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Abstract
This paper examines the statistical properties of daily PM10 in eight European capitals (Amsterdam, Berlin, Brussels, Helsinki,
London, Luxembourg, Madrid and Paris) over the period 2014–2020 by applying a fractional integration framework; this is more
general than the standard approach based on the classical dichotomy between I(0) stationary and I(1) non-stationary series used in
most other studies on air pollutants. All series are found to be characterised by long memory and fractional integration, with
orders of integration in the range (0, 1), which implies that mean reversion occurs and shocks do not have permanent effects.
Persistence is the highest in the case of Brussels, Amsterdam and London. The presence of negative trends in Brussels, Paris and
Berlin indicates some degree of success in reducing pollution in these capitals.
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Introduction

Particulate matter (PM) are microscopic particles of solid or
liquid matter suspended in the air. Its sources can be natural or
anthropogenic. It has a significant impact on both climate and
precipitation and therefore has both health and social costs. In
particular, it affects the amount of incoming solar radiation
and outgoing terrestrial radiation. The coarse particles can
have a diameter between 2.5 and 10 μm (PM10) and are
known to be a very harmful form of air pollution given their
ability to penetrate into the lungs and blood streams and cause
respiratory and heart diseases as well as premature death.
Various countries have therefore set limits for particulars in
the air, which are emitted during the combustion of vehicle
engine fuels, braking and tyre wearing. In particular, the
European Union has defined in a series of directives the

acceptable limits for exhaust emissions of new vehicles sold
in the European Union and EEA member states.

Numerous studies have analysed the connection between
pollution and harmful health effects (e.g. Schwartz and
Marcus 1990; Anderson et al. 1996; Atkinson et al. 1999;
Gardner and Dorling 1999). The present study contributes to
another branch of the literature which focuses instead on
modelling various pollutants such as sulphur dioxide (SO2),
nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3),
PM2.5 and PM10. For instance, Zamri et al. (2009) applied the
Box-Jenkins ARIMA approach to model CO and NO2 in
Malaysia and found an upward trend. Li et al. (2017) analysed
air quality in Beijing from 2014 to 2016 using the spatio-
temporal deep learning (StDL) model, the time delay neural
network (TDNN) model, the ARMA model, the support vec-
tor regression (SVR) model and the long short-term memory
neural network extended (LSTME) model and concluded that
the LSTME model is the most suitable one for time series
characterised by long-term dependence with optimal time de-
lays. Naveen and Anu (2017) studied air quality in India using
ARIMA, seasonal ARIMA (SARIMA) and other models. Pan
and Chen (2008) is one of the few studies using long-memory
autoregressive fractional integrated moving average
(ARFIMA) models for air pollution data (in the case of
Taiwan) and concluding that these are more accurate than
autoregressive integrated moving average (ARIMA) models
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for such series. We also apply the latter type of framework for
our analysis; however, instead of imposing a specific ARMA
structure for the differenced process, we use white noise errors
or alternatively the non-parametric approach of Bloomfield
(1973), thus avoiding the issue of misspecification that might
occur when choosing the short-run components.

It is clearly important to investigate the dynamics of air
pollution to develop suitable models for prediction purposes
and design policies to manage air quality. This paper exam-
ines the statistical properties of daily PM10 in eight European
capitals (Amsterdam, Berlin, Brussels, Helsinki, London,
Luxembourg, Madrid and Paris) over the period 2014–2020
by applying a fractional integration framework that is more
general than the standard approach based on the classical di-
chotomy between I(0) stationary and I(1) non-stationary series
used in the vast majority of previous studies on air pollutants,
since it allows for fractional as well as integer degrees of
differentiation and thus for a much wider set of stochastic
behaviours. In particular, it enables the researcher to analyse
the long-memory properties of the series of interest and the
possible presence of trends, to test for mean reversion and to
measure the degree of persistence and the speed of adjustment
to the long-run equilibrium level. Therefore, it provides infor-
mation about whether the effects of shocks are transitory or
permanent, which is a crucial piece of information for
adopting appropriate policy measures.

The remainder of the paper is structured as follows: the
‘Methodology’ section outlines the methodology used for
the analysis; the ‘Data’ section describes the data; the
‘Empirical results’ section presents the empirical results; and
the ‘Conclusions’ section offers some concluding remarks.

Methodology

As mentioned above, we adopt a long-memory approach
based on fractional integration. Long memory is a feature of
time series that are characterised by a high degree of depen-
dence between observations which are far apart in time. It has
been found to be displayed by many time series in different
fields such as climatology (Gil-Alana 2005, 2008, 2017;
Vyushin and Kushner 2009; Franzke 2012; Ludescher et al.
2016; Bunde 2017; Yuan et al. 2019; Bruneau et al. 2020),
environmental sciences (Barros et al. 2016; Gil-Alana et al.
2016; Tiwari et al. 2016; Gil-Alana and Solarin 2018, Gil-
Alana and Trani 2019; Xayasouk et al. 2020) and economics
and finance (Gil-Alana and Moreno 2012; Abritti et al. 2017;
Kalemkerian and Sosa 2020; Murialdo et al. 2020; Qiu et al.
2020).

There exist a variety of statistical models that can describe
this type of behaviour; a very popular one among time series
analysts is based on the concept of fractional integration,
which occurs when the number of differences required to

make a series stationary I(0) is a fractional value. More pre-
cisely, a time series is said to be integrated of order d or I(d) if
it can be expressed as:

1−Bð Þdxt ¼ ut; t ¼ 1; 2;…; ð1Þ
where B is the backshift operator (Bxt =xt-1), the differencing
parameter d can be any real value, and ut is I(0) defined as a
covariance stationary process with a spectral density function
that is positive and bounded at all frequencies in the spectrum.
This framework encompasses different cases such as short
memory (d = 0), stationary long memory (0 < d < 0.5), non-
stationary though mean-reverting processes (0.5 ≤ d < 1), unit
roots (d = 1) and explosive patterns (d ≥ 1).

Data

The series analysed is the daily average air quality taken from
theWorld Air Quality Index (WAQI) at https://aqicn.org/map/

Table 1 Descriptive statistics

Amsterdam Berlin

Start date End date Start date End date

01/01/2014 13/06/2020 20/08/2014 13/06/2020
No. of observations: 2145 No. of observations: 2114
Mean: 25.7 Mean: 28.0
Standard deviation: 11.1 Standard deviation: 11.9
Variance: 124.1 Variance: 140.6
Min/max: 8/263 Min/max: 8/95
Range: 255 Range: 87
Brussels Helsinki
Start date End date Start date End date
31/12/2013 13/06/2020 02/05/2014 13/06/2020
No. of observations: 2334 No. of observations: 2214
Mean: 24.0 Mean: 18.1
Standard deviation: 11.8 Standard deviation: 10.0
Variance: 140.4 Variance: 99.9
Min/max: 1/100 Min/max: 3/90
Range: 99 Range: 87
London Luxembourg
Start date End date Start date End date
31/12/2013 13/06/2020 19/06/2015 13/06/2020
No. of observations: 2353 No. of observations: 1583
Mean: 26.5 Mean: 19.5
Standard deviation: 9.9 Standard deviation: 6.8
Variance: 97.1 Variance: 46.2
Min/max: 5/89 Min/max: 2/52
Range: 84 Range: 50
Madrid Paris
Start date End date Start date End date
31/12/2013 13/06/2020 31/12/2013 13/06/2020
No. of observations: 2323 No. of observations: 2227
Mean: 24.3 Mean: 39.3
Standard deviation: 11.7 Standard deviation: 14.5
Variance: 138.0 Variance: 210.5
Min/max.: 5/160 Min/max: 6/122
Range: 155 Range: 116
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world/es/. All data have been converted using the US EPA
standard (United States Environmental Protection Agency).
Specifically, we use daily data for the past 7 years (2014–
2020) concerning eight European capitals: Amsterdam,
Berlin, Brussels, Helsinki, London, Luxembourg, Madrid
and Paris. The series represents the daily level of air quality
(PM10) measured in micrograms per cubic metre of air (μg/
m3). The WAQI data come from the following original
sources: Madrid, http://www.mambiente.madrid.es/opencms/
opencms/calaire/ (Ayuntamiento de Madrid); Paris, http://
www.airparif.asso.fr/ (AirParif—Association de surveillance
de la qualité de l'air en Île-de-France); Amsterdam, https://
www.luchtmeetnet.nl/ (RIVM); Luxembourg, https://
environnement.public.lu/fr.html (Portail de l`Environnement
du Grand-duché de Luxembourg); London, https://uk-air.
defra.gov.uk/ (UK-AIR, air quality information resource,
Defra, UK); Helsinki, https://www.ilmatieteenlaitos.fi/
ilmanlaatu (Ilmanlaatu Suomessa); Brussels, https://www.
irceline.be/en/ (Belgian Interregional Environment Agency);
and Berlin, https://www.berlin.de/senuvk/umwelt/
luftqualitaet/ (Luftqualität).

Table 1 reports the sample periods for each capital and
provides some descriptive statistics for each series. It can be
seen that Paris exhibits the highest mean value, while Helsinki

has the lowest. Paris also has the most volatile series, while
Luxembourg has the least volatile.

Empirical results

We estimate the following model:

yt ¼ αþ βtþ xt; 1−Bð ÞdoXt ¼ ut; t ¼ 1; 2;…; ð2Þ

where yt stands for PM10 in each European capital in turn, and
xt is an I(d) process such that the error term ut is I(0); the
disturbances are assumed to follow a white noise (see
Tables 2 and 3) and an autocorrelated process (see Tables 4
and 5) in turn, where the latter is modelled using the exponen-
tial spectral framework of Bloomfield (1973). In all cases, we
display the estimated values of d (and their associated 95%
confidence bands) for three different specifications: (i) no de-
terministic terms in (2), i.e. we impose the restrictionα = β = 0
(the results for this case are reported in the second column in
Tables 2 and 4); (ii) an intercept only (see the third column in
both tables); and (iii) an intercept and a linear time trend (see
the fourth column in both tables). The estimated values report-
ed in bold in these tables are those corresponding to our

Table 2 Estimates of d: white
noise errors Series No deterministic terms An intercept An intercept and a time trend

Amsterdam 0.42 (0.39, 0.46) 0.39 (0.35, 0.44) 0.39 (0.35, 0.44)

Berlin 0.63 (0.58, 0.68) 0.61 (0.56, 0.67) 0.61 (0.56, 0.67)

Brussels 0.52 (0.48, 0.56) 0.50 (0.46, 0.55) 0.50 (0.46, 0.55)

Helsinki 0.57 (0.52, 0.61) 0.54 (0.50, 0.59) 0.54 (0.50, 0.59)

London 0.54 (0.50, 0.59) 0.52 (0.47, 0.57) 0.52 (0.47, 0.57)

Luxembourg 0.56 (0.51, 0.62) 0.54 (0.48, 0.61) 0.54 (0.48, 0.61)

Madrid 0.63 (0.58, 0.68) 0.62 (0.57, 0.67) 0.62 (0.57, 0.67)

Paris 0.55 (0.51, 0.59) 0.53 (0.49, 0.58) 0.53 (0.49, 0.58)

We report the estimates of d and its 95% confidence band (in parenthesis). In bold, the selected specification for
each series

Table 3 Estimated coefficients in
the selected model: white noise
errors

Series d (95% band) Intercept (t-value) Time trend

Amsterdam 0.39 (0.35, 0.44) 26.0450 (8.77) ---

Berlin 0.61 (0.56, 0.67) 25.3864 (3.93) ---

Brussels 0.50 (0.46, 0.55) 20.9146 (4.17) ---

Helsinki 0.54 (0.50, 0.59) 20.4913 (4.57) ---

London 0.52 (0.47, 0.57) 23.0696 (5.23) ---

Luxembourg 0.54 (0.48, 0.61) 15.6394 (4.61) ---

Madrid 0.62 (0.57, 0.67) 16.5249 (2.59) ---

Paris 0.53 (0.49, 0.58) 32.9226 (5.16) ---

The values in parenthesis in column 3 are the corresponding t-values
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preferred specification, which has been selected on the basis
of the statistical significance of the regressors.

When assuming that ut is a white noise, the intercept is
found to be the only significant deterministic term in all cases;
the estimated values of d are in the interval (0, 1), which
implies long memory and fractional integration. They range
between 0.39 (Amsterdam) and 0.62 (Madrid). For
Amsterdam, the values are all within the stationary range (d
< 0.5); for Brussels, London, Paris and London, they are
around the stationary boundary (d = 0.5), while non-
stationarity (d ≥ 0.5) is found in the case of Helsinki, Berlin
and Madrid.

When allowing for autocorrelation (Tables 4 and 5), the time
trend appears to be negative and statistically significant in the
case of Brussels, Berlin and Paris, which might reflect the anti-
pollution policies adopted in these three capitals. In particular, a
low emission zone (LEZ) was established in the Brussels region
with the aim of meeting the European air quality standards and
emission ceilings; in Berlin the German Climate Action Plan
2050 is being implemented to control air pollution by laying
down environmental quality standards and emission reduction

requirements; a LEZ based on Euro norm vehicle classification
has also been introduced in Paris.

The estimated values of d are once more in the interval (0,
1), though they are now significantly smaller than in the pre-
vious case. In fact, they are all within the stationary range,
specifically between 0.22 (Luxembourg) and 0.33 (Helsinki
and Paris). These lower estimates are likely to reflect the com-
petition between the fractional integration and Bloomfield pa-
rameters in describing time dependence between the observa-
tions. Both sets of estimates, under the assumption of white
noise and autocorrelated errors, respectively, indicate that the
degree of persistence is highest in the case of Brussels,
Amsterdam and London and lowest in the case of Helsinki,
Berlin, and Madrid; thus, the effects of shocks are more long-
lived in the former capitals.

Conclusions

This paper has used fractional integration methods to obtain
evidence on persistence and time trends in PM10 in eight
European capitals (Amsterdam, Berlin, Brussels, Helsinki,
London, Luxembourg, Madrid and Paris). This approach is
more general than the standard ones used in most of the liter-
ature on air pollutants and thus is more informative about the
time series properties of the series of interest. The results in-
dicate that all of them display fractional integration with or-
ders of integration in the range (0,1); this implies that mean
reversion occurs and shocks do not have permanent effects.
However, the degree of persistence is different in the eight
capitals examined; in particular, the effects of shocks take
longer to die away in the case of Brussels, Amsterdam and
London. Such evidence should be taken into account by
policymakers aiming to design effective measures to reduce
pollution.

The estimated values of d are lower under the assumption of
autocorrelated errors; in this case, three of the capitals examined
(Brussels, Paris and Berlin) exhibit statistically significant

Table 4 Estimates of d:
autocorrelated errors Series No deterministic terms An intercept An intercept and a time trend

Amsterdam 0.34 (0.29, 0.39) 0.26 (0.21, 0.30) 0.25 (0.20, 0.30)

Berlin 0.38 (0.33, 0.43) 0.30 (0.25, 0.36) 0.29 (0.23, 0.36)

Brussels 0.33 (0.28, 0.38) 0.26 (0.21, 0.32) 0.25 (0.21, 0.31)

Helsinki 0.40 (0.35, 0.45) 0.33 (0.29, 0.39) 0.33 (0.29, 0.38)

London 0.34 (0.30, 0.39) 0.26 (0.21, 0.31) 0.27 (0.22, 0.30)

Luxembourg 0.32 (0.28, 0.38) 0.22 (0.16, 0.29) 0.21 (0.15, 0.28)

Madrid 0.34 (0.30, 0.39) 0.30 (0.25, 0.35) 0.30 (0.25, 0.35)

Paris 0.41 (0.37, 0.46) 0.33 (0.28, 0.38) 0.33 (0.28, 0.38)

We report the estimates of d and its 95% confidence band (in parenthesis). In bold, the selected specification for
each series

Table 5 Estimated coefficients in the selected model: autocorrelated
errors

Series d (95% band) Intercept (t-
value)

Time trend (t-value)

Amsterdam 0.26 (0.21, 0.30) 25.6832 (21.18) ---

Berlin 0.29 (0.23, 0.36) 32.6088 (16.38) −0.0046 (−2.92)
Brussels 0.25 (0.21, 0.31) 26.3621 (15.22) −0.0022 (1.97)
Helsinki 0.33 (0.29, 0.39) 19.6888 (12.88) ---

London 0.26 (0.21, 0.31) 25.9193 (24.21) ---

Luxembourg 0.22 (0.16, 0.29) 19.2309 (34.57) ---

Madrid 0.30 (0.25, 0.35) 23.5407 (16.78) ---

Paris 0.33 (0.28, 0.38) 42.2180 (13.79) −0.0044 (−1.98)

The values in parenthesis in columns 3 and 4 are the corresponding t-
values for the intercept and the time trend, respectively
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negative time trends, which suggests that the policies they have
adopted to reduce pollution (such as the establishment of LEZs)
have been successful, at least to some extent.

Other issues that could be investigated in the case of PM10

are the following: seasonality with fractional integration (Gil-
Alana and Robinson 2001; Bisognin and Lopes 2009; del
Barrio Castro and Rachinger 2021; etc.); non-linearities and
structural breaks, which is of particular interest given the fact
that these are both strongly related to long memory and frac-
tional integration (see, e.g. Diebold and Inoue 2001; Granger
and Hyung 2004; Ohanissian et al. 2008; Kongcharoen 2013;
etc.); and the forecasting performance of alternative specifica-
tions; all these topics are left for future work.
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