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Background: Coronavirus disease 2019 (COVID-19) is a highly
variable condition. Validated tools to assist in the early detection
of patients at high risk of mortality can help guide medical
decisions.
Objective: We sought to validate externally, as well as in
patients from the second pandemic wave in Europe, our
previously developed mortality prediction model for
hospitalized COVID-19 patients.
Methods: Three validation cohorts were generated: 2 external
with 185 and 730 patients from the first wave and 1 internal with
119 patients from the second wave. The probability of death was
calculated for all subjects using our prediction model, which
includes peripheral blood oxygen saturation/fraction of inspired
oxygen ratio, neutrophil-to-lymphocyte ratio, lactate
dehydrogenase, IL-6, and age. Discrimination and calibration
were evaluated in the validation cohorts. The prediction model
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was updated by reestimating individual risk factor effects in the
overall cohort (N 5 1477).
Results: The mortality prediction model showed good
performance in the external validation cohorts 1 and 2, and in
the second wave validation cohort 3 (area under the receiver-
operating characteristic curve, 0.94, 0.86, and 0.86,
respectively), with excellent calibration (calibration slope, 0.86,
0.94, and 0.79; intercept, 0.05, 0.03, and 0.10, respectively). The
updated model accurately predicted mortality in the overall
cohort (area under the receiver-operating characteristic curve,
0.91), which included patients from both the first and second
COVID-19 waves. The updated model was also useful to predict
fatal outcome in patients without respiratory distress at the time
of evaluation.
Conclusions: This is the first COVID-19 mortality prediction
model validated in patients from the first and second pandemic
waves. The COR112 online calculator is freely available to
facilitate its implementation (https://utrero-rico.shinyapps.io/
COR12_Score/). (J Allergy Clin Immunol 2021;nnn:nnn-nnn.)

Key words: COVID-19, IL-6, mortality risk, predictive model, sec-
ond wave, external validation

The coronavirus disease 2019 (COVID-19) outbreak started in
December 2019 and since then has caused more than 77 million
infections and more than a million and a half deaths.1 In Europe,
infections by severe acute respiratory syndrome coronavirus 2
have occurred in 2 waves: a first wave from February to June
2020, and a second wave that started in August 2020 and peaked
in November 2020.2,3

The overall infection-fatality rate among people diagnosed
with COVID-19 is approximately 1%.4 Nonetheless, there is an
extreme variation in clinical presentation, ranging from asymp-
tomatic infection to severe pneumonia, multiorgan failure, and
death. Multiple clinical and laboratory features have been associ-
ated with severity in patients with COVID-19,5,6 althoughmost of
them lack specificity. For example, age has strongly been associ-
ated with disease severity,4,5 yet there are elderly people with
asymptomatic severe acute respiratory syndrome coronavirus 2
infection.7,8

In some patients, severe acute respiratory syndrome coronavi-
rus 2 infection produces an immune dysregulation,9,10 triggering
marked pulmonary and systemic inflammation, which can persist
after viral clearance. This hyperinflammatory dysregulation,
combined with other infection-derived complications such as
thrombosis,11 is responsible for the disease severity. However,
1
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Abbreviations used
ARDS: A
cute respiratory distress syndrome
AUC: A
rea under the receiver-operating characteristic curve
COVID-19: C
oronavirus disease 2019
ER: E
mergency room
ICU: I
ntensive care unit
LDH: L
actate dehydrogenase
N/L: N
eutrophil-to-lymphocyte
SpO2/FiO2: P
eripheral blood oxygen saturation/fraction of inspired

oxygen ratio
there are still many uncertainties about the pathophysiology of
COVID-19. Until we have a better understanding of this disease,
the availability of tools that allow risk stratification of infected
patients can be useful for optimizing therapeutic management and
improving patient prognosis.

During the first wave of COVID-19 cases in Europe, we
developed a prediction model that estimates the probability of
death in hospitalized patients with COVID-19, based on 5
parameters taken at, or soon after, hospital admission: peripheral
blood oxygen saturation/fraction of inspired oxygen (SpO2/FiO2)
ratio, neutrophil-to-lymphocyte (N/L) ratio, lactate dehydroge-
nase (LDH), IL-6, and age.12 This model was rigorously devel-
oped by logistic regression, showing high accuracy in the
prediction of patient outcome (area under the receiver-operating
characteristic curve [AUC], 0.94), and it was translated into the
freely available COR112 online calculator (https://utrero-rico.
shinyapps.io/COR12_Score/). We have now externally validated
this prediction model in 2 independent cohorts from 2 different
tertiary hospitals (validation cohorts 1 and 2). In addition, we
have internally validated themodel in a prospective patient cohort
recruited during the second wave (validation cohort 3). Finally,
the model has been updated with the overall sum of patients
from the development and validation cohorts.
METHODS

Study design and population
The validation of this prediction model12 was performed in 2 retrospective

external cohorts from the first wave of COVID-19 cases, and in a prospective

internal cohort from the second wave. Details on the development cohort from

Hospital Universitario 12 de Octubre (Madrid) have already been published.12

The institutional Clinical Research Ethics Committee approved the study pro-

tocol (reference no. 20/167). The criteria for inclusion in the study were (a)

being hospitalized with confirmed diagnosis of COVID-19 by real-time RT-

PCR, (b) having data at admission, or within the first 4 days of hospitalization,

on the 5 variables included in the model, and (c) having an outcome (discharge

or death) within 40 days from hospital admission (40 days was the maximum

time allowed for an outcome in the development cohort). Exclusion criteria

were not meeting the inclusion criteria or having a hematological malignancy

associated with increased lymphocyte count. A flowchart depicts the inclusion

of patients in the different cohorts (Fig 1).

The external validation cohort 1 was composed of 188 patients hospitalized

betweenMarch 10 andMarch 30, 2020, at the Hospital Universitario Ram�on y
Cajal (Madrid) with IL-6 measurement. Three patients were not included

because of missing LDH measurements.

The external validation cohort 2 included 898 patients who attended the

emergency room (ER) at either Hospital Universitario Infanta Elena or

Hospital Universitario Fundaci�on Jim�enez D�ıaz (Madrid) from March 13 to

June 17, 2020, had confirmed COVID-19, and had an IL-6 measurement.

These 2 hospitals share a centralized laboratory and electronic clinical records

system and have therefore been considered as 1 cohort. One hundred
sixty-eight patients who did not meet the inclusion criteria were dismissed,

and the remaining 730 patients were included in the final analysis.

The model was further validated in a prospective internal cohort with

second wave COVID-19 patients (validation cohort 3). One hundred thirty-six

patients who attended the ER from August 24 to October 26 at the Hospital

Universitario 12 de Octubre (Madrid), who had confirmed COVID-19 and an

IL-6 measurement, were included in the second wave validation cohort 3.

Seventeen patients had missing values, and 119 patients were included in the

final analysis.
Data collection
Clinical electronic medical records were reviewed by researchers, and data

were manually collected at the Hospital 12 de Octubre and Hospital Ram�on y

Cajal (validation cohorts 1 and 3). All data were revised by at least 2

independent researchers. At Hospital Infanta Elena and Hospital Fundaci�on
Jim�enez D�ıaz (validation cohort 2), clinical data were extracted by means of

big data/artificial intelligence processes from individual electronic medical

records and, then, reviewed and refined by 4 independent researchers.

Recorded data included demographic information, laboratory findings, length

of hospital stay, intensive care unit (ICU) admission, and outcome. SpO2/FiO2

was used to assess respiratory function. SpO2/FiO2 shows a good correlation

with the partial pressure of arterial oxygen (PaO2)/FiO2 ratio (SpO2/FiO2 5
64 1 0.84 3 PaO2/FiO2),

13 and was available for all the patients. Acute res-

piratory distress syndrome (ARDS) was classified according to Berlin criteria:

SpO2/FiO2 more than 315, no ARDS; 315 to 235, mild ARDS; 148 to 235,

moderate ARDS; less than 148, severe ARDS.14
Laboratory measurements
IL-6 was measured with the BD Cytometric Bead Array human IL-6 flex

set (BD Biosciences, San Jose, Calif) using a BD Canto II flow cytometer at

the Hospital 12 de Octubre and Hospital Ram�on y Cajal. Results were

analyzed with FCAP Array software v3.0 (BD Biosciences). At Hospital

Fundaci�on Jimenez Diaz, IL-6 was measured by Roche chemiluminescent

immunoassay. Only IL-6 measurements before tocilizumab therapy were

included in the study. Other laboratory parameters such as LDH, neutrophils,

and lymphocytes were measured as part of standard of care. All laboratory

measurements were taken on the same day.

The variables included in the prediction model (SpO2/FiO2, N/L ratio,

LDH, IL-6, and age) were taken at hospital admission or in the first 4 days

of the hospitalization.Most measurements were taken at the ER in the external

validation cohort 2 and the secondwave validation cohort 3, whereasmeasure-

ments were taken with a median of 2 days from hospital admission in the

external validation cohort 1 (Table I).
Statistical analysis
Continuous numerical data were represented as median and interquartile

range and compared using the Mann-Whitney U test, or Kruskal-Wallis test

when relevant. Categorical variables were represented as N and percentage,

and compared using the chi-square test. The Fisher exact test was used

when appropriate. The potential of each variable in the model to be used indi-

vidually as a biomarker was evaluated using AUC analysis.

Transparent reporting of a multivariable prediction model for individual

prognosis or diagnosis (TRIPOD) guidelines for validation of multivariate

predictionmodels were followed.15 The logistic regressionmodel in the devel-

opment cohort was probability of death 5 1 / (1 1 EXP (2 (27.6991 –

0.0076 3 (SpO2/FiO2) 1 0.0547 3 (N/L ratio) 1 0.0046 3 LDH 1
0.00433 IL-61 0.06823 age))). This model was applied to the 3 validation

cohorts. The validity of the prediction model was assessed by evaluating

discrimination and calibration.16-18 Discrimination describes the ability of

the model to distinguish a patient who will survive from a patient who will

die. Discrimination of the model was evaluated by AUC analysis in the vali-

dation cohorts. The improved discrimination of the model, in comparison

with each individual parameter, was evaluated using De Long test. Calibration

of a model describes the agreement between the predicted and the observed

https://utrero-rico.shinyapps.io/COR12_Score/
https://utrero-rico.shinyapps.io/COR12_Score/


FIG 1. Flowchart of patients included in the study. FJD, Hospital Universitario Fundaci�on Jim�enez D�ıaz;

H12O, Hospital Universitario 12 de Octubre; RyC, Hospital Universitario Ramon y Cajal.

TABLE I. Demographic, clinical, and laboratory characteristics of patients in the development, external, and second wave internal

validation cohorts

Characteristic

Development

cohort (H12O)

(N 5 443)

External validation

cohort 1 (RyC)

(N 5 185)

External validation

cohort 2 (FJD)

(N 5 730)

Second wave validation

cohort 3 (H12O)

(N 5 119) P

Age (y), median (IQR) 53 (45-60) 63 (53-72) 69 (56-82) 63 (51-76) <.0001

Sex: male, n (%) 281 (63.4) 131 (70.8) 400 (54.8) 79 (66.4) <.0001

ARDS classification on test day, n, (%) <.0001

None 255 (57.6) 55 (29.7) 450 (61.7) 72 (60.5)

Mild 99 (22.3) 53 (28.6) 111 (15.2) 29 (24.4)

Moderate 30 (6.8) 21 (11.4) 44 (6.0) 8 (6.7)

Severe 59 (13.3) 56 (30.3) 125 (17.1) 10 (8.4)

SARS-CoV-2 RT-PCR result, positive, n (%) 314 (70.9) 185 (100) 730 (100) 119 (100) .16

Time from hospital admission to laboratory

measurements (d), median (IQR)

2 (1-4) 2 (2-3) 1 (1-2) 0 (0-0) <.0001

Length of hospital stay (d), median, (IQR) 8 (6-13) 9 (6-13) 8 (5-15) 8 (6-12) .19

ICU admission, n (%) 34 (7.7) 35 (18.9) 106 (14.5) 15 (12.6) <.0001

Death, n (%) 33 (7.4) 44 (23.8) 78 (10.7) 18 (15.41) <.0001

Prediction model variables (except age), median (IQR)

SpO2/FiO2 346 (263-452) 258 (133-339) 343 (251-448) 343 (272-445) <.0001

N/L Ratio 4.3 (2.4-8.6) 6.1 (3.6-10.5) 5.3 (2.8-9.5) 7.0 (4.0-11.5) <.0001

LDH (U/L) 350 (278-454) 375 (308-478) 284 (222-376) 395 (323-463) <.0001

IL-6 (pg/mL) 19 (5-48) 33 (13-61) 29 (9-65) 31 (17-72) <.0001

FJD, Hospital Universitario Fundaci�on Jim�enez D�ıaz; H12O, Hospital Universitario 12 de Octubre; IQR, interquartile range; RyC, Hospital Universitario Ramon y Cajal; SARS-

CoV-2, severe acute respiratory syndrome coronavirus 2.

J ALLERGY CLIN IMMUNOL

VOLUME nnn, NUMBER nn

UTRERO-RICO ET AL 3
mortality. Calibration was assessed (a) by the intercept alpha (A), which com-

pares the mean of all predicted risks and the mean observed risk, and in a per-

fect prediction would be 0, and (b) by the slope beta (B), which in good

predictions is close to 1. Calibration results were represented as calibration

plots and a circular barplot. The C-statistic does not appear in the text because

for binary outcomes it corresponds to the AUC of the model.

The prediction model was updated with the compiled data from all the

cohorts, by reestimating the intercept and effect of each individual risk

factor.19 The updated model was probability of death 5 1 / (1 1 EXP

(8.3777 1 0.0071 3 (SpO2/FiO2) 2 0.0326 3 (N/L ratio) 2
0.0046 3 LDH 2 0.0027 3 IL6 2 0.0852 3 age)). K-fold cross-validation
(k 5 10) for a generalized linear model was used to validate the updated

model. The updated model excluding IL-6 was probability of death 5 1 /

(1 1 EXP (7.7260 1 0.0070 3 (SpO2/FiO2) 2 0.0364 3 (N/L ratio) 2
0.0044 3 LDH 2 0.0798 3 age)).

Youden index was used for model cutoff selection, and with this cutoff

sensitivity, specificity, negative predictive value, and positive predictive value

were calculated. Time-to-event curves were plotted by the Kaplan-Meier

method, and differences were compared with the log-rank test to analyze the

ability of the score for stratification across risk categories. Hazard ratio was

calculated using Cox regression method. Throughout the analysis, only

patients with available data were compared and the cohorts’ size is specified



TABLE II. Prediction model variables measured in survivor and nonsurvivor patients

Variables

Survivors Nonsurvivors

PMedian IQR Median IQR

Development cohort (H12O)

SpO2/FiO2 352 269-457 107 101-209 <.0001

N/L Ratio 4.0 2.3-7.8 17.3 8.8-30.3 <.0001

LDH (U/L) 341 269-443 537 391-715 <.0001

IL-6 (pg/mL) 17 5-44 86 20-225 <.0001

Age (y) 52 44-59 65 56-71 <.0001

External validation cohort 1 (RyC)

SpO2/FiO2 296 204-346 106 100-190 <.0001

N/L Ratio 5.6 3.4-10.3 8.5 5.0-12.3 .009

LDH (U/L) 354 296-425 512 395-622 <.0001

IL-6 (pg/mL) 28 10-54 55 26-87 .0004

Age (y) 59 50-69 73 69-79 <.0001

External validation cohort 2 (FJD)

SpO2/FiO2 350 266-448 129 103-341 <.0001

N/L Ratio 4.8 2.7-8.9 9.1 6.1-16.8 <.0001

LDH (U/L) 277 220-361 371 249-440 <.0001

IL-6 (pg/mL) 28 8-63 45 14-143 .0004

Age (y) 67 55-80 84 77-90 <.0001

Second wave validation cohort 3 (H12O)

SpO2/FiO2 343 291-443 299 98-429 .12

N/L Ratio 6.3 3.9-10.0 14.8 6.7-22.7 .007

LDH (U/L) 389 317-457 440 382-681 .021

IL-6 (pg/mL) 30 16-57 78 33-195 .005

Age (y) 58 49-71 78 69-85 .016

FJD, Hospital Universitario Fundaci�on Jim�enez D�ıaz; H12O, Hospital Universitario 12 de Octubre; IQR, interquartile range; RyC, Hospital Universitario Ramon y Cajal.
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in figures and tables. P less than .05 was considered statistically significant.

Data sets can be made available upon formal request to the corresponding

author. All the analysis was performed with R v4.0.3.
RESULTS

Patient demographic and clinical characteristics
The demographic, clinical, and laboratory characteristics of the

patients in the external validation cohorts 1 and 2, and in the
second wave validation cohort 3, are presented in Table I. Most
patients in the 3 validation cohorts were men, in their sixties,
and were hospitalized for a median of 8 days. Median age was
higher in the validation cohorts compared with the development
cohort, and it was highest in the external validation cohort 2 (me-
dian age, 69 years). Patient severity was also greater in the valida-
tion cohorts compared with the development cohort, as measured
by the rate of ICU admission, which ranged from 12.6% to 18.9%,
and the mortality rate, which ranged from 10.7% to 23.8%. The
external validation cohort 1 exhibited the highest degree of dis-
ease severity, with 18.9% of patients admitted to ICU and
23.8% patients dying during hospitalization.
Analysis of prediction model variables according to

disease outcome
In the development cohort, the 5 variables with the highest

association with mortality and the highest contribution to the
predictive capacity of the model were included in the final
prediction model. These variables (SpO2/FiO2, N/L ratio, LDH,
IL-6, and age) differed statistically between the development
and validation cohorts (Table I). Nonetheless, in the validation co-
horts, all the variables were significantly increased in patients
who died compared with those who survived, except for SpO2/
FiO2 in the second wave validation cohort 3, which was relatively
high in nonsurvivors (Table II). Overall, patients who died were
significantly older and had significantly lower SpO2/FiO2 and
higher levels of N/L ratio, LDH, and IL-6 than patients who
survived.
Validation of the mortality prediction model
We first evaluated the generalizability of our prediction model

in 2 external cohorts with a large number of patients from the first
wave of COVID-19 in Spain. Validation of the model demon-
strated a good predictive performance in both, the external
validation cohort 1 (N 5 185) (AUC 5 0.93; 95% CI, 0.88-
0.99) and the external validation cohort 2 (N 5 730) (AUC 5
0.86; 95%CI, 0.81-0.91) (Fig 2). Notably, the model showed a su-
perior predictive capacity with the highest AUC, when compared
with each individual risk factor, except for SpO2/FiO2 in the
external validation cohort 1 (P 5 .06). We applied the model to
the patients in both external cohorts and found, as expected,
that the probability of dying was significantly higher in nonsurvi-
vors, followed by patients who survived after intensive care, fol-
lowed by patients who survived without the need for intensive
care (Fig 3). The Youden index–based cutoff generated during
the development of the prediction model was 0.07, with a 0.88
sensitivity, 0.89 specificity, 0.38 positive predictive value, and
0.99 negative predictive value. Using this cutoff, Kaplan-Meier
analysis showed a very significant difference in survival for pa-
tients with low and high risk of death in both external cohorts
(P < .0001; Fig 3). We next assessed the calibration of the model,
that is, the agreement between the observed and the model-
predicted mortality in the external validation cohorts. As shown
in the calibration plots, the model performed remarkably well at



FIG 2. Comparison of the capacity to predict mortality between the model and the individual risk factors

(SpO2/FiO2, N/L ratio, LDH, IL-6, and age) in each patient cohort. A, The classification performance of the

model was better than the individual risk factors in the development cohort. B, The classification perfor-

mance of the model was better than the individual risk factors in the external validation cohort 1, except

for SpO2/FiO2. C, The classification performance of the model was better than the individual risk factors

in the external validation cohort 2. D, The classification performance of the model was better than the indi-

vidual risk factors in the second wave validation cohort 3, except for age. Classification performance was

compared with De Long test. FJD, Hospital Universitario Fundaci�on Jim�enez D�ıaz; H12O, Hospital Universi-

tario 12 de Octubre; RyC, Hospital Universitario Ramon y Cajal.
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predicting patient mortality (Fig 4). The slopes in the external
validation cohorts 1 and 2 were close to 1 (0.86 and 0.94, respec-
tively), and the intercepts were close to 0 (0.05 and 0.03, respec-
tively). We have depicted in a circular barplot how the observed
mortality increased steadily as the predicted mortality increased
(Fig 4). Altogether, these results indicate a good performance
of the model and a minimal difference between predicted
and observed values, and, therefore, they validate the model
externally.

We considered it relevant to further validate the utility of this
prediction model with patients from the second wave of COVID-
19 cases in Spain. We built a prospective internal validation
cohort with patients admitted to the same hospital as the
development cohort, but approximately 6 months apart (valida-
tion cohort 3, N 5 119). The mortality prediction model also
maintained a good performance during the second wave (AUC5
0.86; 95% CI, 0.75-0.97) (Fig 2,D). The probability of dying was
calculated for all patients on admission, and it was significantly
higher in nonsurvivors than in patients who survived, either
with intensive care requirement (P < .01) or without it (P <
.0001) (Fig 3, D). Kaplan-Meier analysis also showed a very sig-
nificant difference in survival for patients below or above the
model threshold during the second wave (P < .001) (Fig 3, H).
The calibration curve of the model performance on the second
wave validation cohort 3 also did reasonably well, with a slope
of 0.79 and an intercept of 0.10. These results validate the accu-
racy of our mortality prediction model in patients during the sec-
ond wave.
Update of the mortality prediction model
Because we observed significant differences in the variables

included in the model between the cohorts, we revised the model
with the patients from the entire 4 cohorts (N 5 1477) with the



FIG 3. The predictionmodel accurately identified patients at high risk of dying in the validation cohorts.A-D,

The probability of dying predicted by the model was significantly higher in nonsurvivors (red), than in sur-

vivors who required intensive care (blue) and than in survivors who did not require intensive care (gray), in

all cohorts. Dashed lines indicate the model’s optimal cutoff for mortality (0.07). E-H, Using the model’s

optimal cutoff, Kaplan-Meier analysis showed a very different survival between the groups with low and

high risk of death (P < .001, for all cohorts). FJD, Hospital Universitario Fundaci�on Jim�enez D�ıaz; H12O, Hos-

pital Universitario 12 de Octubre; RyC, Hospital Universitario Ramon y Cajal. Color shades represent the

95% CI. Time is indicated in days.
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FIG 4. Calibration analysis depicting the predicted vs observedmortality.A-C, Calibration curves were close

to the diagonal dotted line, which represents ideal calibration in which predicted and observed risks are

identical. Intercept (Fig 4, A) and slope (Fig 4, B) are shown for each validation cohort. D, Patients were

grouped in 5 brackets of increasing probability of death (0%-20%, 21%-40%, 41%-60%, 61%-80%, and

81%-100%). The circular barplot shows how the observedmortality increased steadily as the predicted mor-

tality increased. Of note, in the 2 external validation cohorts, mortality in the highest risk bracket was lower

than predicted. Observed mortality rate is represented in concentric circles. FJD, Hospital Universitario

Fundaci�on Jim�enez D�ıaz; H12O, Hospital Universitario 12 de Octubre; RyC, Hospital Universitario Ramon

y Cajal.
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aim of increasing its generalizability. In the updated model, the
5 variables had little collinearity (demonstrated by variation
inflation factor < 1.4 for each of the 5 parameters included in the
model) and significantly contributed to the model’s prediction
capacity (data not shown). Age increased its weight in the updated
model, whereas SpO2/FiO2, N/L ratio, and IL-6 reduced it (see the
2 model equations in the Methods section). The classifying accu-
racy of the updated model was very robust (AUC5 0.91; 95%CI,
0.87-0.94) (Fig 5, A), and it was not affected by patients’ sex (see
Fig E1 in this article’s Online Repository at www.jacionline.org).

http://www.jacionline.org


FIG 5. The updated model accurately classified patients at risk of dying. A, The prediction model was

revised with the sum of patients from development and validation cohorts (N 5 1477). AUC of the updated

model was 0.91 (95% CI, 0.87-0.94), with optimal cutoff in 0.107. B, Kaplan-Meier analysis based on Youden

index optimal cutoff showed a very different survival between the groups with low and high risk of death

(P < .0001). Color shades represent the 95% CI. Time is indicated in days. C, The predicted probability of

death in nonsurvivors (red) was significantly higher than in survivors who required intensive care (blue)

(P < .0001), and than in survivors who did not require intensive care (gray) (P < .0001). Dashed line indicates

optimal cutoff for mortality (0.107).
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Cross-validation of the updated model showed a substantial
agreement between the predicted and observed mortality (accu-
racy of 0.91 [0.89-0.93] and kappa coefficient 0.51 [0.42-0.60]).
An updated model including only SpO2/FiO2, N/L ratio, LDH,
and age was also developed, to be used in settings without IL-6
availability (see model equation in the Methods section). The
classifying accuracy of the 4-variable updated model was also
robust (AUC5 0.89; 95% CI, 0.86-0.92); however, it was signif-
icantly lower than that of the updated model including IL-6
(P < .05).

The Youden index–based cutoff generated for the updated
model containing 5 variables was 0.107, with a 0.85 sensitivity,
0.81 specificity, 0.37 positive predictive value, and 0.98 negative
predictive value. Kaplan-Meier analysis showed very clear
differences in survival for patients below or above this model
threshold (P <.0001; Fig 5, B). Of note, the probability of survival
in the low-risk group started to decrease after the third week of
hospitalization, suggesting that the model decreased its accuracy
in patients with long hospital stays.
Clinical significance of the updated prediction

model
Respiratory function is a key factor evaluated in patients with

COVID-19 to assess their disease severity. As an example of the
clinical utility of this prediction model, we analyzed its utility at
predicting fatal outcome in patients without ARDS at the time of
evaluation. In the overall cohort, 832 patients had no ARDS on
admission, of whom 37 (4.4%) finally died. The cutoff value
established in the prediction model classified 755 patients as low
risk and 77 patients as high risk. In the low-risk group, 17 (2.3%)
patients died, whereas in the high-risk group, 20 (26%) patients
passed away. Kaplan-Meier analysis showed that patients classi-
fied as high risk by the model survived significantly less than
patients classified as low risk (P < .0001) (Fig 6). Moreover, pa-
tients without ARDS classified as high risk had 8.76 times more
risk of dying than low-risk patients (hazard ratio, 8.76; 95% CI,
5.74-13.36; P < .0001). These results indicate that the model
can be helpful at identifying patients at high risk of dying, who
a priori may not be considered as potentially severe.
DISCUSSION
Here, we validate our previously publishedmortality prediction

model for hospitalized COVID-19 patients12 in 2 independent
external validation cohorts and in a secondwave validation cohort
(Fig 1). From amethodological point of view, this work reinforces
the utility of BigData-oriented frameworks to structure and
extract patients’ information from electronic clinical records.
Artificial intelligence–based data mining has already been suc-
cessfully used to obtain results regarding COVID-19 diagnosis20

and outcome prediction.21



FIG 6. The updated model-predicted mortality in patients with no respiratory distress at the time of

evaluation. A, In the overall cohort, 832 patients had no ARDS in the beginning of their hospitalization.

Within these patients, the predicted probability of death in nonsurvivors (red) was significantly higher

than in survivors who required intensive care (blue) (P < .0001), and than in survivors who did not require

intensive care (gray) (P < .0001). Dashed line indicates optimal cutoff for mortality (0.107). B, Within the pa-

tients without ARDS initially, patients classified as high risk by the cutoff survived significantly less than the

low-risk patients (P < .0001).
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The present prediction model, which includes 5 easily
collected clinical and laboratory biomarkers (namely SpO2/
FiO2, N/L ratio, LDH, IL-6, and age), performed with high accu-
racy in the 2 external validation cohorts, with AUC of 0.93 and
0.86 and well-fitted calibration curves (Figs 2-4). The data for
the external validation were collected retrospectively, from pa-
tients hospitalized with COVID-19 in 2 unrelated hospitals during
the first wave of the pandemic in Spain.

This external validation is important because it showed that,
despite significant differences between the development and the
validation cohorts, the prediction model worked with high
accuracy in the latter. There were differences in the biomarkers
included in the model between the cohorts (Table I). The model
was developed in a younger and less severe cohort than the vali-
dation cohorts, as shown by higher SpO2/FiO2 and lower ICU
admission and death rates. In addition, levels of IL-6 were
measured by cytometric bead array in the development cohort
and the external validation cohort 1, whereas they were measured
by chemiluminescence in the external validation cohort 2. It was
relevant to prove that different laboratory techniques could
be used without altering the model performance, especially
regarding IL-6, whose measurement is not as standardized as
that of other inflammation markers. Finally, the measurement of
the biomarkers included in the predictive model took place in
the first days of hospitalization in the development cohort and
the external validation cohort 1, whereas it occurred at ER in
the external validation cohort 2. The model performed similarly
for inpatients and ER patients who were subsequently hospital-
ized. These considerations demonstrate that this prediction model
can work in different clinical settings.

To our knowledge, this is the first mortality prediction model
validated among patients from the second wave of COVID-19.
There are a number of epidemiological and clinical practice
differences between the first wave and the second wave of the
pandemic. For example, during the second wave, patients have
sought medical help sooner, within less days from symptom
onset, and severe patients have received corticoids and heparin
more precociously. Despite this changing practice over time, the
model accuracy in the internal validation cohort was good,
yielding an AUC of 0.86 and a well-fitted calibration curve.
These results validate the use of this prediction model in patients
during the second and possibly successive waves.

To improve the predictive performance in any clinical setting,
we have updated the model by reestimating the weights of the 5
biomarkers in an overall cohort including all patients from the 4
cohorts (N 5 1477). The accuracy of the updated model was
excellent (AUC, 0.91), and the cutoff allowed for the correct
separation of low- and high-risk patients (Fig 5). Of note, the sur-
vival curves of these 2 patient groups were remarkably distinct
since the beginning of hospitalization. In addition, this updated
model can be useful to discriminate between patients with likely
fatal outcome and those who are likely to survive, among patients
without respiratory distress at the time of evaluation (Fig 6).
SpO2/FiO2 was a worse individual biomarker in the external vali-
dation cohort 2 and in the second wave cohort, both being cohorts
in which evaluation was made mostly at the ER (Fig 2). In this ER
setting, the use of the updated model can greatly improve the
detection of high-risk patients.

A limitation of this study is, however, related to the accuracy of
the updatedmodel in the lowmortality risk group in the long-term
(Fig 5, B). Of the initially 1083 patients classified as low risk, 26
(2.4%) died. Three weeks after evaluation, only 51 low-risk pa-
tients were still hospitalized, of whom 8 (15.7%) died. This shows
that the probability of survival decreases in patients classified as
low risk if they have not been discharged after 3 weeks. This
should be taken into account for patients who have a prolonged
hospital stay and suggests that it could be helpful to periodically
reassess their mortality risk. Additional limitations to this study
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are the need for further external validation of the updated model
and the need for impact studies in different populations and health
care systems to be conducted.
Conclusions
Our mortality prediction model has been validated in 3 large

validation cohorts, 2 external and 1 from the second wave.
Moreover, the model has been updated, showing good discrim-
ination and excellent calibration. This suggests that the updated
model is likely to be generalizable to other populations and
clinical settings, and that its predictive performance should be
accurate when applied to its target population, patients with
COVID-19 who are attended at ER and require hospitalization,
and patients with COVID-19 who have recently been hospital-
ized. This model, and the COR112 online calculator, could
potentially assist in efficient classification of patients with
COVID-19, and contribute to guide medical decisions.

We thank all patients, nurses, and medical colleagues who contributed to

this study.

Clinical implications: This updated model has been developed
with patients from first and second COVID-19 waves and pro-
vides the probability of dying, even in patients without respira-
tory distress at the time of evaluation.
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FIG E1. Classification performance of the updated model by sex. The

capacity of the updatedmodel to predict mortality was similar inmen (AUC,

0.91; 95% CI, 0.87-0.94) than in women (AUC, 0.87; 95% CI, 0.82-0.93), with

no statistical difference in accuracy between sex (De Long test, P 5 .27).
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