	
32	New York	0.27 (0.23, 0.32) 0.26 (0.19, 0.33)	9 9455 (6 27)	
33	North Carolina	0.20 (0.17, 0.55) 0.44 (0.42, 0.48)	17 8403 (7 62)	
34	North Dakota	0.49 (0.46 0.51)	127550 (3.78)	
35	Ohio	0.17 (0.10, 0.51) 0.37 (0.34, 0.40)	21 9157 (7 73)	
36	Oklahoma	0.37 (0.34, 0.40) 0.37 (0.33, 0.40)	21.3063 (8.94)	
37	Oregon	0.37 (0.33, 0.40) 0.43 (0.38, 0.48)	27.3899 (5.35)	
38	Pennsylvania	0.45 (0.30, 0.40)	189998 (6.74)	
30	Rhode Island	0.15 (0.12, 0.1)	26.8347 (21.21)	-0.01126 (-6.90)
40	South Carolina	$0.10^{\circ} (0.13, 0.21)$ $0.34^{\circ} (0.31^{\circ} 0.37)$	420332 (13.48)	-0.01120 (-0.90) -0.00426 (-5.69)
40 41	South Dakota	0.34 (0.31, 0.37) 0.35 (0.33, 0.38)	18 5579 (7 76)	-0.00420 (-5.07)
<u>4</u> 2	Tennessee	0.30 (0.33, 0.30) 0.30 (0.27, 0.33)	25 7787 (13 /3)	-0.00646 (-4.43)
42 13	Texas	$0.30 \ (0.27, \ 0.33)$	191547 (10.45)	-0.000+0 (-4.43)
41 41	I Unas Utah	0.20 (0.10, 0.24) 0.37 (0.35, 0.40)	391473 (863)	-0 00259 (-2 36)
-++ ∕1-5	Vermont	0.57 (0.55, 0.40) 0.10 (0.06 0.15)	17 3030 (21 27)	-0.00257 (-2.50) -0.00661 (5.15)
45 16	Virginia	$\begin{array}{c} 0.10 & (0.00, \ 0.13) \\ 0.22 & (0.20, \ 0.26) \end{array}$	17.3333 (21.27) 19.3022 (17.24)	-0.00001 (-3.13)
40 17	Washington	$\begin{array}{c} 0.22 & (0.20, \ 0.20) \\ 0.17 & (0.10, \ 0.25) \end{array}$	13.3022 (17.24) 13.3460 (14.03)	-0.00300 (-+.73)
/ /2	West Virginia	0.17 (0.10, 0.23) 0.47 (0.44, 0.51)	16.2801 (14.03)	
40 /0	Wisconsin	$\begin{array}{c} 0.77 \\ 0.71 \\ 0.17 \\ 0.25 \end{array}$	10.2074 (3.40)	-0.00528 (2.03)
72 50	Wyoming	$\begin{array}{c} 0.21 \\ 0.38 \\ 0.35 \\ 0.40 \end{array}$	12.7003 (14.30) 12.00/11 (7.20)	-0.00320 (-2.33)
50	,, young	0.50 (0.55, 0.40)	12.7071(1.30)	

Note, confidence limits of d in parentheses in the 3rd column, and t-statistic estimates for intercept and trend coefficients in parentheses in 4th and 5th columns, respectively.

628

630 Table 5: Estimated d-coefficients and 95% confidence bands: PM_{2.5}

No	State	No terms	An intercept	A linear time trend
1	Alabama	0.40 (0.37, 0.42)	0.35 (0.32, 0.38)	0.35 (0.32, 0.37)
2	Alaska	0.48 (0.45, 0.51)	0.48 (0.45, 0.51)	0.48 (0.45, 0.51)
3	Arizona	0.34 (0.32, 0.36)	0.32 (0.30, 0.33)	0.31 (0.30, 0.33)
4	Arkansas	0.46 (0.43, 0.48)	0.42 (0.40, 0.45)	$0.42 (0.40, \ 0.45)$
5	California	0.55 (0.53, 0.55)	0.55 (0.52, 0.57)	0.55 (0.52, 0.57)
6	Colorado	0.35 (0.33, 0.37)	0.33 (0.30, 0.35)	0.33 (0.30, 0.35)
7	Connecticut	0.39 (0.36, 0.41)	0.36 (0.34, 0.39)	0.36 (0.34, 0.39)
8	Delaware	0.31 (0.29, 0.34)	0.26 (0.24, 0.28)	0.23 (0.21, 0.26)
9	Florida	0.42 (0.40, 0.45)	0.39 (0.36, 0.42)	0.39 (0.36, 0.42)
10	Georgia	0.43 (0.41, 0.46)	0.40 (0.37, 0.42)	0.39 (0.37, 0.42)
11	Hawaii	0.46 (0.44, 0.48)	0.46 (0.44, 0.48)	0.46 (0.44, 0.48)
12	Idaho	0.51 (0.48, 0.53)	0.50 (0.48, 0.53)	0.50 (0.48, 0.53)
13	Illinois	0.28 (0.26, 0.31)	0.20 (0.18, 0.23)	0.16 (0.13, 0.20)
14	Indiana	0.48 (0.45, 0.51)	0.45 (0.42, 0.49)	0.45 (0.42, 0.49)
15	Iowa	0.49 (0.46, 0.55)	0.47 (0.44, 0.51)	0.47 (0.44, 0.50)
16	Kansas	0.32 (0.29, 0.34)	0.26 (0.23, 0.29)	0.25 (0.22, 0.29)
17	Kentucky	0.30 (0.28, 0.33)	0.23 (0.20, 0.27)	0.22 (0.19, 0.26)
18	Louisiana	0.48 (0.45, 0.50)	0.45 (0.42, 0.48)	0.45 (0.42, 0.48)
19	Maine	0.21 (0.11, 0.31)	0.14 (0.06, 0.24)	0.12 (0.05, 0.22)
20	Maryland	0.45 (0.42, 0.48)	0.42 (0.39, 0.45)	0.41 (0.38, 0.45)
21	Massachusetts	0.37 (0.35, 0.39)	0.33 (0.31, 0.33)	0.32 (0.30, 0.35)
22	Michigan	0.27 (0.25, 0.29)	0.20 (0.18, 0.22)	0.17 (0.15, 0.20)
23	Minnesota	0.16 (-0.05, 0.44)	0.10 (-0.06, 0.33)	0.10 (-0.06, 0.33)
24	Mississippi	0.48 (0.45, 0.51)	0.45 (0.42, 0.48)	0.45 (0.42, 0.48)
25	Missouri	0.24 (0.17, 0.32)	0.14 (0.08, 0.22)	0.14 (0.08, 0.22)
26	Montana	0.51 (0.48, 0.53)	0.50 (0.48, 0.53)	0.50 (0.48, 0.53)
27	Nebraska	0.25 (0.23, 0.28)	0.19 (0.16, 0.22)	0.17 (0.14, 0.20)
28	Nevada	0.64 (0.60, 0.68)	0.64 (0.60, 0.68)	0.64 (0.60, 0.68)
29	New Hampshire	0.20 (0.17, 0.24)	0.14 (0.11, 0.17)	0.13 (0.10, 0.16)
30	New Jersey	0.39 (0.36, 0.41)	0.35 (0.32, 0.38)	0.35 (0.32, 0.37)
31	New Mexico	0.40 (0.38, 0.42)	0.38 (0.36, 0.40)	0.38 (0.36, 0.40)
32	New York	0.35 (0.33, 0.37)	0.31 (0.29, 0.34)	0.31 (0.28, 0.33)
33	North Carolina	0.45 (0.43, 0.48)	0.43 (0.40, 0.46)	0.43 (0.40, 0.46)
34	North Dakota	0.40 (0.38, 0.43)	0.39 (0.36, 0.42)	0.38 (0.36, 0.41)
35	Ohio	0.43 (0.41, 0.45)	0.39 (0.36, 0.42)	0.38 (0.36, 0.41)
36	Oklahoma	0.45 (0.42, 0.48)	0.43 (0.41, 0.46)	0.43 (0.41, 0.46)
37	Oregon	0.56 (0.53, 0.59)	0.56 (0.53, 0.59)	0.56 (0.53, 0.59)
38	Pennsylvania	0.41 (0.39, 0.44)	0.39 (0.36, 0.42)	0.39 (0.36, 0.42)
39	Rhode Island	0.40 (0.37, 0.42)	0.37 (0.35, 0.40)	0.37 (0.34, 0.40)
40	South Carolina	0.45 (0.43, 0.48)	0.42 (0.39, 0.45)	0.42 (0.39, 0.45)
41	South Dakota	0.51 (0.47, 0.56)	0.50 (0.46, 0.55)	0.50 (0.46, 0.55)
42	Tennessee	0.49 (0.46, 0.51)	0.46 (0.43, 0.49)	0.46 (0.43, 0.49)
43	Texas	0.47 (0.44, 0.50)	0.45 (0.42, 0.48)	0.45 (0.42, 0.48)
44	Utah	0.63 (0.61, 0.66)	0.63 (0.60, 0.66)	0.63 (0.60, 0.66)
45	Vermont	0.38 (0.35, 0.40)	0.35 (0.33, 0.38)	0.35 (0.33, 0.38)
46	Virginia	0.46 (0.43, 0.49)	0.43 (0.41, 0.46)	0.43 (0.40, 0.46)
47	Washington	0.59 (0.56, 0.62)	0.59 (0.56, 0.62)	0.59 (0.56, 0.62)
48	West Virginia	0.38 (0.36, 0.40)	0.32 (0.30, 0.35)	0.30 (0.27, 0.33)
49	Wisconsin	0.40 (0.38, 0.43)	0.37 (0.34, 0.40)	0.37 (0.34, 0.40)
50	Wyoming	0.31 (0.28, 0.33)	0.23 (0.20, 0.26)	0.19 (0.16, 0.23)

631 Note, confidence limits in parentheses

Table 6: Estimated coefficients for each series: PM25

, 10	abie 0. Estimated	coefficients for cach se	1103. 1 1012.5	
No	State	No terms	An intercept	A linear time trend
1	Alabama	0.35 (0.32, 0.37)	56.8952 (12.96)	-0.00320 (-1.80)
2	Alaska	0.48 (0.45, 0.51)	22.8311 (3.06)	
3	Arizona	0.32 (0.30, 0.33)	53.4817 (17.04)	
4	Arkansas	0.42 (0.40, 0.45)	59.1584 (10.54)	-0.00264 (-1.77)
5	California	0.55 (0.52, 0.57)	71.4470 (5.87)	
6	Colorado	0.33 (0.30, 0.35)	38.2575 (10.44)	
7	Connecticut	0.36 (0.34, 0.39)	40.8074 (11.02)	
8	Delaware	0.23 (0.21, 0.26)	50.5373 (21.55)	-0.00610 (-6.58)
9	Florida	0.39 (0.36, 0.42)	46.9244 (11.01)	
10	Georgia	0.39 (0.37, 0.42)	72.4035 (13.32)	-0.00360 (-2.70)
11	Hawaii	0.46 (0.44, 0.48)	21.9707 (3.55)	
12	Idaho	0.50 (0.48, 0.53)	53.4019 (6.22)	
13	Illinois	0.16 (0.13, 0.20)	52.1074 (28.01)	-0.00920 (-6.92)
14	Indiana	0.45 (0.42, 0.49)	62.9697 (8.57)	
15	Iowa	0.47 (0.44, 0.51)	44.8293 (6.26)	
16	Kansas	0.25 (0.22, 0.29)	45.5988 (16.35)	-0.00427 (-2.76)
17	Kentucky	0.22 (0.19, 0.26)	53.6037 (16.94)	-0.00800 (-2.27)
18	Louisiana	0.45 (0.42, 0.48)	57.7868 (9.46)	
19	Maine	0.12 (0.05, 0.22)	26.5053 (9.87)	-0.0309 (-1.65)
20	Maryland	0.41 (0.38, 0.45)	66.1003 (10.56)	-0.00400 (-2.40)
21	Massachusetts	0.32 (0.30, 0.35)	59.6733 (17.32)	-0.00246 (-3.10)
22	Michigan	0.17 (0.15, 0.20)	47.2078 (28.09)	-0.00486 (-6.72)
23	Minnesota	0.10 (-0.06, 0.33)	45.1945 (6.42)	
24	Mississippi	0.45 (0.42, 0.48)	56.8522 (9.70)	
25	Missouri	0.14 (0.08, 0.22)	47.1770 (15.01)	
26	Montana	0.50 (0.48, 0.53)	28,3140 (3.20)	
27	Nebraska	0.17 (0.14, 0.20)	40.8903 (21.44)	-0.00550 (-4.20)
28	Nevada	0.64 (0.60, 0.68)	12.8073 (1.96)	
29	New Hampshire	0.13 (0.10, 0.16)	40.6726 (21.85)	-0.00520 (-3.15)
30	New Jersey	0.35 (0.32, 0.37)	66.4176 (13.52)	-0.00255 (-2.19)
31	New Mexico	0.38 (0.36, 0.40)	17.3624 (9.15)	
32	New York	0.31 (0.28, 0.33)	45.4411 (12.52)	-0.00352 (-3.10)
33	North Carolina	0.43 (0.40, 0.46)	52.7887 (8.90)	
34	North Dakota	0.39 (0.36, 0.42)	33.8361 (7.42)	
35	Ohio	0.38 (0.36, 0.41)	63.6265 (12.49)	-0.00473 (-3.23)
36	Oklahoma	0.43 (0.41, 0.46)	43.8001 (7.68)	
37	Oregon	0.56 (0.53, 0.59)	43.6885 (4.58)	
38	Pennsylvania	0.39 (0.36, 0.42)	55.6072 (8.90)	
39	Rhode Island	0.37 (0.35, 0.40)	44.2762 (11.74)	
40	South Carolina	0.42 (0.39, 0.45)	56.6492 (10.13)	-0.00341 (-2.07)
41	South Dakota	0.50 (0.46, 0.55)	15.3274 (2.76)	
42	Tennessee	0.46 (0.43, 0.49)	64.2001 (10.25)	-0.00356 (-1.94)
43	Texas	0.45 (0.42, 0.48)	43.9724 (7.48)	
44	Utah	0.63 (0.60, 0.66)	57.9306 (4.24)	
45	Vermont	0.35 (0.33, 0.38)	44.1075 (9.25)	-0.00297 (-1.82)
46	Virginia	0.43 (0.40, 0.46)	56.7748 (9.39)	-0.00337 (-1.99)
47	Washington	0.59 (0.56, 0.62)	(74.4716 (7.52)	
48	West Virginia	0.30 (0.27, 0.33)	65.8890 (18.79)	-0.00995 (-6.12)
49	Wisconsin	0.37 (0.34, 0.40)	50.3533 (9.76)	-0.00701 (-6.02)
50	Wyoming	0.19 (0.16, 0.23)	26.5719 (21.83)	-0.00360 (-2.13)

Note, confidence limits of d in parentheses in the 3^{rd} column, and t-statistic estimates for intercept and trend coefficients in parentheses in 4^{th} and 5^{th} columns, respectively.

635

	Significant time	trend coefficients	
PM10	Time trend	PM2.5	Time trend coeff.
	coeff.		
Illinois	0.10560	West Virginia	-0.00995
Rhode Island	-0.01126	Illinois	-0.00920
Maine	-0.01020	Kentucky	-0.00800
Maryland	-0.00762	Wisconsin	-0.00701
Arkansas	-0.00701	Delaware	-0.00610
Vermont	-0.00661	Nebraska	-0.00550
Tennessee	-0.00646	New Hampshire	-0.00520
Massachusetts	-0.00606	Michigan	-0.00486
Wisconsin	-0.00528	Ohio	-0.00473
Virginia	-0.00500	Kansas	-0.00427
South Carolina	-0.00426	Maryland	-0.00400
Utah	-0.00259	Georgia	-0.00360
Louisiana	-0.00245	Wyoming	-0.00360
Iowa	-0.00242	Tennessee	-0.00356
Indiana	-0.00237	New York	-0.00352
Connecticut	-0.00228	South Carolina	-0.00341
Missouri	-0.00163	Virginia	-0.00337
Delaware	-0.00116	Alabama	-0.00320
Georgia	-0.00108	Maine	-0.00309
Hawaii	-0.00095	Vermont	-0.00297
		Arkansas	-0.00264
		New Jersey	-0.00255
		Massachusetts	-0.00246

 Table 7: Classification based on the time trend coefficients

 Significant time trend coefficient

$\mathbf{d} = 0$	0 < d < 0.5	$0.5 \le d \le 1$
Minnesota (0.06)	Vermont (0.10)	
Michigan (0.09)	Rhode Island (0.16)	
6. (111)	Washington (0.17)	
	Arkansas (0.19)	
	New Jersey (0.19)	
	Texas (0.20)	
	Wisconsin (0.21)	
	Illinois (0.22)	
	Maryland (0.22)	
	Massachusetts (0.22)	
	Virginia (0.22)	
	Alaska (0.23)	
	Maine $(0,23)$	
	Delaware (0.26)	
	New York (0.26)	
	New Mexico (0.27)	
	Indiana (0.28)	
	Alabama (0.29)	
	Arizona (0.29)	
	Connecticut (0.30)	
	Tennessee (0.30)	
	Iowa (0.31)	
	South Carolina (0.34)	
	South Dakota (0.35)	
	Ohio (0.37)	
	Oklahoma (0.37)	
	Utah (0.37)	
	Georgia (0.38)	
	Wyoming (0.38)	
	Colorado (0.40)	
	Hawaii (0.40)	
	Louisiana (0.40)	
	Oregon (0.43)	
	North Carolina (0.44)	
	California (0.45)	
	Kansas (0.45)	
	Pennsylvania (0.45)	
	0 < d < 1	1
	Mississippi (0.46)	
	Florida (0.47)	
	West Virginia (0.47)	
	Idaho (0.48)	
	Kentucky (0.48)	
	North Dakota (0.49)	

Table 8: Classification based on the degree of persistence: PM₁₀

	655	Table 9: Classification	n based or	n the degree (of persistence:	PM ₂
--	-----	-------------------------	------------	----------------	-----------------	-----------------

$\mathbf{d} = 0$	0 < d < 0.5	$0.5 \le d \le 1$
Minnesota (0.10)	Mayne (0.12)	California (0.55)
	New Hampshire (0.13)	Oregon (0.56)
	Missouri (0.14)	Washington (0.59)
	Illinois (0.16)	Nevada (0.60)
	Michigan (0.17)	Utah (0.63)
	Nebraska (0.17)	
	Wyoming (0.19)	
	Kentucky (0.22)	
	Delaware (0.23)	
	Kansas (0.25)	
	West Virginia (0.30)	
	New York (0.31)	
	Massachusetts (0.32)	
	Colorado (0.33)	
	Arizona (0.34)	
	Alabama (0.35)	
	Vermont (0.35)	
	New Jersey (0.35)	
	Connecticut (0.36)	
	Wisconsin (0.37)	
	Rhode Island (0.37)	
	Ohio (0.38)	
	New Mexico (0.38)	
	Florida (0.39)	
	Georgia (0.39)	
	Pennsylvania (0.39)	
	North Dakota (0.39)	
	Maryland (0.41)	
	Arkansas (0.42)	
	South Carolina (0.42)	
	Virginia (0.43)	
	Oklahoma (0.43)	
	North Carolina (0.43)	
	Indiana (0.45)	
	Louisiana (0.45)	
	Mississippi (0.45)	
	Texas (0.45)	
	Hawii (0.46)	
	Tennessee (0.46)	
	0 < d < 1	
	Iowa (0.47)	
	Alaska (0.48)	
	Idaho (0.50)	
	Montana (0.50)	
	South Dakota (0.50)	

657 APPENDIX A: Table A1: US States

No	Name of State	Abbv.	Capital Cities	Estab. Dates	Total a.	Land a.	Water a.
1	Alabama	AL	Montgomery	Dec 14, 1819	135767	131171	4597
2	Alaska	AK	Juneau	Jan 3, 1959	1723337	1477953	245384
3	Arizona	AZ	Phoenix	Feb 14, 1912	295234	294207	1026
4	Arkansas	AR	Little Rock	Jun 15, 1836	137732	134771	2961
5	California	CA	Sacramento	Sep 9, 1850	423967	403466	20501
6	Colorado	CO	Denver	Aug 1, 1876	269601	268431	1170
7	Connecticut	СТ	Hartford	Jan 9, 1788	14357	12542	1816
8	Delaware	DE	Dover	Dec 7, 1787	6446	5047	1399
9	Florida	FL	Tallahassee	Mar 3, 1845	170312	138887	31424
10	Georgia	GA	Atlanta	Jan 2, 1788	153910	148959	4951
11	Hawaii	HI	Honolulu	Aug 21, 1959	28313	16635	11678
12	Idaho	ID	Boise	Jul 3, 1890	216443	214045	2398
13	Illinois	IL	Springfield	Dec 3, 1818	149995	143793	6202
14	Indiana	IN	Indianapolis	Dec 11, 1816	94326	92789	1537
15	Iowa	IA	Des Moines	Dec 28, 1846	145746	144669	1077
16	Kansas	KS	Topeka	Jan 29, 1861	213100	211754	1346
17	Kentucky	KY	Frankfort	Jun 1, 1792	104656	102269	2387
18	Louisiana	LA	Baton Rouge	Apr 30, 1812	135659	111898	23761
19	Maine	ME	Augusta	Mar 15, 1820	91633	79883	11750
20	Maryland	MD	Annapolis	Apr 28, 1788	32131	25142	6990
21	Massachusetts	MA	Boston	Feb 6, 1788	27336	20202	7134
22	Michigan	MI	Lansing	Jan 26, 1837	250487	146435	104052
23	Minnesota	MN	St. Paul	May 11, 1858	225163	206232	18930
24	Mississippi	MS	Jackson	Dec 10, 1817	125438	121531	3907
25	Missouri	MO	Jefferson City	Aug 10, 1821	180540	178040	2501
26	Montana	MT	Helena	Nov 8, 1889	380831	376962	3869
27	Nebraska	NE	Lincoln	Mar 1, 1867	200330	198974	1356
28	Nevada	NV	Carson City	Oct 31, 1864	286380	284332	2048
29	New Hampshire	NH	Concord	Jun 21, 1788	24214	23187	1027
30	New Jersey	NJ	Trenton	Dec 18, 1787	22591	19047	3544
31	New Mexico	NM	Santa Fe	Jan 6, 1912	314917	314161	757
32	New York	NY	Albany	Jul 26, 1788	141297	122057	19240
33	North Carolina	NC	Raleigh	Nov 21, 1789	139391	125920	13471
34	North Dakota	ND	Bismarck	Nov 2, 1889	183108	178711	4397
35	Ohio	OH	Columbus	Mar 1, 1803	116098	105829	10269
36	Oklahoma	OK	Oklahoma City	Nov 16, 1907	181037	177660	3377
37	Oregon	OR	Salem	Feb 14, 1859	254799	248608	6191
38	Pennsylvania	PA	Harrisburg	Dec 12, 1787	119280	115883	3397
39	Rhode Island	RI	Providence	May 29, 1790	4001	2678	1324
40	South Carolina	SC	Columbia	May 23, 1788	82933	77857	5076
41	South Dakota	SD	Pierre	Nov 2, 1889	199729	196350	3379
42	Tennessee	TN	Nashville	Jun 1, 1796	109153	106798	2355
43	Texas	TX	Austin	Dec 29, 1845	695662	676587	19075
44	Utah	UT	Salt Lake City	Jan 4, 1896	219882	212818	7064
45	Vermont	VT	Montpelier	Mar 4, 1791	24906	23871	1035
46	Virginia[E]	VA	Richmond	Jun 25, 1788	110787	102279	8508
47	Washington	WA	Olympia	Nov 11, 1889	184661	172119	12542
48	West Virginia	WV	Charleston	Jun 20, 1863	62756	62259	497
49	Wisconsin	WI	Madison	May 29, 1848	169635	140268	29367
50	Wyoming	WY	Cheyenne	Jul 10, 1890	253335	251470	1864

658 Source: <u>https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_States#cite_note-11</u>.
 659 Retrieved on 07 December 2019.

APPENDIX B: Table B1: Air Quality Index (AQI) Category for PM2.5 and PM10

	Pollutants	
Category	PM _{2.5} (ug/m ³)	PM ₁₀ (ug/m ³)
Good	≤ 12.0	<i>≤</i> 54
Moderate	12.1 - 35.4	55 - 154
Unhealthy for Sensitive Groups	35.5 - 55.4	155 – 254
Unhealthy	55.5 - 150.4	255 - 354
Very Unhealthy	150.5 - 250.4	355 - 424
Hazardous	≥ 250.5	≥ 425

Figure 1: Time plots of fine and coarse particulate matter (PM2.5 and PM10) for only
Alabama and Wyoming (Other 48 US states cannot be represented due to space)

681 682	Created with mapcharLast €
683	Figure 2: US states and degrees of persistence: PM ₁₀
684	
685	
686	
687	
688	
689	
690	

- 692 Created with mapcharl.net ©

Figure 3: US states and degrees of persistence: PM_{2.5}