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ABSTRACT 

 
Aim: The objective of this current research was to compare fat oxidation rates during an 

incremental cycling exercise test in a temperate vs. hot environment. Methods: Twelve 

healthy young participants were recruited for a randomised crossover experimental 

design. Each participant performed a VO2max test in a thermoneutral environment 

followed by two cycling ramp test trials, one in a temperate environment (18.3ºC) and 

another in a hot environment (36.3ºC). The ramp test consisted of 3-min stages of 

increasing intensity (+10% of VO2max) while gas exchange, heart rate and perceived 

exertion were measured. Results: During exercise, there was a main effect of the 

environment temperature on fat oxidation rate (F=9.35, P=0.014). The rate of fat 

oxidation was lower in the heat at 30% VO2max (0.42±0.15 vs.0.37±0.13 g/min; 

P=0.042), 60% VO2max (0.37±0.27 vs.0.23±0.23 g/min; P=0.018) and 70% VO2max 

(0.22±0.26 vs.0.12±0.26 g/min; P=0.007). In addition, there was a tendency for a lower 

maximal fat oxidation rate in the heat (0.55±0.2 vs.0.48±0.2 g/min; P=0.052) and it 

occurred at a lower exercise intensity (44±14 vs.38±8% VO2max; P=0.004). The total 

amount of fat oxidized was lower in the heat (5.8±2.6 vs 4.6±2.8 g; P=0.002). The 

ambient temperature also produced main effects on heart rate (F=15.18, P=0.005) and 

tympanic temperature (F=25.23, P=0.001) with no effect on energy expenditure 

(F=0.01, P=0.945). Conclusion: A hot environment notably reduced fat oxidation rates 

during a ramp exercise in the heat. Exercise in the heat should not be recommended for 

those individuals seeking to increase fat oxidation during exercise. 

Keywords: adiposity, indirect calorimetry, body temperature, substrate oxidation, body 

fat loss. 
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INTRODUCTION 

Measurements of human energy expenditure and substrate oxidation have been of 

interest since the late 1800s (Jeukendrup & Wallis, 2005). Over the past century, exercise 

physiologists  have  learned about the  importance of carbohydrate and  fatty acids providing 

energy for active skeletal muscle during aerobic exercise (Evans, Cogan, & Egan, 2017). In 

this respect, numerous exercise physiology investigations have tried to determine the best 

circumstances for optimising fat oxidation during exercise (Achten & Jeukendrup, 2004) 

because the selection of fat over carbohydrate within the muscle cell might bring short and 

long-term sports performance and health benefits. Briefly, previous investigations have 

established that  exercise intensity is the main  modulator for the rate of fat oxidation  during 

exercise (Randell et al., 2017) while the curve that explains the relationship between fat 

oxidation rate and exercise intensity has a negative parabolic shape. In this respect, the 

maximal rate of fat oxidation (MFO) is normally obtained when exercising at moderate 

intensity (between 40 to 60% of VO2max) (Achten, Gleeson, & Jeukendrup, 2002; Nordby, 

Saltin, & Helge, 2006). Other factors such as exercise duration (Romijn et al., 1993),  

aerobic fitness (J. Del Coso, Hamouti, Ortega, & Mora-Rodriguez, 2010), sex (Venables, 

Achten, & Jeukendrup, 2005), the pre-exercise meal (Achten & Jeukendrup, 2003) and the 

use of some substances such as p-synephrine (Gutiérrez-Hellín & Del Coso, 2016) and 

caffeine (Gutiérrez-Hellín & Del Coso, 2018) can also modify the amount of fat oxidised 

during exercise. However, another important factor that might modulate  fat  oxidation 

during exercise is ambient temperature but studies on this topic are scarce (Febbraio, Snow, 

Stathis, Hargreaves, & Carey, 1994; Gagnon et al., 2020, 2013). 

Initially, Febbraio et al., (1994) compared the amount of substrate oxidised during 40 

min of cycling at 70% of maximal oxygen uptake (VO2max) at either 20 or 40ºC, finding that 

the amount of fat oxidised was reduced by 25% when exercising in the heat, together with a 
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31% higher utilisation of muscle glycogen. More recently, fat oxidation curves during 

exercise on a cycle ergometer and on a treadmill at a 4.6°C or 34.1°C ambient temperature 

have been compared (Gagnon et al., 2020). This investigation revealed that MFO was 

greater at 4.6°C during the treadmill exercise and a tendency was also found during cycling. 

In addition, Fatmax, which is the exercise intensity at which maximal fat oxidation is 

achieved, increased in both exercise types at 4.6°C. These data suggest that the 34.1ºC 

environment produced a lower fat oxidation rate because it decreased Fatmax. Given this 

background, it seems safe to conclude that exercising in an environment with a dry 

temperature above 34ºC reduces fat oxidation when compared to exercising below 20ºC. 

However, it is unknown in the effect of a cold environment to enhance maximal  fat 

oxidation and Fatmax is also present in a temperate environment. 

Therefore, the objective of the current research was to compare fat oxidation rates 

during an incremental cycling exercise test in a temperate (18.3 ºC) vs. hot environment 

(36.3 ºC) to determine the effect of ambient temperature on maximal fat oxidation and 

Fatmax. We hypothesised that the fat oxidation-exercise intensity curve would be shifted 

downwards in the heat when compared to a temperate environment, producing notable 

reductions in MFO and in Fatmax. 

 

 
 

MATERIALS AND METHODS 

 
Participants. Twelve healthy active young participants volunteered to participate in 

this investigation (age= 26±6 years, body mass= 71.9±8.9 kg, height= 174±4 cm, body mass 

index = 23.6±2.9 kg/m2, VO2max= 54.6±11.48 mL/kg/min). At least ten participants were 

required to detect a decrease of 0.14 g/min in the rate of maximal fat oxidation in the heat 

when compared to a temperate environment, with a power of 0.80 and two-tailed α level set 
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at 0.05. Participants were considered active because all of them performed at least  60 min  

of exercise per day at least 4 days per week although they practised different sports 

disciplines (road cycling, mountain biking, endurance running). All the participants were 

non-smokers, had no previous history of cardiopulmonary diseases and had suffered no 

musculoskeletal injuries in the previous 6 months. They were encouraged to avoid 

medications, nutritional supplements, and sympathetic stimulants for the duration of the 

study and compliance was examined using dietary questionnaires.  Participants were not  

heat acclimatised to isolate the effect of ambient temperature on the results of the 

investigation. One week before the study onset, participants were fully informed of the 

experimental standards and risks associated with the research, and signed their written 

informed consent to participate in the investigation. The study was approved by the Camilo 

José Cela University Research Ethics Committee, in accordance with the Declaration of 

Helsinki. 

Experimental design. In a randomised counterbalanced order, each participant took 

part in 2 experimental trials separated by 3 days to allow for complete recovery. On one 

occasion, participants performed the trial in a temperate environment (dry temperature= 18.3 

± 0.9 ºC; relative humidity= 59.0 ± 14.2 %) while on another occasion participants 

performed the trial in a hot environment (36.3 ± 0.7 ºC and 33.3 ± 13.1%). Except for the 

difference in dry temperature, the remaining pre-experimental and experimental conditions 

were meticulously kept constant to fulfil the aim of the investigation. In each trial, 

participants performed an incremental cycling exercise test composed of 3-min stages and 

increases of 10% VO2max per stage (Achten et al., 2002). Gas exchange data, heart rate and 

perceived exertion were monitored at each stage. Environmental temperature and humidity 

were recorded at  5-min  intervals during the trials  using a digital temperature and humidity 
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monitor  (OH1001,  OH Haus,  Spain). All the experiments were conducted during the 

months of May and June 2019. 

Pre-experimental procedure. One week before the first experimental trial, 

participants underwent a 10-min standardised warm-up on a cycle ergometer (SNT Medical, 

Cardgirus, Spain) before completing a maximal ramp exercise test (25 W increments every 1 

min until volitional fatigue). During the test, participants chose a cadence  of between 70  

and 90 rpm and the test finished when participants were unable to maintain a cadence > 50 

rpm. During the incremental exercise test, oxygen uptake (VO2) and carbon dioxide 

production (VCO2) were measured through indirect calorimetry (Metalyzer 3B, Cortex, 

Germany). VO2max was defined as the highest VO2 value obtained during the test. To 

normalise exercise intensity in the experimental trials (increases of 10% VO2max) among 

individuals, a regression analysis was performed for each subject for the relationship 

between W and VO2 obtained in this test. The incremental exercise test was considered 

maximal and valid when the end criteria for VO2max were reached at the end of the test: VO2 

stabilisation despite increases in exercise intensity (< 0.1 L/min increase respect to the 

previous workload), a respiratory exchange ratio of more than 1.10, the participant’s rating 

of perceived exertion with the 6-to-20-point Borg scale higher than 19 points and the 

participant’s heart rate over 85% of the age-adjusted estimate of maximal heart rate 

(Edvardsen, Hem, & Anderssen, 2014). This test was performed in a thermoneutral 

environment dry temperature= 21.0 ± 0.3 ºC; relative humidity= 40.1 ± 1.9 %). 

Experimental procedures. Twenty-four hours before each experimental trial, 

participants refrained from strenuous exercise and adopted a similar diet and fluid intake 

regimen. Participants were also required to refrain from consuming alcohol, caffeine, 

tobacco and other stimulants 24 h before each trial. Before the first trial, participants 

completed a 24-h dietary record and they replicated the same diet/fluid/exercise routines 
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before the second trial with the help of this record. During the experimental trials, the 

participants arrived at the laboratory (09.00 am) in a fasted state (at least 8 hours after their 

last meal) and two hours after ingesting 7 mL/kg of water. Upon  arrival,  participants 

voided, and a urine sample was obtained to measure urine specific gravity (MASTER-SUR, 

Atago, Japan). A threshold of < 1.020 for urine specific gravity was used to certify 

euhydration before the trials. Then, the participants rested supine for 10 min and resting 

tympanic temperature were measured (model HDT8208C, Nursal Ear Thermometer, China). 

An average of three tympanic temperature measurements was used for analysis; ~36.1 ± 

0.4ºC for both trials). Participants then dressed in a T-shirt, and shorts (clothing insulation 

value of ∼0.2–0.3;(Gagnon et al., 2020)) and a heart rate belt (Wearlink, Polar, Finland) was 

attached to their chest. Afterwards, participants  entered a climatic  chamber  set  to  produce 
 

the temperate vs. hot environment and a standardised 10-min warm-up was performed on  

the same cycle ergometer used for the pre-experimental procedure. At this moment, 

participants completed a ramp exercise test on the cycle ergometer (the initial load was set at 

30% VO2max), which comprised 10% VO2max increments every 3 min until reaching a 

respiratory exchange ratio higher than 1.00. At the end of each 3-min stage, tympanic 

temperature was measured in the left ear as previously mentioned (J. D. Coso, Aguado- 

Jimenez, & Mora-Rodriguez, 2008). The rating of perceived exertion was  measured with 

the 6-20 point Borg scale (Borg, 1990) and temperature comfort was measured with the  

scale of the ASHRAE (2017) which goes from -3 point (very cold) to 3 point (very hot; 0 

point is the score for a neutral environment). During the test, expired gases were 

continuously collected with the same breath-by-breath device used for the pre-experimental 

procedures and representative values of VO2, VCO2 and respiratory exchange ratio were 

assessed for each workload by averaging the last 60 s of each stage (Achten, Venables, & 

Jeukendrup,  2003).   Certified  calibration gases (16.0%  O2; 5.0%  CO2,  Cortex, Germany) 
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and a 3-L syringe were used to calibrate the gas analyser and the flowmeter before each trial. 

The rate of energy expenditure and fat and carbohydrate oxidation were calculated from the 

stoichiometric equations assuming that urinary nitrogen excretion was negligible (Brouwer, 

1957; Frayn, 2016). An individually chosen cadence (between 70 and 90 rpm for all 

participants) was replicated in both experimental trials. In each trial, MFO was individually 

calculated for each participant as the highest value of fat oxidation rate obtained during the 

incremental exercise intensity test. The exercise intensity at which MFO was achieved was 

obtained for each individual and categorised as Fatmax. The day-to-day coefficient of 

variation of MFO and Fatmax with this protocol is 11% and 3%, respectively (Dandanell et 

al., 2017). 

Statistical Analysis. The results of each test were introduced into the statistical 

package SPSS v20.0 (IBM, USA) and subsequently analysed. The normality of each 

quantitative variable was initially tested with the Shapiro-Wilk test. All the quantitative 

variables included in this investigation presented a normal distribution; therefore, parametric 

statistics were used to determine differences among trials. A two-way ANOVA (intensity × 

environment) was used to compare the variables obtained during the incremental test. 

Mauchly’s test was used for sphericity assumption. If this assumption presented a 

probability of P<0.05, the Geisser-Greenhouse correction was used. As the main objective 

of this investigation was to determine the effect of ambient temperature on the variables 

under study, only the main effect of environment and the intensity × environment interaction 

have been reported in the result section. After a significant F test, differences  between 

means were identified using Bonferroni post-hoc tests. Paired t-tests were used to compare 

MFO and Fatmax between environments. The significance level was set at P<0.05.  The  

data are presented as mean ± standard deviation. 
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RESULTS 

 
During exercise, there was a main effect of the environment on the respiratory 

exchange ratio (F = 6.38, P = 0.032) although the interaction between environment and 

intensity did not reach statistical significance (F=3.30; P = 0.093). The post-hoc analysis 
 

revealed a lower higher respiratory exchange ratio values at 30%, 60% and 70% VO2max 

 

(Table 1).  There was a main effect of the environment on fat oxidation rate (F = 9.35, P = 
 

0.014) although the interaction between environment and intensity did not reach statistical 
 

significance (F=2.41; P = 0.067). The post-hoc analysis revealed a lower fat oxidation rate 
 

in the heat at 30% VO2max (0.42 ± 0.15 vs. 0.37 ± 0.13 g/min; P = 0.042), at 60% VO2max 

 

(0.37 ± 0.27 vs. 0.23 ± 0.23 g/min; P = 0.018) and at 70% VO2max (0.22 ± 0.26 vs. 0.12 ± 
 

0.26 g/min; P = 0.007; Figure 1, upper panel). In addition, there was a tendency for a higher 
 

MFO in the temperate environment (0.55 ± 0.2 vs 0.48 ± 0.2 g/min; P = 0.052) which was 
 

obtained at a higher exercise intensity (43 ± 14 vs. 38 ± 8%VO2max; P = 0.012). In the 
 

temperate environment, 4 participants had their Fatmax at 30% VO2max, 4 at 40% VO2max, 1 
 

at 50% VO2max, 2 at 60% VO2max and 1 at 70% VO2max.  In the heat, 6 participants had their 
 

Fatmax at 30% VO2max, 3 at 40% VO2max, and 3 at 50% VO2max. The total amount of fat 
 

oxidized in the heat was lower than in the temperate environment (5.8 ± 2.6 vs 4.6 ± 2.8 g; 
 

P=0.002). 

 
***Figure 1*** 

 

 

 

 

There was also a main effect of environment on the carbohydrate oxidation rate (F 
 

=6.16, P = 0.049) with no environment-intensity interaction (F= 1.751; P = 0.163). The 

post-hoc analysis revealed a higher carbohydrate oxidation rate in the heat at 60% VO2max 

(2.32 ± 0.57 vs. 2.74 ± 0.72; P = 0.018; Figure 1, lower panel). The total amount of 
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energy expenditure (Table 1). However, there was a main effect of environment on heart 

rate (F =15.18, P = 0.005) that produced higher heart rate values in the heat in all pairwise 

comparisons (P < 0.050). Similarly, there was a main effect of environment on tympanic 

temperature (F = 25.23, P = 0.001) with higher tympanic temperatures in the heat in all 

pairwise comparisons (P < 0.050). There was also a main effect of environment on the 

rating of perceived exertion (F = 4.05, P = 0.007) and on the temperature comfort scale (F = 

24.75, P = 0.016). The result of the pairwise comparisons in these variables is presented in 

Table 1. 

carbohydrate oxidized in the heat was not different from the amount of carbohydrate 

oxidized in the temperate environment (25.5 ± 7.8 vs 32.1 ± 6.8 g; P=0.070). There was no 

main effect (F =0.01 P = 0.945) nor interaction (F =2.03, P = 0.111) of environment on 

***Table 1*** 

DISCUSSION 

Previous investigations have suggested that a hot environment (i.e., 40 vs 20 ºC) 

might reduce the use of fat while increasing the reliance on carbohydrate oxidation for a 

fixed exercise intensity (Febbraio et al., 1994). In addition, a cold environment (4.6°C vs 

34.1°C) may enhance fat oxidation and Fatmax during cycling and treadmill exercise when 

compared to a hot environment (Gagnon et al., 2020). However, it was unknown in  the 

effect of a cold environment to enhance maximal fat oxidation and Fatmax is also present in 

a temperate environment. The current investigation is novel because it  shows  that 

exercising in a temperate environment (18.3ºC) enhances the rate of fat oxidation at several 

exercise intensities in comparison to a hot environment (36.3ºC). Specifically, the main 

findings of this study indicate that an environment of 36.3ºC produces an overall reduction 

in the rate of fat oxidation during exercise when compared to the same exercise at 18.3ºC. 

This  main  effect  was  evidenced  by  the  shift  downwards  of  the   fat oxidation-exercise 
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intensity curve (Figure 1). The rate of fat oxidation was lower in the heat than in the 

temperate/control situation at 30%, 60% and 70% of participants’ VO2max and, Fatmax was 

reduced and there was a tendency for a reduced MFO. The lower fat utilisation during 

exercise in the heat was accompanied by main effects on increasing carbohydrate oxidation 

rate, heart rate, tympanic temperature, perceived exertion and worsened temperature 

comfort, as compared to the temperate environment (Table 1). All these outcomes suggest 

the convenience of selecting temperate-thermoneutral environments, instead of heat, for 

those exercise routines aimed at maximising fat oxidation. From an applied perspective, 60 

min of exercise in an 18.3ºC-environment can increase the amount of fat oxidised by 3-to-8 

g in comparison to a 36.3ºC-enviroment, depending on the exercise intensity selected for the 

routine. However, it is necessary further investigation to determine whether fat oxidation  

rate during exercise of increasing intensity are similar when comparing temperate and cold 

environments. 

In the current investigation, the hot environment produced a shift in the substrate 

used for fuel during exercise towards a lower reliance on the oxidation of fat, specifically at 

high workloads. This shift might be explained by physiological changes measured in the 

investigation. For instance, tympanic temperature was higher in the heat by 0.5-0.7ºC at  

each workload investigated when compared to the temperate environment; although the 

values of body temperature recorded in this investigation were not indicative of 

hyperthermia (Nybo & Nielsen, 2001), the higher body temperature likely meant that the 

CNS thermoregulatory control increases the sympathetic outflows (Morrison, 2016), 

ultimately reducing reliance on fat as a fuel for the working muscle (Snitker, Tataranni, & 

Ravussin, 1998). 

The higher sympathetic activation during exercise  in the heat also  triggered a  direct 

 

effect  on  heart  rate  (Gordan,  Gwathmey,  &  Xie,  2015)  which  was  also  evident  in the 
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increased heart rate at each workload, which was always 8-17 beats/min higher for all 

pairwise comparisons. The effect of the ambient temperature on heart rate was also  the 

result of cardiac output redistribution, because in the heat, cardiac output is divided to  

satisfy the demands of active muscle but also the thermoregulatory demands of skin blood 

flow (González-alonso, Crandall, & Johnson, 2008). Thus, in comparison with the exercise 

in the temperate environment, where cardiac output is mainly distributed to the working 

muscle to allow for oxygen and fuel availability, the competitive needs of blood flow in the 

skin and muscle produced reduced venous return and stroke volume which were responsible 

for part of the cardiovascular drift found in this investigation (Nybo, Rasmussen, & Sawka, 

2014). However, in the current investigation, it is likely that exercise in the heat would not 

affect plasma volume changes because the dehydration levels attained at the end of the trials 

(0.3 ± 0.3% and 0.3 ± 0.3%, P = 0.415, for exercise in the heat and in temperate ambient, 

respectively) were minor and equal between environments due to the short time that each 

test lasted (15 min). All this information suggests that exercise in the heat produced several 

changes in the autonomic regulation as the result of a higher body temperature. The higher 

sympathetic activation in the heat was likely responsible for the lower reliance on fat 

oxidation during exercise in the heat, even in the absence of dehydration. 

Maximal fat oxidation has been reported to occur between 47 and 75% of VO2max 

(Amaro-Gahete et al., 2019; Maunder, Plews, & Kilding, 2018), although aerobic training 

increases Fatmax (Nordby et al., 2006), also in the heat (J. Del Coso et al., 2010). In the 

current investigation, maximal fat oxidation tended to be reduced by 0.11 g/min in the heat 

while Fatmax was effectively reduced in the heat from ~43% in the temperate environment 

to ~38% %VO2max in the hot environment. Then, the effect of the heat on Fatmax found at 

each workload has to be added to the effect of ambient temperature, indicating that, exercise 

in the heat will reduce maximal fat oxidation due to a lower reliance on fat and the 
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attainment of Fatmax at a lower exercise intensity. From a practical perspective, the use of 

lower exercise workloads in the heat cannot prevent the effect of ambient temperature on 

maximal fat oxidation and the selection of temperate-thermoneutral environments for 

exercise will promote the use of fat as a fuel. Lastly, the lower ratings of fatigue and higher 

ratings of comfort in the temperate environment will allow longer exercise durations that 

will also contribute to an overall greater oxidation of fat during an exercise bout. 

Aside from its strengths, the current investigation has some limitations that should be 

discussed to understand the scope of the research outcomes. Firstly, only two environments 

that differed in the dry temperature were investigated. Further studies should investigate the 

effect of environments with temperatures lower than 18ºC and environments in the range of 

18-to-36ºC to fully understand the effect of ambient temperature on fat oxidation during 

exercise. The comparison of cold vs temperate environments, in terms of fat oxidation 

during exercise may be also interesting to determine the best scenario to maximize fat. In 

addition, the investigation of other ambient variables such as humidity also deserves further 

attention. Secondly, we used a cycling ramp test that helps to identify MFO and Fatmax. 

However, this test is not a typical training routine for exercise practitioners who seek body 

mass/body fat loss. In addition, we did not include exercise intensities below 30% VO2max 

nor post-exercise measurements of substrate oxidation. Future investigations should 

determine the effect of heat on the total amount of fat oxidised during one bout of exercise  

in more real training scenarios (e.g., continuous exercise at constant intensity or high- 

intensity interval training), in a wide-range of exercise intensities and including post- 

exercise fat oxidation. Third, we did not obtain blood variables such as lactate concentration, 

triglycerides concentration and catecholamines concentration that would have helped to 

understand the mechanism behind the outcomes of this investigation. Lastly, we used 

tympanic temperature to estimate core temperature which is a valid tool in the conditions set 
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for this experiment (J. D. Coso et al., 2008). Still, the use of rectal temperature (through a 

thermistor) or intestinal temperature (through a telemetric pill) would have helped to 

enhance the accuracy of core temperature during exercise. 

In summary, an environment with a dry temperature of 36.3ºC notably reduced the 

rates of fat oxidation during a ramp exercise with workloads at 30-to-70% VO2max when 

compared to an environment of 18.3ºC of dry temperature. In addition, MFO tended to be 

reduced and Fatmax was reduced in the heat. From a practical perspective, the selection of a 

hot environment would reduce by 13.8% the total amount of fat oxidized during 1 hour of 

cycling at Fatmax in the participants of this investigation. These outcomes suggest that the 

hot environment shifted the fat oxidation-exercise intensity curve downwards and thus, 

exercise in the heat should not be recommended for those individuals seeking to increase fat 

oxidation during exercise. Exercising in a temperate environment seems the best choice to 

increase reliance on fat oxidation during exercise. In this respect, the selection of an 

environment with a dry temperature close to 18ºC and the use of prolonged exercise at 

Fatmax may be one of the most effective exercise routines to maximize the amount of fat 

oxidized during exercise. 
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FIGURE LEGENDS 

 
Figure 1. Rates of fat and carbohydrate oxidation during an incremental exercise test in a 

temperate vs. hot environment. 

 

 
 

Data are mean ± standard deviation for 12 healthy active individuals Data are mean ± 

standard deviation for 12 healthy active individuals who exercised at different exercise 

intensities relative to their VO2max, obtained in a thermoneutral environment. (*) Hot 

different from thermoneutral at P < 0.05. 
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Table 1: Respiratory exchange ratio, heart rate, tympanic temperature, energy expenditure, 

and perceived exertion and thermal stress during an incremental cycling exercise test in a 

temperate vs. hot environment. 

 

 

 

 

 

Respiratory 

 

Am 

bien 

t 

Tem 
perat 

 

30% VO2max 40% VO2max 50% VO2max 60% VO2max 70% VO2max 

 

 
0.78±0.03 0.84±0.02 0.88±0.03 0.91±0.03 0.96±0.03 

Main 

effect of 

ambien 

t 

Ambient 

×load 

interacti 

on 

exchange 
ratio 

e 

Hot 0.81±0.03* 0.86±0.02 0.90±0.03 0.95±0.03* 0.99±0.03* 

Tem 

0.032 0.093 

Heart rate 

(beat/min) 

perat 

e 

90±107 107±10 123±11 136±13 148±9 
0.005 0.144 

 
 

Tympanic 

temperature 

(ºC) 

 

Energy 

expenditure 

(kcal/min) 

Hot 100±15* 115±12* 132±11* 151±13* 160±8* 

Tem 
perat  36.0±0.6 35.9±0.7 35.9±0.8 36.0±0.8 36.1±0.7 
e 

Hot 36.1±0.4* 36.4±0.4* 36.5±0.5* 36.7±0.6* 36.7±0.5* 

Tem 
perat  6.00±1.29 8.48±1.47 10.47±1.82 12.43±2.01 15.15±1.82 
e 

Hot 6.07±1.37 8.40±1.76 10.42±1.87 12.47±1.84 14.79±2.14 

Tem 

 

 
 

0.001 0.000 

 

 

 
0.945 0.111 

Borg scale 

(A.U.) 

perat 

e 

7.7±1.7 9.1±2.2 11.5±1.7 14.0±1.9 15.6±2.2 
0.007 0.129 

 

 
Temperature 

comfort 

scale (A.U) 

Hot 8.2±1.8 10.6±2.3* 12.3±2.3* 14.2±2.3 16.3±2.2* 

Tem 
perat  -1±1 -1±1 -1±1 0±1 0±1 
e 

Hot 1±1* 1±1* 2±1* 2±1* 3±1* 

 

 
 

0.016 0.238 

 

 

 

 

 

 

Data are mean ± standard deviation for 12 healthy active individuals who exercised at 

different exercise intensities relative to their VO2max, obtained in a thermoneutral 

environment. (*) Hot different from thermoneutral at P < 0.05. 



0  

 

 

 

 

 

 

 

 


