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Abstract: Monitoring of motor symptom fluctuations in Parkinson’s disease (PD) patients is currently
performed through the subjective self-assessment of patients. Clinicians require reliable information
about a fluctuation’s occurrence to enable a precise treatment rescheduling and dosing adjustment.
In this review, we analyzed the utilization of sensors for identifying motor fluctuations in PD
patients and the application of machine learning techniques to detect fluctuations. The review
process followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. Ten studies were included between January 2010 and March 2021, and their main
characteristics and results were assessed and documented. Five studies utilized daily activities to
collect the data, four used concrete scenarios executing specific activities to gather the data, and only
one utilized a combination of both situations. The accuracy for classification was 83.56–96.77%. In
the studies evaluated, it was not possible to find a standard cleaning protocol for the signal captured,
and there is significant heterogeneity in the models utilized and in the different features introduced
in the models (using spatiotemporal characteristics, frequential characteristics, or both). The two
most influential factors in the good performance of the classification problem are the type of features
utilized and the type of model.

Keywords: Parkinson´s disease; motor fluctuations; sensors; motor symptoms; treatment

1. Introduction

Even though telemedicine was introduced many years ago, the last 20 years have been
key in the development of the technologies, both in terms of software and hardware, on
which telemedicine is reliant (sensors, mobile communications, cloud computing, analytics,
etc.). Telemedicine is an expanding field of medicine used in healthcare-related activities,
such as consultation, cooperative work between medical professionals, monitoring patients’
physiological and biometric parameters, caring for patients’ daily living conditions, and
surgery (using robotics, artificial vision, and virtual reality) [1].

Parkinson’s disease (PD) is currently the second most common neurodegenerative
disease, affecting 1% of the population older than 60 years [2]. According to a specialized
report created by the National Institute of Health (NIH) in the United States, PD preva-
lence in 2018 was approximately 6 million people worldwide; by 2040, this number will
have doubled.

Parkinson’s disease is characterized by motor symptoms such as bradykinesia, rigidity,
and resting tremors, but also by non-motor symptoms, such as depression, apathy, or
cognitive decline [3].
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The administration of levodopa (L-Dopa) is the first therapeutic option for motor
symptom control [4]. Depending on the degree of symptoms that a patient experiences,
two states can be characterized: on state and off state. In the on state, a patient experiences
an improvement in symptoms after the intake of medication. In the off state, a patient
experiences a return of symptoms related to PD. As the disease progresses, patients could
experience motor fluctuations, also known as “wearing-off”, which are based on the
alternance between the two aforementioned states. This is one of the most challenging
complications when facing treatment adjustments for PD symptomatic management. This
phenomenon is reported in up to 50% of the diagnosed patients within three to five years
from the start of the disease, and affects up to 80% of the diagnosed patients within
10 years from the onset of the disease [5]. In the most evolved PD cases, this occurrence
is believed to be caused by basal ganglia neurodegeneration. The management of these
motor fluctuations is based on various adjustments to the treatments (frequency, dosage of
medication, changing parameters for brain stimulation, etc.).

The standard for PD diagnosis is based on a clinical examination of the patient by
a neurologist. The patient is asked to perform specific tasks, and the severity of PD
symptoms is usually graded using the Unified Parkinson´s Disease Rating Scale (UPDRS)
or the Movement Disorder Society-sponsored revision of the UPDRS (MDS-UPDRS) [6].
Disease progression is measured using the Hoehn and Yahr scale (HY) [7].

Based on the evaluation and changes of these scaled scores, a physician changes and
adjusts antiparkinsonian treatment to fit a patient’s personal needs. The evaluation is
subjective and depends on the moment a patient was examined, with respect to the last
medication intake. Due to the described fluctuating nature of the symptoms, doctors rely
on patients’ perception of the intensity and severity of the symptoms during the day. This
increases the complexity of the assessment since the data available for making therapeutic
decisions would depend on too many subjective variables.

There are currently different wearable devices focused on identifying the character-
istics of PD, which perform an assessment of motor symptoms or provide aid in disease
management [8–14]. Furthermore, there are different novel platforms focused on the differ-
ent aspects of ambulatory attention in the assessment and management of PD: detection,
response, and action capabilities.

In general, technological improvements, such as greater computational power, new
and different computing architectures, and greater storage capacity, have sowed the seeds
for the application of AI techniques to different areas in medicine, such as diagnosis,
consultation, monitoring, treatment, and prevention [15,16]. Sensors in particular, in terms
of the latest trends, are becoming smaller, cheaper, and capable of wireless control, which
extends their use to various applications. Therefore, the utilization of both biosignals
and machine learning (ML) techniques will continue expanding over the following years,
thus broadening the concepts of telemedicine and e-health and focusing on providing a
personalized diagnosis or treatment to patients.

The growing implantation of sensors for fitness tracking and smartwatches is a great
source of biometric and activity data that, in the future, will require the use of applications
for data processing. Most of commercially available devices rely on a suite of sensors,
including combinations of cameras, inertial measurement units, gyroscopes, depth sensing,
force/pressure sensors, and more to enable the user to interact with the device. According
to IDTechEx, in the normal process of developing of wearable sensors, pre-designed sensors
were incorporated to wearable products decades ago, and then smartphone industries
provided these devices with sensors that could be made wearable; however, in recent years,
many sensor types have been developed specifically with wearable products in mind [17].
This constant growth of the sensors industry may largely benefit health-related wearables
to create noninvasive, portable, and cost-effective solutions.

The purpose of this systematic review is to investigate the use of sensors in identifying
the on and off states in PD patients, and to evaluate the application of ML techniques to
differentiate between the on and off states. An accurate identification of a patient´s medical
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state may lead to successful adjustments in therapy, and may consequently have a positive
impact on the quality of life of PD patients.

2. Methods
2.1. PRISMA Statement

This review is based in the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA, http://www.prisma-statement.org) guidelines (accessed on:
10 November 2020).

Find more information in the statement article [18] and the elaboration article [19].
Figure 1 shows the PRISMA flow diagram, which summarizes the search, screening,

and eligibility processes carried out in this review. The precise information of each of the
steps is detailed in the sections below.
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2.2. Identification: Search Strategy and Sources

The following terms were selected: 1. Parkinson, 2. Technology, 3. Sensor, 4. Off.
The proposed search term was combined using logical operators as follows: 1 AND (2 OR
3) AND 4. This combination was introduced in the following 3 databases: IEEE Explore,
PubMed, and ScienceDirect. The search spanned from January 2010 to March 2021. A
search was last conducted on 18 March 2021, and 166 results were obtained.

2.3. Screening and Eligibility

Independently, an investigator (M.B.F) performed the initial search using the men-
tioned terms and evaluated the titles and abstracts of the articles found. The steps per-
formed removed duplicates and discarded articles according to the exclusion criteria.

The inclusion criteria were: (i) peer-review articles, (ii) human patients, (iii) patients
aged older or younger than 18 years old, (iv) based on real signals or using technology, and
(v) signals associated with Parkinson’s disease to identify on/off states.

http://www.prisma-statement.org
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The exclusion criteria were: (i) studies that did not identify on/off states, (ii) studies
using animals, (iii) articles analyzing the usage of biosignals to evaluate other motor symp-
toms caused by Parkinson’s disease that were different from the wearing-off phenomenon,
(iv) studies not using ML techniques, (v) studies not considering signals recorded with
sensors, and (vi) articles from the same group of research utilizing the same datasets

2.4. Data Extraction and Analysis

After applying the inclusion and exclusion criteria, the screening process was per-
formed. This phase was executed by two review authors (M.B.-F. and J.P.R.) in an inde-
pendent manner and the activity consisted of screening the full-text articles. The final
objective was to obtain a score by using the checklist following the criteria of the checklist
proposed in Guidelines for Developing and Reporting Machine Learning Predictive Models
in Biomedical research [20]. The mentioned checklist is composed of 12 different reporting
items that should be included in a research article to assure its quality. Below is a summary
of the items utilized for the quality assessment:

- Items 1, 2: focused on reviewing the title and the abstract.
- Items 3, 4: evaluate the information provided in the introduction.
- Items 5, 6: evaluate the description and completeness of the dataset and the main

method/s analyzed in the research.
- Item 7: this point evaluates the data pre-processing method, if any, and, in general,

any step to prepare the data for analysis.
- Item 8: this item is related to the steps that form the predictive model.
- Item 9: this is focused on evaluating the performance on the evaluated model.
- Items 10, 11 and 12: these items are related to the quality of the discussion. They

evaluate the existence and quality of the clinical implications, the limitations of the
study, and unexpected results.

Two independent evaluators (M.B.-F. and A.M.M.) followed the checklist mentioned
before evaluating each selected article. Furthermore, to score the consensus between the
evaluators, the kappa value was calculated. The main purpose of this procedure was to
generate an objective assessment for each content´s article to make them comparable to
one another. Therefore, the quality evaluation is also indicated in the Section 3.

2.5. ML Techniques

This section provides an initial conceptual framework for the main types of ML technique.
Supervised algorithms utilize labeled data to train the algorithms; however, unsu-

pervised algorithms discover information from the input data. As can be seen in Table 1,
the main purpose of the supervised algorithms is classification or regression (or both);
meanwhile, the objective of the unsupervised algorithms is identifying unknown patterns
in the data.

Table 1. Summary of main ML technique types.

ML Type Purpose Typical Algorithms Description

Supervised algorithm

Classification Naïve Bayes, logistic regression,
support vector machines

The main purpose of these algorithms is to classify
data into the different predefined classes

Regression Linear and non-linear regression The main purpose of these algorithms is to find the
relation between different variables

Both Decision trees, random forest,
k-nearest neighbors, neural networks

These have classification properties but also the
ability to find the relation between

different variables

Unsupervised algorithm Clustering K-means, neural networks, hidden
Markov model

The main purpose of these types of algorithm is to
discover groups in the input data
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3. Results
3.1. Eligibility According to PRISMA Flow Diagram

According to the PRISMA methodology, a flow diagram is shown in Figure 1. A total
of 166 studies were initially identified in the search process. After the removal of duplicate
studies (34), the titles and abstracts of 132 articles were screened and 65 irrelevant records
were excluded, as they were not related to the evaluated topic (40), to reviews (5), or were
not peer reviewed (20 articles from proceedings and conferences). Consequently, 65 studies
were removed in this step, leaving a total of 67 of articles, which were submitted to the
eligibility process. The criteria for inclusion and exclusion were applied. As a result of
this phase, eight articles were excluded for not using ML techniques and three articles
did not use sensors; however, 46 articles focusing on Parkinson motor symptoms (gait or
bradykinesia) did not examine on/off states. The sum of all these types of article resulted in
a total of 57 exclusions, leaving us with a total of 10 studies that met the defined inclusion
criteria. Of the included articles, the main characteristics related to sensors utilized, study
goal, classifier used, and performance obtained are shown in Table 2.

3.2. Analysis of the Quality of the Articles

The quality of the articles was evaluated using the checklist presented before, with the
main purpose of comparing the content of the publications. The first evaluator provided
an average value of 8.1 ± 1.59 out of 12 for the 10 articles, whereas the second evaluator
determined an average assessment of 8.1 ± 1.52 out of 12. With the main purpose of
assessing the concordance between both evaluations, the kappa (k) value was calculated.
This value reflects the effect of a chance on an agreement in the observation, obtaining a
value of k = 0.66 and showing a moderate level of agreement among the evaluators (a value
greater than 0.7 means a high level of agreement among the evaluators, a value between 0.5
and 0.7 means a moderate level of agreement, and a value lower than 0.5 means a low level
of agreement) [21]. Figure 2 shows a simple plot, with information regarding the number
of articles and punctuation for each checklist item.
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Evaluating the content of the articles included in this review, Table 2 shows the
summary of the main characteristics for each study. These data include the title of the
study, the authors, the publication year, the study country, the study design, the sample
size of patients, disease stage, the sensors used, and the features utilized in the classifier, as
well as the the classifier utilized and the result parameters in the identification of the on/off
states. If a full paper was not found online, articles were requested directly from authors.
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Table 2. (a) Characteristics of included studies (I). Acronyms: IMU—inertial movement unit; SVM—support vector machines; kNN—k-nearest nearest neighbor; CNN—convolutional
neural networks; UPDRS—unified Parkinson’s disease rating scale; ANN—artificial neural network; H and Y—Hoehn–Yahr; F—female, M—male. (b) Characteristics of included studies
(II). (c) Characteristics of included studies (III).

(a)

Title Authors References Country Publication
Year

Sample
Size

Sex
(F/M)

Stage (UPDRS
or H&Y) Sensor Features Classifier

Performance
Indices and

Outcome

A Kinematic Sensor
and Algorithm to
Detect Motor
Fluctuations in
Parkinson Disease:
Validation Study
Under Real
Conditions of Use

Rodriguez-Molinero,
A. et al. [22] Spain 2018 23 7/16 21 ± 16 UPDRS IMU Spatiotemporal

gait

Own machine
learning
algorithm

Accuracy
(92.2%)

A Supervised
Machine Learning
Approach to Detect
the On/Off State in
Parkinson’s Disease
Using Wearable
Based Gait Signals

Aich, S. et al. [23] South Korea 2020 20 8/12 15.8 ± 10.13
UPDRS Accelerometer

Statistical
features +
spatiotemporal
gait features

Random forest,
kNN, SVM
and naïve
Bayes

Accuracy
(96.72%), recall

(97.35%),
precision
(96.92%)

A Treatment-
Response Index from
Wearable Sensors for
Quantifying
Parkinson’s Disease
Motor States

Thomas, I. et al. [24] Sweden 2017 19 5/14 Advanced stage Accelerometer
and gyroscope

Spatiotemporal
features

SVM, decision
tree, random
forest, linear
regression

Classification
accuracy (89%,

74%, 84%,
81%)

(b)

Analysis of
Correlation between
an Accelerometer-
Based Algorithm for
Detecting
Parkinsonian Gait
and UPDRS
Subscales

Rodriguez-Molinero,
A. et al. [25]

Spain, Italy,
Israel,
Ireland,

2017 75 27/48 15 ± 13 UPDRS IMU Spatiotemporal
gait features SVM

Correlation
(rho −0.73;
p < 0.001)
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Table 2. Cont.

(b)

Assessing Motor
Fluctuations in
Parkinson’s Disease
Patients Based on a
Single Inertial Sensor

Pérez-López, C. [26] Spain 2016 15 5/10 2.66 H&Y IMU
Spatiotemporal,
frequential gait
features

hierarchical
algorithm

Specificity
(92%),

sensitivity
(92%)

Assessment of
response to
medication in
individuals with
Parkinson’s disease

Hssayeni, M.D. et al. [27] United
States 2019 19 5/14 14 ± 8 UPDRS Gyroscope and

accelerometer

Spatiotemporal,
frequential gait
features

SVM

Accuracy
(90.5%),

sensitivity
(94.2%),

specificity
(85.4%)

High-Resolution
Motor State
Detection in
Parkinson’s Disease
Using Convolutional
Neural Networks

Pfister, F.M.J. et al. [28] Germany 2020 30 10/20 21.6 ± 15.3
UPDRS IMU Spatiotemporal

gait CNN

Sensitivity
(64%),

specificity
(89%)

(c)

Multilevel Features
for Sensor-Based
Assessment of Motor
Fluctuation in
Parkinson’s Disease
Subjects

Ghoraani, B. et al. [29] United
States 2019 19 5/14 UPDRS: 14 ± 8 Gyroscope

Time-domain
features,
frequency-
domain
features

SVM

Accuracy
(83.56%),

sensitivity
(78.51%),

specificity
(92.02%)

Unsupervised home
monitoring of
Parkinson’s disease
motor symptoms
using body-worn
accelerometers

Fisher, J.M. et al. [30] United
Kingdom 2016 34 Not

specified H&R I-IV Accelerometer Temporal
features ANN

Sensitivity
(51%),

specificity
(87%)

Validation of a
portable device for
mapping motor and
gait disturbances in
Parkinson’s disease

Rodriguez-Molinero,
A. et al. [31] Spain 2015 35 8/27 H&Y III Accelerometer

Frequential and
spatiotemporal
parameters

SVM

Sensitivity
(96%),

specificity
(94%)
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3.3. Analysis of the Selected Articles

Evaluating the number of articles dedicated to the topic analyzed in the period 2010–
2021, it is possible to see that the articles are concentrated in the period 2015–2021, with
a stabilization in the number of articles, as they are distributed between one or two
(maximum) articles per year.

Evaluating the number of patients in the selected studies, it is important to highlight
that most of the studies (nine out of 10) included fewer than 50 patients, where the average
value was 28.9 ± 17.6. The articles do not state in the analysis or discussion whether the
number of patients selected was appropriate for the classification problem in the scope of
the study. Regarding the age of patients, PD patients included in the analysis were between
44 and 78 years, with a mean value oscillating around 60 years, which is coherent with
the expected age of incidence of the disease. The total number of patients evaluated in
the selected studies is 289, with 27.7% being female patients, 60.6% being male patients,
and 11.7% not indicating their sex. The duration of the disease in the patients evaluated
is specified in nine out of 10 studies in the scope of this review, with a mean duration
oscillating at around 10 years. When the degree of the progression of the disease was
considered, six out of 10 of the evaluated articles indicated the status of the patients
according to the UPDRS scale, with three of the studies showing the status of patients
according to the Hoehn–Yahr (HY) scale. Only one of the articles evaluated did not mention
the specific stage of the disease, and only mentioned an advanced stage of the illness.

With respect to pre-processing, there is no common procedure for cleaning captured
signals, so this varied between articles (some of the articles did not include those details
and others used a specific filter to clean the captured signals). This point makes the
quality assessment of the datasets difficult to evaluate. In particular, four of the articles
performed signal pre-processing by minimizing signal noise using different types of a
Butterworth filter, and the remaining articles did not specify the cleaning process, assuming
no alterations in the signal’s capture.

Related to the input characteristics, the features analyzed from the captured signals
are very different between the articles. In particular, five articles utilized spatiotemporal
characteristics, three articles combined spatiotemporal and frequency characteristics, one
article combined statistical and spatiotemporal features, and one article utilized only
frequential characteristics.

One important factor in this review is to analyze the technology utilized in the selected
studies. According to the evaluated studies, the main technology used in 40% of the articles
analyzed is an inertial sensor (IMU is a device with an accelerometer, a gyroscope, and
sometimes a magnetometer). The combination of an accelerometer and a gyroscope is
used in 20% of the cases. Only an accelerometer is utilized in 30% of the articles, and
only a gyroscope is utilized in 10% of the studies. These results show those devices are a
trustworthy, low-cost solutions for assessing movement symptoms in PD patients.

It is relevant that the on/off state is a binary variable, but the reality is that patients
experience a smooth change between one state and the other one. The reviewed studies
utilized different controlled protocols to record the data; once in the on state (when taking
the medication) and then in the off state (an artificially induced prolonged withdrawal
time of the patient’ normal medication).

3.3.1. Types of Models Considered

In this review, it is important to evaluate the variety of models used. Figure 3 shows a
bar chart with the different models from the analyzed articles.

Related to the machine learning models shown in Table 2, the 10 selected articles
utilized a total of 10 different ML techniques to approach the classification problem, high-
lighting that there are articles using more than one technique (as shown in Figure 2).
More precisely, there are two articles in which four different ML methods are tested and
compared; however, there are eight articles in which a unique method is utilized.
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Support vector machine (SVM) algorithms play an important role in the studies, as
they are utilized in six out of 10 articles evaluated. Random forest (RF) is utilized in two
different articles, and the rest of the algorithms are used on one article each. Considering
the type of processing linked to the models, decision tree (DT) and RF algorithms can be
considered symbolic models, while the remaining ones are categorized into the subsymbolic
group. According to Figure 2, most of the models utilized in the evaluated articles belong
to the subsymbolic category.

Finally, to conclude this initial analysis, it is important to mention that there is huge
heterogeneity between the models utilized in the different articles evaluated, and they
each have special considerations when comparing results obtained in the classification
problem. The results obtained in each article will be discussed in the subsequent sections
of this review.

3.3.2. Type of Data Collected

As can be seen Table 3, the selected articles considered two types of activity to collect
the data. Consequently, the articles were divided into two different categories based on
how the type of activity utilized acquired the data. On the one hand, the daily living
activities group corresponds to articles [21,25–28], in which the data evaluated have been
collected during normal daily life activities. On the other hand, the specific activities
group corresponds to articles [22,23,25,30], which recorded the data by performing specific
activities during concrete sessions. Moreover, there is one specific article using both types
of activity [29].

For each of these articles, the model considered, the classification results obtained, the
characteristics introduced, and the type of signal processing are shown in Table 3.
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Table 3. Summary of the results, type of features introduced to the model, year of publication, and main results obtained.
Acronyms: BW—band width; SVM—support vector machines; kNN—k-nearest neighbors; NB—Naive Bayes; DT—decision
tree; RF—random forest; LR—linear regression; UDPRS—unified Parkinson’s disease rating scale; CNN—convolutional
neural networks; ANN—artificial neural network; FIR—finite impulse response.

Refs Year Features Cleaning Method Results Classifier Perf. Indicator

[22] 2018 Spatiotemporal
characteristics Not specified 92.20%

Own machine
learning

algorithm
Accuracy

[23] 2020
Statistical features +

spatiotemporal
features

Low pass BW filter

RF: 96.72%, 97.35%,
96.92%; SVM: 93%,

02%, 93%; KNN: 86%,
84%, 85%; NB: 88%,

86%, 85%

Random forest,
kNN, SVM, and

Naive Bayes

Accuracy, recall,
precision

[24] 2017 Spatiotemporal
features

ApEn method for
motion removing

SVM:0.89, DT: 0.84,
RF: 0.81, LR: 0.74

SVM, decision
tree, RF, linear

regression

Classification
accuracy

[25] 2017 Spatiotemporal
features Not specified

Correlation between
the algorithm

outputs gait status
(rho −0.73;
p < 0.001)

SVM Correlation
with UPDRS-III

[26] 2016
Spatiotemporal

features + frequency
features

Not specified 92%, 92% Hierarchical
algorithm

Specificity and
sensitivity

[27] 2019 Spatiotemporal +
frequential features Bandpass FIR filter 90.5%, 94.2%, 85.4% SVM

Accuracy,
sensitivity,
specificity

[28] 2020 Spatiotemporal
features

Two direction BW
filter 64%, 89% CNN sensitivity,

specificity

[29] 2019

Time-domain
features and

frequency-domain
features

Bandpass filter 83.56%, 78.51%,
92.02% SVM

Accuracy,
sensitivity and

specificity

[30] 2016 Temporal features Not specified 51%, 87% ANN Sensitivity,
specificity

[31] 2015
Frequency

parameters (spectral
power)

Not specified 96%, 94% SVM Sensitivity,
specificity

Daily Living Activities

The daily living activities group contains five articles which considered different
algorithms and sensors and utilized different features from them. The articles exhibited dif-
ferent sensors (inertial sensor, gyroscope, and combination of gyroscope and accelerometer).
On the one hand, the classifier utilized in 40% of the cases is SVM, obtaining an average
accuracy of 86.78%, an average sensitivity of 86.355%, and an average specificity of 88.71%.
Those articles use a filter to clean the input signal coming from the sensors, specifically a
bandpass filter (with normalized pass frequency in the band 0.5–1.5 Hz). Those studies
utilized both time domain features and frequency domain features. On the other hand,
the other 60% cases use a different classifier such as a customized algorithm [22], a CNN
algorithm [28], or a hierarchical algorithm [26], but all of them use an accelerometer as the
sensor to capture the data. There is only information for the CNN algorithm in relation to
the signal cleaning, i.e., using a two direction Butterworth filter. The accuracy for those
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articles is only provided for [22], reaching a value of 92.2%. The average specificity for the
other remaining two articles is 90% [26,28].

Finally, in this group, the evaluation of the quality criteria performed by the two
evaluators provide the following values: first, an average value of 8.4 ± 1.14 out of 12 for
the first evaluator and, second, a value of 8.6 ± 1.51 out of 12 for the second evaluator. The
kappa value obtained for the articles included in this group was 0.74, and was consequently
higher than the value obtained when analyzing all the evaluated articles. Therefore, the
level of agreement between the evaluators is higher when considering the category of
daily activities.

Specific Activities

This category evaluated four articles [22–24,30]. Half of those studies used more than
one model to solve the classifying problem, and the remaining ones only used one specific
classifier. The common characteristic between them is that they all used the SVM classifier.
All of them used an accelerometer as the sensor to capture the data, and there was only
one that used a combination of both an accelerometer and a gyroscope [24]. The articles
utilizing more than one classifier [22,23] used a filter to decrease the level of noise in the
signal by using a low pass Butterworth filter [23] or an approximate entropy method for
motion removal [24]. There is no common metric between the studies of this group, and the
accuracy, sensibility, and specificity between the utilized metrics provide results. There is
only one article [31] that utilizes frequency parameters as features instead of spatiotemporal
features in this category [22–24].

To conclude this group, the evaluation of the quality criteria, according to the checklist
introduced before, received an assessment of 8.25 ± 2.06 out of 12 by the first evaluator
and 8 ± 1.41 by the second evaluator. The kappa value for this group was 0.44, showing a
slightly lower value than the one obtained in the previous group and in the global set of
articles, indicating a lower level of agreement between the evaluators.

Combination of Both (Daily Activity + Specific Activities)

Finally, there is a third category that is represented only by one article [30], and which
uses ANN as a main classifier, an accelerometer as the sensor to capture the data, and
temporal features to obtain a sensitivity of 51% and a specificity of 87%. This specific case
combines daily life activities with specific activities performed in a controlled environment.

4. Discussion

PD is a disease in which motor complications have an important impact on a patients´
quality of life and represent a major issue in treatment adjustment. The purpose of this
systematic review was to investigate the usage of sensors in identifying the on and off
phenomena in PD patients and to evaluate the application of ML techniques to differentiate
between the on and off states. The evaluation found 10 different studies in the literature
review that analyzed the usage of sensors to detect the on and off medication status. It can
be seen from the included articles that this field is still emerging, with the oldest article
being published in 2015.

Implementing applications to help clinicians in the management of Parkinson’s pa-
tients has increased in recent years, especially the utilization of wearable devices which
are key for early diagnosis and the monitoring of motor symptoms. The purpose of these
devices is to improve a patient´s quality life by having a constant medical control, with the
objective of providing accurate and personalized treatment. According to an article from
the Movement Disorder Society (MDS) Task Force on Technology [24], there are different
challenges to be solved when considering improving a PD patient´s life, including solving
the need for monitoring non-motor symptoms, being able to limit the sensors used to
monitor a patient´s motor symptoms, the actual discrepancy between clinical needs and
research, a lack of compatibility among wearable systems, and the limitation of available
analytical methods or practical limitations in user engagement [32].
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Several platforms have been developed in the past to control Parkinson’s disease
(PD) symptoms. An example is the REMPARK project [33], which is based on a wearable
monitoring system that can monitor patient motor status and evaluate the on/off status
with high precision. Another relevant example is known as the “HELP” system, which is
is focused on optimizing treatments and improving the life quality of patients with PD
by estimating PD symptoms and adjusting the dose of medication to reduce them [34].
Another great example of the platforms created in relation to PD is an innovative project
funded by the European Union research and innovation program, Horizon 2020, which is
related to identifying Parkinson’s Disease, called i-PROGNOSIS [35]. The main purpose of
the mentioned project is to develop early and unobtrusive Parkinson´s disease detection
tests, primarily based on the interaction of users with daily technological devices (largely
by monitoring the patient’s movements and mood and with direct communication with
their doctors).

Related to the global distribution of the articles, most of the studies were conducted in
Spain and the United States (six out of the ten studies were analyzed, with four performed
in Spain and two performed in the United States). The remaining studies were conducted
in South Korea, Sweden, Ireland, Israel, Italy, Germany, and the United Kingdom, showing
a global interest in engaging with the objectives of this review.

The quality of the selected articles was assessed in this review using the checklist
of the guidelines for developing and reporting machine learning (ML) predictive models
in biomedical research. The average values obtained (8.1 ± 1.59 out of 12 and 8.1 ± 1.52
out of 12) indicate the high-quality level of the articles in the review. Another important
fact to mention is a kappa value of 0.66 among the two independent reviewers, showing
a moderate level of agreement between the evaluators when assessing the quality of the
articles in this study. It is important to mention that both evaluators agree that the less
fulfilled items were 6 and 12, clearly related to the definition of the prediction problem and
the unexpected results, respectively. Unexpected results could appear after more research
and new articles related to the topic are published.

It is important that good results were obtained in the evaluated articles, even when sig-
nals were captured in two totally different conditions. In both situations, the most used tech-
nology is an accelerometer, an accessible and minimally invasive tool currently available.

The utilization of biosignals along with ML techniques has grown in recent years, and
has been applied to several different diseases. Related to PD, various studies show the
importance of those techniques for identifying PD using electroencephalography (EEG) [36]
or for diagnosing and assessing PD using inertial sensors or video signals [37]. There are
other diseases being assessed that utilize the same approach; for example, identifying atrial
fibrillation using an electrocardiogram (ECG) and applying ML techniques to identify
potential alterations [38], or diagnosing Alzheimer’s disease using the ML algorithms by
processing sensor movement data from patients [39,40].

To conclude, it is important to discuss how the features utilized and the cleaning
process of the signal can directly influence the efficiency of the models used. As is shown in
Table 2 when comparing articles [22–24,26,28,30], six out of 10 articles use SVM, resulting
in an accuracy of 93% [23], 89% [24], 90.5% [27], and 83.56% [29], or they show the results
in terms of correlation, with a rho value of −0.73 [25] or sensitivity [31]. From that
information, it is possible to see that the highest accuracy is obtained when using input
information for the classifier, as well as a combination of the statistical features and the
spatiotemporal information of the signals captured [23]. Considering the good results
obtained in the mentioned article, another important point is that the utilization of the low
pass Butterworth is a useful method to clean the input signals coming from the sensors
when utilizing ML techniques for classification. Therefore, it can be inferred that the
utilization of a Butterworth filter for cleaning the input signal coming from the sensors and
using features from the statistical information of the captured data and the spatiotemporal
information are decisive for obtaining a better performance in the classification problem.
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For the most novel techniques utilized in the articles evaluated, CNN and ANN in
this case, there is no conclusion regarding the best filter to use in [24]; the filter utilized
is not specified and the sensitivity obtained is only 51%. That said, in [28], the sensitivity
obtained rises to 64% with a two direction Butterworth filter.

Therefore, in order to develop an accurate model that can classify the on/off states
associated with PD, it is essential to take into account both the input parameters to the
classifier and the signal cleaning methods.

In general, current publications and records exploring the usage of sensors to identify
the wearing-off phenomenon suggest that the results are optimistic, and that the utiliza-
tion of wearable devices could provide an improvement in the management of the PD
symptoms. The evidence suggests that using technology is acceptable for clinical appli-
cations, according to the accuracy obtained, even though there can be different barriers
for patients to engage with this approach. The evaluated studies showed good results
in the classification problem, in some cases reaching up to 90% accuracy. After a deeper
analysis of the models and features utilized in the studies, it can be concluded that the
types of feature utilized in the model, as well as the cleaning process, are key in attaining
good performance in the classification problem. Moreover, there are multiple factors that
influence the utilization of this technology by patients, such as the health status of the user,
its usability, convenience, accessibility, perceived utility, or motivation [41].

In the technological environment, there are numerous challenges to overcome that have
not been assessed in the included articles, such as those related to privacy/confidentiality
issues, adequate infrastructure, user identification, etc.

5. Conclusions

The role of machine learning techniques is growing in relation to solving complex
problems. Those techniques are being applied to the management of different diseases
such as heart disease, diabetes, breast cancer, or Parkinson’s. This review focused on
evaluating the utilization of wearable devices to identify the on/off states affecting PD
patients using ML techniques. Three major results stand out from this review. First, the
usage of a low-cost technology has shown itself to be enough to predict the on/off state
of a PD patient, and this fact is relevant when considering how to improve a patient´s
quality of life. Second, although there are still a limited number of articles in the literature
applying ML techniques to the identification of the on/off states, research into this topic has
stabilized; in recent years, the number of articles on the subject is homogeneous, showing
that the field is developing but the speed of research has slowed down.

For future research, it is important to extend the usage of ML techniques for non-
motor symptom fluctuations’ detection, as the monitoring of symptoms such as pain and
dysautonomic and neuropsychiatric symptoms is a next step in the control of the disease.
This approach will help to complete the assessment and provide a more accurate treatment
adjustment. Moreover, the results presented were obtained in clinical trials; however, it
is necessary to perform more testing to evaluate results in real patient populations with
different levels of disease severity and in different environments, to overcome challenges,
and to extend the results obtained and potentially establish the usage of technology to assess
and treat PD in a generalized way. In future research, it is crucial to include the identification
of different factors that could potentially affect the engagement of technological solutions
for managing Parkinson’s from different perspectives, including health professionals, care
givers, and patients. This research will help to identify the challenges that those users
could face and try to propose solutions from different points of view.

The future of the field will be related to increasing research and investment, with the
main purpose of extending clinical trials of the applications to real life by using existing
devices used every day, such as smart phones or smart watches, facilitating access to the
benefits that those devices could bring to a PD patient’s life.
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