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ABSTRACT 

This paper deals with the analysis of (spatial) crude oil production divergence in the 

United States, paying particular attention to the domestic crude oil production between 

PADD 2 and PADD 3, which are the areas in which the bottleneck occurs and has a direct 

implication on the price of West Texas Intermediate (WTI). To this purpose, we use 

techniques based on fractional integration, fractional cointegration VAR (FCVAR) and 

wavelet analysis. Monthly data related to the oil production in the U.S. by regions 

(Anadarko, Appalachia, Bakken, Eagle Ford, Haynesville, Niobrara and Permian) from 

January 2007 to June 2020 are used. The results, using fractional integration and 

cointegration techniques, indicate that the time series analyzed are highly persistent and 

there is evidence of long run equilibrium relationships in some of the series. Finally, using 

wavelet analysis, we conclude that the most affected areas are Anadarko, Appalachia, 

Haynesville and Niobrara where an increase in the shale oil production is followed a 

decrease in WTI crude oil prices. 
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1. Introduction 

In the last century, a complex web of petroleum pipelines was the way to transport crude 

oil and refined petroleum products in the United States taking into account the cost-

effective relationship. The United States, with more than 2.4 million miles of pipeline in 

which crude oil is transported, separated from the refined products, and flowing only in 

one direction, has the largest energy pipeline connection in the world. This web of crude 

oil pipelines is extensive with around 72,000 miles connecting regional markets with the 

crude oil lines. When access by sea is available, this option is used to transport oil cheaply. 

Other, more expensive ways of transporting crude oil and refined products are rail and 

trucks. These were used for areas with sparse demand and short distances. 

The government of the United States, during the Second World War, divided the 

country into five Petroleum Administration for Defense Districts (PADDs), of which the 

Northeastern PADD has been divided into three sub-PADDs in order to aid in the 

planning and allocation of oil and refined products. In Figure 1, the different PADDs are 

shown where, according to Borenstein and Kellogg (2014), transport is relatively fluid 

but there is a potential risk of bottlenecks occurring. 

[Insert Figures 1 and 2 here] 

Borenstein and Kellog (2014) claimed that PADDs 1, 2 and 3 were well integrated 

with one another, to the point that the primary crude oil pricing and the delivery futures 

contracts that traded on the New York Mercantile Exchange (NYMEX) were set in 

Oklahoma (PADD 2) because many of the pipes converge in Cushing, minimizing the 

risk due to minimal transportation constraints to major oil markets. 

At the beginning of 2011, the connection in oil prices in PADD 2 and 3 changed 

when there was an increase in the production of crude oil due to the Bakken oil shale 

formation in North Dakota and the tar sands area of Alberta, Canada.  
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There are many factors behind the oversupply in Cushing, surpassing the capacity 

of the pipeline from there to the Gulf Coast, producing a spatial crude oil price divergence 

(see Borenstein and Kellogg, 2014). Among them we can mention the increase in crude 

oil production, the entire system designed to transport crude oil by pipeline (see Kilian, 

2016)1 and the lack of rail infrastructure or barge transportation capacity. Monge et al. 

(2017) analyzed the behaviour of shale oil production on the West Texas Intermediate 

(WTI) prices finding evidence that during the period 2009-2014, oil production and WTI 

crude oil prices time series were negatively correlated, suggesting that the increase in the 

production of oil produced a decrease in WTI crude oil prices. Also, they showed that for 

the time period from 2004 to 2016, the orders of integration of the series examined were 

higher than 1, implying lack of non-mean reversion behaviour. 

The goal of this paper is to understand the behaviour of the spatial crude oil 

production divergence in the United States by regions (Anadarko, Appalachia, Bakken, 

Eagle Ford, Haynesville, Niobrara and Permian) that correspond to the areas PADD1, 2, 

3, 4 and 5 (paying particular attention to domestic crude oil first purchase prices between 

PADD 2 and PADD 3, which is the area where the bottleneck occurs) and how this affects 

the price of crude oil. 

In the literature there are plenty of articles dealing with the integration of energy 

markets. Examples are Adelman (1984), Weiner (1991, 1993), Serletis (1994), Rodriguez 

and Williams (1993, 1994), Gülen (1997, 1999), Gjolberg and Johansen (1999), De Vany 

and Walls (1999), Lin and Tamvakis (2001), Milonas and Henker (2001), Asche et al. 

(2002, 2003, 2006), Hammoudeh and Li (2004), Bachmeier and Griffin (2006), Bentzen 

(2007), Fattouh (2010), Chang et al. (2010), Wlazlowski et al. (2011) among many others. 

 
1 Kilian (2016) argued that the entire system is designed to transport imported crude oil from the Gulf Coast 

ports to the U.S. oil market hub in Cushing, Oklahoma instead of transporting all that oil to the refineries 

of the East Coast of the United States. 
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To the best of our knowledge, this is the first paper that analyzes the statistical properties 

of shale oil total production in the U.S. by regions in barrels per day (bbl/d) and the West 

Texas Intermediate (WTI) U.S. oil price, measuring the degree of persistence by using 

fractional integration techniques (Gil-Alana and Hualde, 2009 and Monge et al., 2017) in 

each of the specified locations. Also, we analyze the long-term relationships of the 

selected time series, focusing on the regions in which spatial crude oil price divergence 

occurs and using the fractional cointegration VAR (FCVAR) approach (Johansen and 

Nielsen, 2012). To conclude this study, we investigate possible structural changes caused 

by the oversupply and bottlenecks in the distribution, using methodologies based on 

wavelet transforms (Aguiar-Conraria and Soares, 2014).   

The rest of the paper is organized as follows. In Section 2 we describe the data 

used for this study. Section 3 presents the methodology applied in the paper. In Section 4 

we discuss the main empirical results, while Section 5 concludes the paper. 

 

2.  Methodology 

2.1.  Fractional Integration 

Fractional integration is a time series technique that allows for a fractional degree of 

differentiation. Given a time series, xt, t = 1, 2, …, we say that it is integrated of order d, 

and denoted by I(d) if its d-differences are stationary I(0). 

A series is integrated of order 0 or I(0), also termed short memory, if the infinite 

sum of its autocovariances is finite, and within this category, we can include the case of 

uncorrelated series, e.g., a white noise process, but also, other models which are weakly 

dependent like those based on the stationary and invertible AutoRegressive Moving 

Average (ARMA)-type of models. 

 A series is said to be integrated of order d, or I(d) if it can be represented as: 
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where L is the lag-operator, i.e., Lkxt = xt-k and ut is short memory or I(0) process. Thus, 

for example, if ut is ARMA(p,q), we say then that xt is an AutoRegressive Fractionally 

Integrated Moving Average, ARFIMA(p, d, q) model. Clearly, if d = 1 in (1) we have the 

classical ARIMA(p, 1, q) model, but as earlier mentioned, d can be any real value, 

including thus fractional numbers, and using a Binomial expansion, 
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which is valid for any real value d, equation (1) can be expressed as: 
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Thus, the higher the value of d is, the higher the level of association between the 

observations is, and thus, the level of persistence in the data. In other words, the 

differencing parameter d can be taken as a measure of the degree of persistence of the 

data, and by allowing fractional values of d we permit a much higher degree of flexibility 

in the dynamic specification of the model.  Moreover, this specification allows us to 

determine if shocks in the series will have transitory (d < 1) or permanent (d ≥ 1) effects. 

These processes were introduced in the 80s by Granger (1980), Granger and Joyeux 

(1981) and Hosking (1981) but it was not until the late 90s that they become popular in 

the analysis of economic data. In the last ten years, there have appeared numerous papers 

dealing with energy issues and using fractional integration. Examples are among others 

those  by Barros et al. (2012), Belbute and Pereira (2016), Solarin et al. (2018),   Bozoklu 

et al. (2020), Gil-Alana et al. (2020a, b), etc. 

 

2.2.  Fractional Cointegrated VAR 
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A multivariate fractional cointegration model, named Fractionally Cointegrated Vector 

AutoRegressive (FCVAR) was proposed in Johansen (2008), and was later extended in 

Johansen and Nielsen (2010, 2012). In fact, it extends the classical Cointegrated Vector 

AutoRegressive (CVAR) model of Johansen (1996), allowing for series which are all 

integrated of order d and that cointegrate with order d - b, with positive b. An advantage 

of the FCVAR model is that it has the power to be used for stationary and nonstationary 

time series (Johansen and Nielsen, 2012 and Nielsen and Popiel, 2018).  

From the non-fractional case CVAR model, where we assume that 𝑌𝑡, 𝑡 = 1, … , 𝑇 

is a p-dimensional I(1) time series, represented as: 

Δ𝑌𝑡 = 𝛼𝛽′𝑌𝑡−1 + ∑ Γ𝑖
𝑘
𝑖=1 Δ𝑌𝑡−𝑖 + 𝜀𝑡 = 𝛼𝛽′𝐿𝑌𝑡 + ∑ Γ𝑖

𝑘
𝑖=1 Δ𝐿𝑖𝑌𝑡 + 𝜀𝑡, (4) 

we must replace the difference and lag operators by ∆𝑏 and 𝐿𝑏 = 1 − ∆𝑏, in order to 

derive the FCVAR model. Then, 

∆𝑏𝑌𝑡 =  𝛼𝛽′𝐿𝑏𝑌𝑡 + ∑ Γ𝑖
𝑘
𝑖=1 Δ𝐿𝑏

𝑖 𝑌𝑡 + 𝜀𝑡,   (5) 

which is applied to 𝑌𝑡 = ∆𝑑−𝑏𝑋𝑡 such that 

    ∆𝑑𝑋𝑡 =  𝛼𝛽′𝐿𝑏∆𝑑−𝑏𝑋𝑡 + ∑ Γ𝑖
𝑘
𝑖=1 Δ𝑏𝐿𝑏

𝑖 𝑌𝑡 + 𝜀𝑡    (6) 

In the previous equation, a p-dimensional i.i.d. variable is represented by the term 

𝜀𝑡, with mean zero and variance-covariance matrix Ω. 𝛼 and 𝛽 are 𝑝 × 𝑟 matrices, where 

0 ≤ 𝑟 ≤ 𝑝. The cointegrating relationships in the system are related to the columns of 𝛽. 

The parameters that govern the short-run behavior of the variables are indicated by Γ𝑖. 

The short-run dynamics of the system and the speed of adjustment responses to deviations 

from the equilibria are described by the coefficients in 𝛼 . Finally, the parameter 𝑑 is the 

order of differentiation of the observable time series and 𝑏 refers to the level of reduction 

in the degree of integration of 𝛽′𝑋𝑡. With this methodology, the FCVAR model, we can 

simultaneously model the long-run equilibria, the adjustment reactions to deviations from 
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the equilibria and the short-run dynamics of the system (see Johansen and Nielsen, 2012; 

Nielsen and Popiel, 2018). 

Several empirical papers such as Jones, Nielsen and Popiel (2014), Baruník and 

Dvořáková (2015), Maciel, (2017), Aye et al. (2017), Dolatabadi et al. (2016, 2018), Gil-

Alana and Carcel (2020), Gunay (2018), Poza and Monge (2020), Quineche (2020), and 

Caro et al. (2020) have been used for the estimation and testing of the FCVAR model, 

and Nielsen and Popiel (2018) reported the Matlab codes, which are available at the 

Nielsen webpage2. 

 

2.3.  Wavelet Analysis 

To analyse time series in the time-frequency domain and following Vacha and Barunik 

(2012), Aguiar-Conraria and Soares (2011, 2014), Dewandaru et al. (2016), Tiwari et al. 

(2016), Monge et al. (2017), Jammazi et al. (2017), and others we use the Continuous 

Wavelet Transform (CWT), applying wavelet coherency and wavelet phase-differences. 

This methodology is appropriate since stationarity is not a requirement; also, to find 

potential changes in its pattern, it is interesting to study the interaction of both the time 

and the frequency domains of the time series themselves. 

The wavelet coherency is understood as a correlation of time series in a two-

dimensional diagram that identifies hidden patterns or information in the domain of time 

and frequency.  The 𝑊𝑇𝑥(𝑎, 𝜏) of a time series 𝑥(𝑡) is obtained by projecting a mother 

wavelet ψ  defined as: 

 𝑊𝑇𝑥(𝑎, 𝜏) = ∫ 𝑥(𝑡)
1

√𝑎
𝜓∗ (

𝑡−𝜏

𝑎
) 𝑑𝑡

+∞

−∞
,  (7) 

where the wavelet coefficients of 𝑥(𝑡) is defined as 𝑊𝑇𝑥(𝑎, 𝜏); a is the position of a 

wavelet in the frequency domain; the position in the time domain is defined by . Thus, 

 
2 https://sites.google.com/view/mortennielsen/software?authuser=0 
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the function of mapping the original time series in a function of the two previous 

parameters mentioned ( and a) is obtained by the wavelet transform. 

The type of mother wavelet chosen to carry out the analysis is the Morlet wavelet, 

which is a complex sine wave within a Gaussian envelope. This allows us to measure the 

synchronism between time series.3 

The wavelet coherence is defined as:  

𝑊𝐶𝑂𝑥𝑦 =
𝑆𝑂(𝑊𝑇𝑥(𝑎,𝜏)𝑊𝑇𝑦(𝑎,𝜏)∗)

√𝑆𝑂(|𝑊𝑇𝑥(𝑎,𝜏)|2)𝑆𝑂(|𝑊𝑇𝑦(𝑎,𝜏)|
2

)

 ,   (8) 

and it helps us to understand the interaction and the integration between the two time 

series. 

The SO is a smoothing operator in time and scale that prevents the wavelet 

coherence from always being one for all times and scales (see Aguiar-Conraria et al. 2008 

for details). Matlab computer programs for the calculation of estimators and test statistics 

in the CWT are provided in Aguiar-Conraria’s website.4 

Following the research line of Pinto et al. (2016) we know that the economic time 

series are an aggregation of components operating on different frequencies. According to 

Aguiar-Conraria and Soares (2014) the wavelet analysis performs the spectral 

characteristics of a time series as a function of a different scale of time, allowing us to 

localize the structural changes on time, the magnitude and the duration of them and to 

determine the synchronism between the time series employed. 

 

 

 

 
3 See Aguiar-Conraria and Soares (2014) for the properties of this wavelet and for a more complete 

understanding of this procedure. 
4 https://sites.google.com/site/aguiarconraria/joanasoares-wavelets 
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3.  Data  

The data examined in this work comes from The Drilling Productivity Report from EIA.5 

They correspond to the total number of drilling rigs in operation along with the estimates 

of drilling productivity and estimated changes in production from existing oil wells. They 

provide estimated changes in oil production for seven key regions in the U.S. Also, we 

use the West Texas Intermediate (WTI) from the Federal Reserve Bank of St. Louis6 for 

the crude oil prices in the U.S.. The monthly data analyzed covers the period from January 

2007 to June 2020.  

[Insert Figure 3 here] 

The data used in the paper are presented in Figure 3; it displays the time series 

plots of U.S. shale oil productivity by area, showing the behaviour (similarities and 

differences) between the time series.  We observe in the figure that shale oil production 

in the Permian region is more pronounced than in the other regions that show a softer 

behaviour. 

 

4. Empirical results 

4.1.  Fractional integration and cointegration 

We start by presenting the results based on the univariate analysis. For each series, we 

consider the following model, 

 
        

,...,1,0,)1(;t10ty ==−++= tuxLxt tt
d     (9) 

where yt refers to each of the observed time series; β0 and β1 are unknown parameters and 

referring, respectively, to the constant and to a linear time trend, while xt is supposed to 

be I(d); thus, d is the differencing parameter that we allow to be any real number and thus, 

 
5 https://www.eia.gov/petroleum/drilling/#tabs-summary-1 
6 https://fred.stlouisfed.org/series/DCOILWTICO. 
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potentially fractional, and the I(0) error term ut will adopt different forms across the 

presented tables. Thus, in Table 1 we suppose ut is uncorrelated, following a white noise 

process; in Table 2 weak autocorrelation is permitted in the error term, and ut follows here 

the exponential model of Bloomfield (1973); finally, in Table 3 and based on the monthly 

nature of the data, a seasonal monthly AR(1) process is imposed on ut. We present in the 

three tables the estimated values of d (and the 95% confidence band of the non-rejection 

values of d using Robinson, 1994) under the three classical assumptions of no 

deterministic terms (second column in the tables), with an intercept (third column) and 

allowing for an intercept and a linear time trend (fourth column), marking in bold in the 

tables the selected cases according to these three standard specifications. 

[Insert Table 1 about here] 

 Starting with the results based on white noise errors, (in Table 1) the first thing 

we observe is that the time trend is significant in 5 out of the 8 series examined, and the 

estimated values of d are equal to or higher than 1 in the majority of the cases. In fact, the 

only evidence of mean reversion, i.e., estimates of d significantly below 1 is found in the 

case of Andarko; the I(1) hypothesis cannot be rejected for Haynesville and also for Oil 

Prices, while this hypothesis is decisively rejected in favour of d > 1 in the remaining 

cases. 

 Allowing for autocorrelation, we first present the results based on the model of 

Bloomfield (1973), in Table 2, and we see that the time trend is required in the cases of 

Bakken, Haynesville and Niobrara. Moreover, the hypothesis of mean reversion is now 

rejected in all cases, with all values of d being in the I(1) and I(d, d > 1) cases. 

[Insert Tables 2 and 3 about here] 

 If the errors follow a seasonal AR(1) process, the results are fairly similar to those 

based on white noise errors, and d is equal to or higher than 1 in all except one single 
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case, again Anadarko. Thus, the results so far indicate that all series are highly persistent 

with shocks having permanent effects and only for Anadrako did we find a small degree 

of reversion to the mean with shocks being temporary, albeit with very long lasting 

effects. 

[Insert Table 4 about here] 

 Extending the analysis to the multivariate case, we conduct the FCVAR model of 

Johansen (2008) testing for the existence of long run equilibrium relationships between 

each series and the oil prices in a vis-a-vis representation. The results are reported in 

Table 4, and they are extremely heterogeneous across the series. Thus, for two of the 

cases, Appalachia and Bakken, we cannot reject the hypothesis of d = b, this value being 

around 0.414 for Appalachia and 0.518 for Bakken; for other two cases, Anadarko and 

Haynesville there is no evidence of cointegration since the reduction in the degree of 

integration is almost null; finally, for the other three groups of series, there is a reduction 

of above 0.3 in the cointegrating long run relationship. We can conclude this section by 

saying that all the individual series are highly persistent, and evidence of long run 

equilibrium relationships between the crude oil production and oil prices are observed in 

some of the series, being very clear in the cases of Appalachia and Bakken, but also 

detectable for Eagle Ford, Niobrara and Permian. Thus, apparently there is a discrepancy 

between the univariate and the multivariate results, observing in the multivariate case a 

degree of mean reversion in the series of oil production examined (and in its relation with 

oil prices) that is not observed with the univariate results. This discrepancy may be 

explained by the presence of structural breaks which have not been detected in the data. 

Thus, a wavelet analysis is conducted in the following subsection. 

  

4.2.  Wavelet analysis 
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To see the possible presence of structural changes caused by oversupply and bottlenecks 

in the distribution, we use a multivariate wavelet analysis based on the time-frequency 

domain to estimate how shale oil production affects WTI crude oil prices in the U.S. at 

different frequencies and how they evolve over time.  

In Figure 4, we do a preliminary analysis of each of the series that represents the 

production of shale oil in the U.S. On the left part of each plot we represent the monthly 

returns of the crude oil prices and the shale oil production. On the right, we plot the 

wavelet power spectra that represents for each moment and frequency, the intensity of the 

variance of the time series for each frequency of cyclical oscillations. According to 

Aguiar-Conraria and Soares (2014) the cone-of-influence (COI), represented by the black 

conic line, identifies the region where edge effects are important. The regions represented 

outside this line should be interpreted with caution. The low and high degree of variability 

is distinguished by a colour spectrum, ranging from dark blue to red, respectively. The 

local maxima in the power spectra is represented by a white line. The significance levels, 

5% and 10%, are represented by black and grey contours, respectively. 

[Insert Figure 4 about here] 

In the case of WTI crude oil prices, the volatility is spread across the sample, but 

it is stronger at higher frequencies (short term). The red regions correspond to cycles of 

periods smaller than 32 months. Analyzing shale oil production in the U.S. we see that 

Bakken and Haynesville have one cycle. The first one corresponds to the beginning of 

the sample and Haynesville has a cycle that runs for virtually the entire sample. In both 

cases, the cycle lasts 12 months and it became apparent in the beginning of 2008. In the 

rest of the cases we find two or more cycles around the sample. We can highlight the case 

of Appalachia and Niobrara, where the cycles have 12 months and the cycles start in 2018 

and 2017, respectively. 
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As it is difficult to discern any inter-relation between shale oil production by 

regions in the U.S. and WTI crude oil prices using previous analysis based on wavelet 

power spectra, Figure 5 shows a preliminary result that tells us when and at which 

frequencies the inter-relations are the strongest. 

[Insert Figure 5 about here] 

For this purpose we have calculated, first, the wavelet coherency and we identify 

that the main regions with statistically significant coherency are located at low 

frequencies (corresponding to cycles between 32 and 64 months where the regions show 

statistically significance coherence). The most important ones start around 2013 and are 

Anadarko, Appalachia, Haynesville and Niobrara where the coherency tells us how 

important and strong the relation is between the time series. Bakken starts around 2011. 

Also, we can find the partial phase difference and the partial wavelet gain, which 

give us information about the magnitude of the impact that a shock in one variable has on 

the other. For the cases mentioned before, and looking at the 5%  significance level, the 

phase difference is between  and . This means that WTI and shale oil production, at 

these frequencies, display an anti-phase relation with shale oil production in these leading 

areas. Economically, that means that, at these frequencies, an increase in the shale oil 

production in the areas mentioned before is followed by a decrease in WTI crude oil 

prices, where the partial gain, interpreted as the modulus of the regression coefficient in 

the regression of shale oil production on  WTI crude oil prices at each time and frequency, 

is stable at 0.04.  

 

5. Concluding comments 

We have examined in this article the spatial crude oil production divergence in the United 

States, paying special attention to domestic crude oil first purchase prices by regions 
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(Anadarko, Appalachia, Bakken, Eagle Ford, Haynesville, Niobrara and Permian) 

corresponding to the areas PADD1, 2, 3, 4 and 5. Of particular interest are the prices 

between PADD 2 and PADD 3, which are the areas where the bottleneck occurs. 

For this purpose, first we have used techniques based on fractional integration, 

which are very appropriate to determine the nature of the shocks. Evidence of mean 

reversion is only found in the case of Anadarko. In all the other cases, the orders of 

integration are found to be equal to or higher than 1, implying high levels of persistence 

and permanency of shocks. Allowing autocorrelation, the hypothesis of mean reversion 

is rejected in all cases. If the errors follow a seasonal AR(1) process the results are fairly 

similar to those based on white noise errors, and d is equal to or higher than 1 in all areas 

except in Anadarko. In a multivariate context, using a fractional CVAR (FCVAR) 

approach, the results support the hypothesis of a long run equilibrium relationship, being 

very clear in the cases of Appalachia and Bakken, but also for Eagle Ford, Niobrara and 

Permian. 

Finally, to see the possible presence of structural changes caused by oversupply 

and bottlenecks in the distribution and how the shale oil production affects WTI crude oil 

prices in the U.S. we use wavelet analysis. The coherency results, showing how important 

and strong the relation is between the time series indicate that the most important ones 

start around 2013 in Anadarko, Appalachia, Haynesville and Niobrara. Bakken starts 

around 2011. To see the magnitude of the impact that a shock in one variable has on the 

other we use the partial phase difference. At a 5% significance level, we can conclude by 

saying that an increase in the shale oil production is followed a decrease in WTI crude oil 

prices. 

These results are in line with Monge et al. (2017), as their conclusions are also 

supported by our results. The evolution of the price of oil in the United States is 
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determined by the increase in shale oil production. The United States refining, pipeline 

and rail infrastructure play a fundamental role in price behaviour to understand and 

forecast the evolution of the domestic price of oil. This indicates that a bottleneck problem 

does not necessarily translate into a price increase, but rather that it would negatively 

affect the price of oil and cause it to persist over time, taking a long time to recover. This 

fact may have a negative effect on the profitability of oil-producing companies in the 

United States. Also, it might have implications in the economic policy of the country 

since the oil market represents 8% of the Gross Domestic Product (GDP). Thus, this 

research paper may be very helpful to institutions and companies that are exposed to crude 

oil market changes allowing a better understanding of the effects of spatial crude oil 

production divergence in the United States on the WTI crude oil price behaviour. 
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Figure 1: Map of Petroleum Administration for Defense Districts (PADDs). 

Source: EIA. 

 

 

 
 

 

 

Figure 2: United States crude oil pipelines. 
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Figure 3: U.S. shale oil productivity 
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Figure 4. Time series and Wavelet Power Spectrum plots 
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Figure 5. Wavelet Coherency, phase-differences and wavelet gain between WTI 

crude oil price and shale oil production in U.S. 
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Table 1: Estimated values of the differencing parameter d: White noise residuals 

 No regressors An intercept A time trend 

Anadarko 0.96   (0.86, 1.09) 0.91   (0.84, 0.98) 0.90   (0.83, 0.98)* 

Appalachia 0.97   (0.87, 1.10) 1.09   (1.01, 1.19) 1.09   (1.01, 1.19) 

Bakken 0.95   (0.85, 1.08) 1.24   (1.15, 1.36) 1.23   (1.14, 1.35) 

Eagle Ford 0.97   (0.86, 1.10) 1.41   (1.35, 1.49) 1.41   (1.35, 1.49) 

Haynesville 0.97   (0.88, 1.11) 0.95   (0.85, 1.08) 0.95   (0.85, 1.08) 

Niobrara 0.96   (0.86, 1.10) 1.17   (1.08, 1.30) 1.18   (1.08, 1.30) 

Permian 0.97   (0.87, 1.10) 1.07   (1.01, 1.16) 1.08   (1.01, 1.18) 

Oil prices 1.04   (0.91, 1.23) 1.15   (0.99, 1.39) 1.15   (0.99, 1.38) 

*: Evidence of mean reversion at the 5% level. 

 

 

 

Table 2: Estimated values of the differencing parameter d: Autocorrelated 

(Bloomfield) residuals 

 No regressors An intercept A time trend 

Anadarko 0.92   (0.74, 1.13) 1.12   (0.99, 1.30) 1.12   (0.99, 1.30) 

Appalachia 0.93   (0.74, 1.17) 1.21   (1.06, 1.41) 1.22   (1.06, 1.42) 

Bakken 0.88   (0.73, 1.09) 1.23   (1.08, 1.41) 1.21   (1.06, 1.41) 

Eagle Ford 0.90   (0.70, 1.12) 1.66   (1.54, 1.81) 1.67   (1.54, 1.85) 

Haynesville 0.94   (0.78, 1.16) 0.94   (0.78, 1.22) 0.94   (0.77, 1.23) 

Niobrara 0.90   (0.74, 1.15) 1.12   (0.97, 1.31) 1.13   (0.97, 1.34) 

Permian 0.91   (0.76, 1.15) 1.22   (1.09, 1.43) 1.27   (1.13, 1.46) 

Oil prices 0.77   (0.64, 0.96) 0.79   (0.61, 1.07) 0.80   (0.62, 1.07) 
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Table 3: Estimated values of the differencing parameter d: Seasonal monthly 

AR(1) residuals 

Series No regressors An intercept A time trend 

Anadarko 0.96   (0.85, 1.10) 0.89   (0.83, 0.98) 0.89   (0.82, 0.98) * 

Appalachia 0.97   (0.86, 1.10) 1.07   (0.99, 1.18) 1.08   (0.99, 1.18) 

Bakken 0.95   (0.84, 1.08) 1.23   (1.13, 1.35) 1.22   (1.13, 1.34) 

Eagle Ford 0.97   (0.86, 1.10) 1.40   (1.33, 1.49) 1.40   (1.33, 1.49) 

Haynesville 0.97   (0.86, 1.11) 0.91   (0.81, 1.05) 0.91   (0.80, 1.05) 

Niobrara 0.96   (0.86, 1.10) 1.16   (1.06, 1.28) 1.16   (1.06, 1.28) 

Permian 0.97   (0.85, 1.10) 1.07   (1.00, 1.16) 1.07   (0.99, 1.18) 

Oil prices 1.0e4   (0.91, 1.23) 1.15   (0.99, 1.38) 1.15   (0.99, 1.38) 

*: Evidence of mean reversion at the 5% level. 

 

 

Table 4: FCVAR results 

Series d b μ1 μ2 1 2 

Anadarko 0.894 0.010 56.401 126398.04 13781.81 28756598.99 

Appalachia 0.414 0.414 57.929 28272.341 0.172 73.549 

Bakken 0.518 0.518 54.805 136273.457 0.033 279.164 

Eagle Ford 0.971 0.687 62.465 51390.41 -0.285 905.37 

Haynesville 1.412 0.010 56.382 59957.63 -70368.42 21979520.57 

Niobrara 1.361 0.914 56.024 111845.25 -0.256 204.72 

Permian 0.634 0.366 55.574 859239.32 0.006 100.48 

 

 

 

 

 

 


