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Abstract: β-carotene, α-carotene and β-cryptoxanthin are greater contributors to vitamin A intake
than retinol in the human diet for most people around the world. Their contribution depends on
several factors, including bioavailability and capacity of conversion into retinol. There is an increasing
body of research showing that the use of retinol activity equivalents or retinol equivalents could
lead to the underestimation of the contribution of β-cryptoxanthin and of α-carotene. The aim is to
assess their apparent bioavailability by comparing concentrations in blood to their dietary intakes
and identifying the major food contributors to their dietary intake. Dietary intake (3-day 24-h records)
and serum concentrations (by HPLC) were calculated in normolipemic subjects with adequate retinol
status (≥1.1 µmol/L) from our studies (n = 633) and apparent bioavailability calculated from 22 other
studies (n = 29,700). Apparent bioavailability was calculated as the ratio of concentration in the
blood to carotenoid intake. Apparent bioavailabilities for α-carotene and β-cryptoxanthin were
compared to those for β-carotene. Eating comparable amounts of α-carotene, β-cryptoxanthin and
β-carotene foods resulted in 55% greater α-carotene (95% CI 35, 90) and 686% higher β-cryptoxanthin
(95% CI 556, 1016) concentrations than β-carotene in blood. This suggests differences in the apparent
bioavailability of α-carotene and β-cryptoxanthin and even larger differences with β-cryptoxanthin,
greater than that of β-carotene. Four fruits (tomato, orange, tangerine, red pepper) and two vegetables
(carrot, spinach) are the main contributors to their dietary intake (>50%) in Europeans.

Keywords: β-cryptoxanthin; α-carotene; β-carotene; provitamin-A carotenoids; bioavailability;
bioaccessibility; human health; nutritional status; dietary markers

1. Introduction

Vitamin A is an essential nutrient that is obtained through diet either as retinol from animal
products or as provitamin A carotenoids mainly from plant products. Provitamin A carotenoids are
greater contributors to vitamin A intake than retinol in the human diet for most people worldwide [1]
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and are mainly supplied by vegetables and fruits. The most abundant provitamin A carotenoid is
β-carotene; α-carotene is usually present in the same foods as β-carotene but in lower concentrations.
β-cryptoxanthin is present in a limited number of orange-colored fruits and vegetables [2,3]. In general,
as the socioeconomic level of the population increases, a larger proportion of vitamin A comes from
animal sources [4]. For instance, in Spain’s most recent national survey of adults, retinol from animal
sources accounted for 58% [5] and, in the Dominican Republic, which has a high prevalence of
inadequate vitamin A intake, according a national survey of household income and expenditure,
foods of animal origin accounted for 20% of vitamin A intake [6], although that figure reached 41% in
an upper-middle class group of Dominicans [7].

The relative contribution of the provitamin A carotenoids to the vitamin A dietary intake depends
not only on the amounts of fruits and vegetables consumed and on their proportion with respect
to retinol intake from animal sources, but also on the bioavailability and capacity of conversion
into retinol of the carotenoids consumed. The bioavailability of the three dietary carotenoids with
provitamin A activity differs depending on many factors, which can be intrinsic, i.e., subject-related
such as physiological state, retinol homeostasis and sex, or diet-related, i.e., chemical state of the
food components, amount ingested, interactions with components of the diet, color of the fruit or
vegetable [1,8–10]. Moreover, carotenoid bioaccessibility and, by extension, their bioavailability from
foods vary widely for different carotenoids in a given food and for a given carotenoid in different
foods [11]. When assessing bioavailability, both the fraction ingested and absorbed as well as the
fraction cleaved in the enterocyte and other tissues by BCO1 and BCO2 to produce retinol and other
apocarotenoids must be considered [10,12].

Evaluation of diet suitability and of the risk associated with excessive or inadequate vitamin A
intakes is based on nutritional status assessment using biochemical markers (retinol in blood) or dietary
estimates. Retinol concentration in serum/plasma is used as a biochemical biomarker of vitamin A
status as it is related to liver vitamin A concentration (considered the gold standard for vitamin A status),
although retinol in blood does not reflect dietary intake of this vitamin, in well-nourished subjects, as it
is subject to homeostatic control. Nutritional status data based on food intake are highly useful in taking
public health decisions and in the context of epidemiological studies. However, their validity is limited
for several reasons mainly related to food intake assessment, and the way in which data are presented in
the food composition table (FCT) [13], as well as how vitamin A activity is measured (retinol equivalents,
RE or retinol activity equivalents, RAE), among others. Current assumptions regarding RAE or RE
provided for the major provitamin A dietary carotenoids (β-carotene, β-cryptoxanthin, α-carotene),
based on their bioavailability from foods, consider β-carotene as a major contributor to the vitamin A
intake and that the other two provitamin A carotenoids have the same bioavailability and potential
for conversion to retinol, which is half that of β-carotene [14]. Thus, when the vitamin A activity is
measured as RE or as RAE, in the latter form, the contribution of the provitamin A carotenoids is
half that assumed when RE are used [15–17]. More and more research shows that the use of RAE
or RE could lead to underestimating the contribution of β-cryptoxanthin and of α-carotene [9,16,18].
There are intervention studies involving foods rich in β-cryptoxanthin that lead to better serum retinol
responses than β-carotene supplements [9] and also bioaccessibility studies in which β-cryptoxanthin
seems to be more efficiently absorbed and/or converted into retinol than the carotenes (depending on
the type of food) [18,19].

Results of vitamin A nutritional status assessments are controversial insofar as they differ
depending on the markers used. For instance, studies assessing dietary intake in the Spanish
population concluded that vitamin A intake is inadequate as it falls below the recommended dietary
allowances values [20–23]. The most recent Spanish National Dietary Survey of adults [22] found that
men’s vitamin A intake was under 80% of the recommended intake, and in a recent representative
sample of the Spanish population (2009 individuals, age 9–75 years), it was found that 60% did not
meet the European Food Safety Authority (EFSA)-recommended intakes for vitamin A (RE) [23].
However, there are no studies reporting deficiency when assessing the retinol concentrations in blood,
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and in the studies where this biomarker is reported in apparently healthy subjects, concentrations
far from deficiency are described. Thus, retinol concentration in blood was in the upper end of the
reference range in studies involving Spanish groups (1.61 µmol/L retinol in blood vs. 699 µg RAE
dietary intake, n = 50, 21–30 years) [24], 1.82 and 2.38 µmol/L retinol in blood, n = 893, 18–74 years [25]),
even for those having an inadequate dietary intake, and 1.9–2.1 µmol/L retinol in blood, n = 64,
25–45 years [26].

In this study, we assessed the provitamin A carotenoids’ apparent bioavailability as proposed by
Burri et al. [16], while also identifying the major food contributors to their dietary intake in four of our
studies on human subjects. We analyzed provitamin A carotenoids serum and dietary intake from
blood samples and dietary food recalls obtained from three previous studies focused on lutein and
zeaxanthin markers in Spanish subjects. Moreover, we used carotenoid concentration data in blood and
dietary intake obtained in a study involving healthy European volunteers from five countries [26,27].
In addition, we searched through the scientific literature published in the last ten years and selected
articles with individual provitamin A carotenoid data, in blood and diet, and calculated their apparent
bioavailabilities. We compared the apparent bioavailability of β-cryptoxanthin and α-carotene with
that of β-carotene to evaluate the relative importance of each of these in the dietary assessment of
vitamin A nutritional status in subjects with adequate retinol nutritional status.

2. Materials and Methods

2.1. Subjects and Study Designs

We conducted four human studies between 1998 and 2018 involving a total of 633 apparently
healthy subjects (348 Spanish subjects: 238 women, 110 men), in two age groups: 20 to 45 and 45 to 70
(Table 1). The main purpose of those studies was (Figure 1): (a) to describe dietary intake and blood
concentrations of carotenoids and other antioxidant compounds in well-defined groups from five
European countries (Study 1) [26,27], (b) to assess dietary and status markers of lutein and zeaxanthin
in normolipemic subjects (Studies 2 and 4) [28,29] and to assess the effects of lutein and zeaxanthin and
anthocyanin supplementation on lutein status markers (Study 3) [30]. Inclusion criteria for all these
studies: serum cholesterol concentration within the normal reference range, no use of drugs or foods
to control cholesterol levels, no chronic diseases that could affect the carotenoid metabolism, a varied
diet and no use of food supplements (vitamins, minerals, carotenoids). Additionally, body mass index
(BMI) within the normal reference ranges (studies 1,2,4) [26,28,29] and BMI between 25–33 kg/m2 and
amenorrhea (>2 years) (Study 3) [30], non-smokers and serum retinol >1 mmol/L [26]. Following are
the number of volunteers taking part in these studies (Figure 1). Study 1 [26,27]: 64 Spanish subjects
(32 men, 32 women), and 285 from four other European countries (75 from France, 73 from the Republic
of Ireland, 72 from the Netherlands and 65 from Northern Ireland), aged 25–45 years. Study 2 [28]:
108 Spanish subjects (54 men, 54 women), aged 20–35 years (n = 54) and 45–65 (n = 54). Study 3 [30]:
72 post-menopausal Spanish women, age 50–70. Study 4 [29]: 101 Spanish subjects (24 men, 77 women),
aged 45–65. The studies’ approvals were obtained from each local Ethical Committee and from the
Ministry of Health in Spain (Study 1) [26], from Clinical Research Ethics Committee of Hospital
Universitario Puerta de Hierro-Majadahonda of Madrid, Spain (registry No. 257, dated 19 July 2010)
(Study 2), from the Ethics Committee for Clinical Research of the Hospital Universitario Puerta de
Hierro-Majadahonda (Madrid, Spain) (Acta No 283, dated 17 December 2012) and the Bioethics
Committee of the Spanish National Research Council (CSIC) (dated 30 May 2014) (Study 3) and from
the Research with Drugs of the Hospital Universitario Puerta de Hierro Majadahonda of Madrid,
Spain (acta No 03.17, dated 13 February 2017) and by the Bioethic Subcommittee-Ethics Commitee
(CSIC) (dated 21 February 2017) (Study 4). All subjects gave their written informed consent after
receiving oral and written information concerning the studies.
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Figure 1. Human studies conducted by our research group. 
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foods commonly consumed in Spain, along with data generated by high-performance liquid 
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Figure 1. Human studies conducted by our research group.

The provitamin A serum concentrations and dietary intake from Study 1 were previously
published [26,27]. In this study, we analyzed the provitamin A carotenoids in serum samples and
evaluated their dietary intake from blood samples and food records obtained from participants in
studies 2–4 (study designs published in [29,30]).

2.2. Dietary Carotenoid Intake Assessment

Individual dietary carotenoid intake was assessed by means of a food frequency questionnaire
(FFQ) in one study (Study 1) [27] and three-day 24-h dietary recalls in the other three studies (Studies 2–4).
Study 1: Semi-quantitative FFQ, containing 107 food items. Carotenoid intake was assessed for the
whole diet, and the individuals were asked about their dietary intake of foods over the three previous
months. A carotenoid food composition database was compiled for this study from a variety of
sources [27], one of these sources being the data generated in our laboratory [31,32].

Studies 2–4: three-day food records involving 24-h recalls, one of which coincided with a Sunday
or holiday, carried out over a period of 7 to 10 days. The first was completed during a personal
encounter with a trained interviewer, coinciding with blood sample collection. Dietary records
were assessed using a specific software application for carotenoids [33] that includes a carotenoid
database, developed by our group [2], which contains information on the major dietary carotenoids
present in foods commonly consumed in Spain, along with data generated by high-performance liquid
chromatography (HPLC) [31,32]. Carotenoid intake was assessed for the entire diet.
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Table 1. Dietary intakes (median) and serum concentrations (mean) of α-carotene (α-car.), β-carotene (β-car.) and β-cryptoxanthin (β-cx) in Spanish and other
European normolipemic subjects (20–70 years).

Mean Concentration in
Blood (µmol/L)

Median Dietary Intake
(µmol/day) Apparent Bioavailability Ratio of Apparent

Bioavailability

Date,
[Ref.] Country, n Subjects, (Sex), Age α-Car. β-Car. β-Cx. α-Car. β-Car. β -Cx α-Car.bio β-Car.bio β-cx.bio α-Car.bio

/β-Car.bio
β-Cxbio

/β-Car.bio

Dietary Intake
Assessment
Method/FCT

2020 1

[29]
Spain 3 × 24-h food recalls

Own database [2,32]101, (77 w, 24 m) 45–65 years 0.17 0.66 0.52 0.53 3.38 0.87 0.32 0.2 0.6 1.6 3

2018 1

[30]

Spain
3 × 24-h food recalls
Own database [2,32]75 (w)

50–70 years 0.12 0.66 0.34 0.25 2.27 0.43 0.48 0.29 0.8 1.66 2.76

2014 1

[28]

Spain

3 × 24-h food recalls
Own database [2,32]

108 (54 w, 54 m) 0.08 0.41 0.23 0.25 3.04 0.31 0.32 0.14 0.74 2.29 5.29
Sample grouped
according age:

20–35 years (27 w, 27 m) 0.06 0.24 0.18 0.15 2.46 0.19 0.43 0.1 0.95 4.3 9.5
45–65 years (27 w, 27 m) 0.09 0.52 0.3 0.34 4.01 0.39 0.27 0.13 0.77 2.08 5.92

Sample grouped
according sex:

Women (27 w, 27 m) 0.08 0.47 0.24 0.24 3.39 0.35 0.33 0.14 0.69 2.36 4.93
Men (27 w, 27 m) 0.06 0.29 0.21 0.28 2.76 0.25 0.21 0.11 0.84 1.91 7.64

2001
[26,27]

Spain

FFQ (108 items)
European Carotenoid

Database [26]

64 (32 w, 32 m)
25–45 years 0.1 0.37 0.41 [0.54] [5.51] [2.46] 0.19 0.07 0.17 2.71 2.43

France
75 (38 w, 37 m) 25–45 years 0.15 0.71 0.22 1.38 10.88 0.81 0.11 0.07 0.28 1.57 4

Northern Ireland
65 (33 w, 32 m)

25–45 years 0.08 0.42 0.17 1.94 10.34 1.79 0.03 0.04 0.1 0.75 2.5

Republic of Ireland
73 (33 w, 40 m)

25–45 years 0.11 0.54 0.21 2.29 9.61 1.41 0.05 0.06 0.15 0.83 2.5

The Netherlands
72 (39 w, 33 m)

25–45 years 0.08 0.45 0.31 1.27 8.1 1.76 0.06 0.06 0.18 1 3

5 European countries (SP, FR, NI (UK),
RI, NT) 0.09 0.49 0.25 1.57 8.89 1.65 0.06 0.06 0.152 1 2.53

Spanish subjects subsample
n = 348

mean ± SD, [median]

0.12 ±
0.04

[0.11]

0.53 ±
0.16

[0.54]

0.38 ±
0.12

[0.38]

0.39 ±
0.17

[0.39]

3.55 ±
1.39
[3.2]

1.02 ±
0.9

[0.65]

0.33 ±
0.12

[0.32]

0.18 ±
0.09

[0.17]

0.58 ±
0.28

[0.67]

2.07 ± 1.30
[1.98]

3.37 ± 1.30
[2.88]

Whole sample
n = 633

mean ± SD, [median]

0.12 ±
0.04

[0.11]

0.56 ±
0.13

[0.58]

0.34 ±
0.13

[0.30]

0.65 ±
0.63

[0.39]

4.4 ±
3.03

[3.21]

0.81 ±
0.61

[0.65]

0.3 ± 0.17
[0.32]

0.17 ±
0.10

[0.17]

0.57 ±
0.29

[0.67]

1.64 ± 0.53
[1.63]

3.96 ± 1.28
[4.72]

1 Date of publication of the study design and results for the main outcome. Individual provitamin A carotenoids, intake and blood concentrations were calculated for the present study. w:
women, m: male, α-car.: α-carotene, β-car: β-carotene, β-cx: β-cryptoxanthin, bio: apparent bioavailability FCT: food composition table. SP: Spain, FR: France, NI (UK): Northern Ireland
(United Kingdom), RI: Republic of Ireland, NT: Netherlands
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2.3. Carotenoid Analysis in Serum

Fasting venous blood samples were taken and serum was separated by centrifugation. In Study 1,
carotenoid extraction was carried out on serum samples using a previously published method [34],
and in the other three studies using another published method [35], with slight modifications.

β-Carotene, α-carotene and β-cryptoxanthin were determined by HPLC using a system consisting
of a model 600 pump, a Rheodyne injector and a 2998 photodiode array detector (Waters, Mildford,
MA, USA). The chromatographic system included a Spheri-5-ODS column (Applied Biosystems,
San Jose, CA, USA) used with a gradient elution of acetonitrile: methanol (85:15) for 5 min to
acetonitrile:methylene chloride:methanol (70:20:10) for 20 min, flow rate 1.8 mL/min (in Studies 1 and
2) and a C30 YMC column (Waters, Wilmington, MA, USA) with a mobile phase of methanol with
0.1% trimethylamine: methyl-tert-butyl-ether (MTBE) in a linear gradient from 95:5 to 70:30 in 30 min,
to 50:50 in 20 min; this proportion was maintained for 35 min, flow rate mL/min (in Studies 3 and 4).

During sample analysis in Study 1 [26], the accuracy and precision of the analytical method
employed for carotenoids and retinol was contrasted periodically through our participation in the
Quality Assurance Programme conducted by the National Institute of Standards and Technology
(NIST; Gaithersburg, MD, USA), and the performance of the results was within 1± 2 standard deviations
from NIST-assigned values (rated by NIST as exceptional or acceptable values). In Studies 2 and 3,
NIST 968e reference material was analyzed, and results for β-carotene and β-cryptoxanthin were
within 1 standard deviation from NIST assigned values.

2.4. Literature Review

We searched the PubMed database between January 2010 and May 2020 to identify studies that
reported individual data of provitamin A carotenoid data in dietary intake and in blood concentrations.
Literature searches were limited to human studies, observational and intervention baseline studies.
The following keywords were used: cryptoxanthin, carotene, diet and serum, plasma or blood.
We found 109 articles, only 21 of which reported individual carotenoid data on dietary intake and
blood (serum or plasma). From these studies, we extracted only the data corresponding to apparently
healthy subjects (see other health conditions in Table 2).

2.5. Mathematical Analysis and Statistics

Estimated dietary carotenoid intake and blood concentrations were converted into µmol/day and
µmol/L, respectively. The following conversion factors were used to transform µg/dL into µmol/L:
×0.01863 (for α-carotene and β-carotene) and ×0.01810 (for β-cryptoxanthin) and to transform µg/day
into µmol/day divided by 536.87 (for α-carotene and β-carotene) and by 552.85 for β-cryptoxanthin.

The blood level of each carotenoid was divided by its dietary intake to calculate the apparent
bioavailability, a measurement that provides an idea of the amount of the dietary carotenoid that is absorbed
or converted into retinol. This is estimated by dividing the carotenoid concentrations in the blood by dietary
intake of that carotenoid (bioavailable carotenoid (bio) in the blood, e.g.,α-carotene-blood/α-carotene-diet =

α-carotenebio) [16]. From among the carotenoids,β-carotene is the major source of vitamin A and is therefore
used as the standard for comparison (α-carotenebio/β-carotenebio and β-cryptoxanthinbio/β-carotenebio).

Descriptive data are shown as means or medians. Ratios between carotenoid concentrations in
serum and diet were estimated using the Student’s t and Wilcoxon test. Statistical significance was set
at p < 0.05, and analyses were performed with IBM SPSS Statistics 25.0 (Armonk, NY, USA; IBM Corp).
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Table 2. Dietary intakes and serum or plasma concentrations (means or [medians]) of α-carotene (α-car.), β-carotene (β-car.) and β-cryptoxanthin (β-cx.) from the
literature (2011–2020).

Mean Concentration in
Blood (µmol/L)

[Median]

Mean Dietary Intake
(µmol/day) [Median]

Dietary Intake
Assessment
Method/FCT

Apparent Bioavailability Ratio of Apparent
Bioavailability

Year
[Ref.]

Country,
n Subjects
Sex, Age

α-Car. β-Car. β-Cx. α-Car. β-Car. β-Cx. α-Car.bio β-Car.bio β-Cx.bio α-Carbio

/β-carbio
β-Cx.bio

/β-Car.bio

EUROPE

2012
[36]

Europe, n = 856
(225 w, 631 m) 0.45 [4.3] 24-h recall 0.11

58.5 years EPIC database

2013
[37]

Sweeden, n = 159

Women, 56–75 years 0.08 0.46 0.51 1.92 6.46 0.83 FFQ (96 items)
Various FCT 0.04 0.07 0.62 0.57 8.86

2016
[38]

UK, n = 30
Women, 18–30 years - 0.6 0.18 2.72 9.76 0.58 FFQ - 0.06 0.31 - 5.12

2017
[39]

UK
Men (n = 2362) 0.14 0.38 0.14 0.76 3.79 0.73 0.18 0.1 0.19 1.8 1.9

Women (n = 2208) 0.19 0.5 0.2 0.75 3.79 0.82 0.25 0.13 0.24 1.92 1.85
7-day food records

Men (n = 3817) 0.13 0.36 0.13 0.73 3.7 0.68 0.18 0.1 0.19 1.8 1.9
Women (n = 3657) 0.18 0.48 0.19 0.73 3.65 0.77 0.25 0.13 0.25 1.92 1.92

2019
[40]

Spain, n = 156 0.37 1.78 0.17 (3×) 24-h record 0.38 0.25 1.47 1.52 5.88
7–9 years 0.14 0.45 0.25

1.61 5.41 0.33 2 FFQ 0.09 0.08 0.76 1.13 9.5
USDA and Spain

Data (2008)
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Table 2. Cont.

Mean Concentration in
Blood (µmol/L)

[Median]

Mean Dietary Intake
(µmol/day) [Median]

Dietary Intake
Assessment
Method/FCT

Apparent Bioavailability Ratio of Apparent
Bioavailability

Year
[Ref.]

Country,
n Subjects
Sex, Age

α-Car. β-Car. β-Cx. α-Car. β-Car. β-Cx. α-Car.bio β-Car.bio β-Cx.bio α-Carbio

/β-carbio
β-Cx.bio

/β-Car.bio

NORTH AMERICA

2011
[41]

USA, n = 250
W & M, 38 years
Afro-American 0.05 0.26 0.18 [0.62] [2.85] [0.19] (4×) 24-h record 0.08 0.09 0.95 0.89 10.56

[0.67] [4.28] [0.29] NCI-DHQ 0.08 0.06 0.62 1.33 10.33
White 0.08 0.33 0.16

[2.05] [3.93] [0.24] (4×) 24-h record 0.04 0.08 0.67 0.5 8.38
[1.05] [6.00] [0.28] NCI-DHQ 0.08 0.06 0.57 1.33 9.5

2011
[42]

USA
Men, n = 1598 0.07 0.31 0.16 3.93 0.08

44–45 years (2×) 24-h recall
Women, n = 1606 45–56 years 0.1 0.43 0.17 4.04 0.11

2011
[16]

USA
n = 113 0.16 0.68 0.3 1.53 5.92 0.37 (3×) food record 0.11 0.12 0.81 1.14 9.25
n = 116 0.11 0.5 0.25 1.15 5.72 0.23 FFQ 0.1 0.09 1.09 1.23 12.4

W&M, 18–69 years

2012
[43]

USA, n = 470
Women (217) 0.13 0.46 0.2 1.07 6.54 0.25 DHQ-24 h 0.12 0.07 0.8 1.76 11.37
45–61 years 0.45 4.71 0.14 (2×) 24 h 0.3 0.1 1.42 3.04 14.5
Men (253) 0.1 0.34 0.18

46–62 years 0.93 5.42 0.24 DHQ-24 h 0.11 0.06 0.73 1.76 11.64
0.47 4.73 0.14 (2×) 24 h 0.22 0.07 1.26 3.04 17.46

NDSR

2012
[44]

USA, n = 6062
Men (3078) Women (2984)

2–19 years 0.04 0.2 0.4 2.01 0.26 24 h 0.1 0.1 1

2013
[45]

USA, n = 1393 Women, 52–65
years 0.14 0.54 0.15 1.49 8.27 0.33 FFQ 0.09 0.07 0.46 1.29 6.57

2014
[46]

USA
n = 60 1.31 7.74 0.34 (30-day food records 0.15 0.04 0.71 3.75 17.75

Women (40) Men (20) 0.19 0.32 0.24 (2×) FFQ

18–25 years 0.95 1.45 0.15 Nutrition Database
System for Research 0.2 0.22 1.6 0.91 7.27
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Table 2. Cont.

Mean Concentration in
Blood (µmol/L)

[Median]

Mean Dietary Intake
(µmol/day) [Median]

Dietary Intake
Assessment
Method/FCT

Apparent Bioavailability Ratio of Apparent
Bioavailability

Year
[Ref.]

Country,
n Subjects
Sex, Age

α-Car. β-Car. β-Cx. α-Car. β-Car. β-Cx. α-Car.bio β-Car.bio β-Cx.bio α-Carbio

/β-carbio
β-Cx.bio

/β-Car.bio

2016
[47]

USA and Canada
n = 909 0.17 0.67 0.25 1.04 6.33 0.25 24-h NBP 0.16 0.11 1 1.55 9.43

Women and men 50–99 years 0.78 6.15 0.2 24-h BP 0.22 0.11 1.25 2 11.4
2.05 11.47 0.33 FFQ NBP 0.08 0.06 0.76 1.43 13.07
1.94 13.36 0.43 FFQ BP 0.09 0.05 0.58 1.76 11.62

2019
[48]

Canada, n = 265

Men (155), 44 years [0.23] [0.44] [0.15] 4.73 18.81 1.74 Canadian Nutrient
File 0.05 0.02 0.09 2.5 4.5

Women (110), 41 years [0.27] [0.59] [0.18] 2.66 11.81 1.36 0.1 0.05 0.13 2 2.6

2019
[49]

USA
NHANES 2003–2014 (diet),

2003–2006 (blood) 0.09 0.43 0.19 0.91 4.74 0.2 (2×) 24-h recalls 0.1 0.1 0.95 1 9.5

2019
[50]

USA, n = 136
Diabetics—type 1 0.19 0.63 0.38 0.7 3.14 0.24 (3×) 24-h record 0.27 0.2 1.58 1.35 7.9

10.5–14.5 years NDSR

2019
[51]

USA
n = 80, 82 (diet, serum), women [0.08] [0.35] [0.26] [0.91] [8.83] [0.22] FFQ 0.1 0.04 1.18 2.5 29.5

ASIA

2016
[52]

Japan, n = 260
Men (173) 0.76 0.67 4.06 0.56 FFQ (115 items) 0.19

Women (87) 1.34 0.79 4.77 0.49 0.28
adults

2018
[53]

China

n = 2947 FFQ (79 items)
Chinese FCT 2004

Men (934) 0.06 0.4 0.12 0.03 0.03 0.5 1 16.7
54–67 years 2.44 14.1 0.24

Women (2013) 0.08 0.59 0.18 0.03 0.04 0.75 1 18.75
52–63 years
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Table 2. Cont.

Mean Concentration in
Blood (µmol/L)

[Median]

Mean Dietary Intake
(µmol/day) [Median]

Dietary Intake
Assessment
Method/FCT

Apparent Bioavailability Ratio of Apparent
Bioavailability

Year [Ref.]
Country,

n Subjects
Sex, Age

α-Car. β-Car. β-Cx. α-Car. β-Car. β-Cx. α-Car.bio β-Car.bio β-Cx.bio α-Carbio

/β-carbio
β-Cx.bio

/β-Car.bio

AUSTRALIA

2014
[54]

Australia
n = 150 0.07 0.35 0.14 3.37 15.73 1.07 FFQ 0.02 0.02 0.13 1 6.5

(73 w, 77 m) Nuttab 2006:
Australian FCT

59–74 years

2015
[55]

Australia

n = 38 0.12 0.76 0.14 [0.02] [0.11] [0.006] FFQ (120 items)
USDA-NCI 6 6.09 23.33 0.99 3.83

(25 w, 13 m), 43 years

Mean ±
SD

[Median] *

0.13 ±
0.06

[0.12]

0.5 ±
0.21

[0.45]

0.21
±

0.09
[0.18]

1.32
±

1.08
[0.91]

6.12
±

4.24
[4.72]

0.76
±

1.61
[0.33]

0.37 ±
1.18

[0.10]

0.32 ±
1.23

[0.10]

1.21 ±
2.71

[0.71]

1.61 ±
0.83

[1.35]

9.2 ± 6.90
[8.38]

* These values have been calculated considering all the studies included in Table 2. α-car.: α-carotene, β-car: β-carotene, β-cx: β-cryptoxanthin, bio: apparent bioavailability, w: women, m:
male, BP: black participants, DHQ: dietary-history food-frequency questionnaire, EPIC: European Prospective Investigation into Cancer and Nutrition FCT: food composition table, FFQ:
food frequency questionnaire, NCI: National Cancer Institute, NDSR: Nutrition Data System for Research, NBP: non-black participants, USDA: United States Department of Agriculture,
UK: United Kingdom.
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3. Results

Dietary intakes (median values) and serum concentrations (mean values) of provitamin A
carotenoids in our studies in subjects from Spain and four other European countries (samples analyzed
in our lab) are shown in Table 1. Dietary intake was assessed by three 24-h food recalls [28–30]
or a semiquantitative FFQ [27] and the same [28–30] or similar [27] carotenoid food composition
databases were used in all four of these studies. Blood samples were obtained at the same time as the
dietary assessment. In these healthy subjects (age range 20–70), intake medians ranged from 0.3 to
2.3, 2.3 to 10.9 and 0.3 to 2.5 µmol/day for α-carotene, β-carotene and β-cryptoxanthin, respectively.
Median dietary intakes of β-carotene and α-carotene were correlated with one another (r = 0.899,
p = 0.002). The dietary intake of β-carotene was greater than that of β-cryptoxanthin (p = 0.002)
which, in the individual studies, was greater or similar to that of α-carotene but, considering the entire
sample, did not reach the statistical significance. Serum concentration means in these normolipemic
subjects ranged from 0.08 to 0.17, 0.37 to 0.71 and 0.23 to 0.52 µmol/L for α-carotene, β-carotene
and β-cryptoxanthin, respectively. α-carotene and β-carotene serum values also correlated with one
another (r= 0.857, p= 0.007). As in the case of dietary intake, β-carotene was present in serum in
greater concentrations than in the other two (β-carotene in higher concentrations than β-cryptoxanthin,
p = 0.005 and β-cryptoxanthin in higher concentrations than α-carotene (p = 0.000)). No significant
correlations were found between the concentrations of these carotenoids in diet and in serum.

No age-related difference was found in the dietary intake of α-carotene and β-cryptoxanthin
in our studies. However, β-carotene intake was significantly higher in younger subjects (age 20–45)
compared to their older counterparts (age 45–70) (p = 0.053). No differences were found in the serum
concentration of any of the provitamin A carotenoids.

Table 2 shows the dietary intake of provitamin A carotenoids compiled from the literature [16,36–55].
Data are listed by geographical origin and by the subpopulations studied in the original articles when
reported by age or sex. In most of these studies, dietary intake assessment and blood extraction were
obtained from the same volunteers, although some studies were part of large surveys (e.g., The National
Health and Nutrition Examination Survey (NHANES) [44]) and intake and blood carotenoid data did not
necessarily come from the same volunteers, which explains why a higher number of dietary assessments
than blood samples were reported in these studies. α-carotene and β-carotene dietary intake and
serum concentrations were within the range of those described for Spanish healthy subjects, but this
was not the case for β-cryptoxanthin concentrations in diet and blood. Although β-cryptoxanthin
concentrations were lower, the only significant difference was in blood concentrations (p = 0.013).

The dietary assessment method and the FCT used in the studies are shown in Tables 1 and 2.
In our studies, the 24-h food recall (triplicate) and the FFQ were used, and the FCT was practically
the same in the four studies. In the studies compiled from the literature, a wider range of dietary
assessment methods were used, although the most frequent were the FFQ and the 24-h recall/records
(obtained during a different number of days, from 1 to 30 days). Moreover, different FCTs were used,
and in some of the studies, this is not mentioned. Where dietary intake was assessed using more than
one method for the same study’s participants (in 5 out of 22 studies), carotenoid intake assessed by 24-h
recall was selected to obtain the mean values appearing in Table 2 because FFQ tends to overestimate
the dietary intake of carotenoids [16,35,43].

Tables 1 and 2 show the estimated amount of each provitamin A carotenoid absorbed and
circulating in the bloodstream, i.e., the apparently bioavailable carotenoids. The median values of
apparently bioavailable β-cryptoxanthin in our studies are similar to those calculated using data
obtained from the literature (0.67 and 0.71, respectively). However, those of α-carotene and β-carotene
are higher in our studies, both for Spanish subjects (n = 348) and the whole sample, which includes
subjects from other European countries (n = 633) (α-carotenebio 0.32 and β-carotenebio 0.17) compared
with the median values from the literature which include people from nine countries and four continents
(n = approximately 30,000) (α-carotenebio and β-carotenebio 0.10). However, when comparing our data
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from Spanish subjects with those from other nationalities, a significant difference was found only for
α-carotenebio (p = 0.007).

Combining all data shown in Tables 1 and 2, the apparent bioavailability of each of the three
provitamin A carotenoids is lower than 1, a value that would mean a complete bioavailability,
the median for β-cryptoxanthin (0.635) being quite a bit higher than for α-carotene (0.110) (p = 0.000)
and for β-carotene (0.095) (p = 0.000). The apparent bioavailabilities of α-carotene and β-carotene were
also statistically different (p = 0.001). In the homogeneous sample of Spanish subjects, bioavailability
followed the same pattern, β-cryptoxanthin > α-carotene > β-carotene (medians: 0.69, 0.32 and 0.14,
respectively). In this subsample, β-cryptoxanthin bioavailability exhibited statistical differences with
respect to β-carotene (p = 0.043) but not with respect to α-carotene (p = 0.08). There were also differences
between β-carotene and α-carotene (p = 0.041).

The α-carotenebio/β-carotenebio and β-cryptoxanthinbio/β-carotenebio ratios in the 34 studies
where such data could be calculated are shown in Tables 1 and 2. Although ratios varied widely
between studies, α-carotenebio/β-carotenebio was equal to or greater than 1 with just four exceptions
(less than 1), the range being 0.5–3.75 and the mean 1.62 (CI 95% 1.35, 1.90). The median ratio in the
studies performed in our lab was 1.63 (8 groups of subjects) and 1.35 in the compiled studies (28 groups
of subjects). A higher ratio was obtained for β-cryptoxanthinbio/β-carotenebio, which was always
greater than one, the range being 1.85–29.5, the mean 7.86 (CI 95% 5.56, 10.16) and the median 4.72 in
the studies carried out in our lab and 8.38 in the compiled research. Hence, the intake of comparable
amounts of α-carotene and β-carotene would result in a 55% higher concentration of α-carotene in the
blood, and the intake of comparable amounts of β-cryptoxanthin and β-carotene would result in a
686% higher concentrations of β-cryptoxanthin in the blood.

These ratios of apparent bioavailability ratios indicated clearly higher bioavailability ofβ-cryptoxanthin
and α-carotene in comparison to β-carotene. However, there are doubts regarding the comparability of
these results mainly due to the high variability of the dietary assessment method employed and to the
variability of the FCT (not always supplied). We tried to minimize the variability arising from the dietary
assessment method, and results from the 24-h recalls were selected for the statistical analysis.

The dietary carotenoid intake assessment must consider both the carotenoid content of the food
consumed and which foods are consumed, given that the food matrix leads to different carotenoid
bioaccessibilities [11]. We therefore assessed the contribution of the foods consumed by the participants
in our studies to the intake of each provitamin A carotenoid. Table 3 shows the major food contributors
to dietary provitamin A intake and the percentage of contribution to the dietary intake of the individuals
included in our studies, mainly Spanish but also groups from four other European countries. In general
terms, six fruits and vegetables account for more than 50% of the dietary intake of these three
carotenoids: α-carotene (carrot), β-carotene (carrot, spinach, tomato), β-cryptoxanthin (orange y
orange juice, tangerine, red pepper).
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Table 3. Major food contributors to provitamin A carotenoid intake.

Major Food Contributors to Provitamin A Carotenoid Intake (% Contribution
of Individual Items to the Total Intake of Each Carotenoid)

Year [Ref.] Subjects (n) Sex/Age α-Carotene β-Carotene β-Cryptoxanthin

2020
[29]

Spain Carrot (95) Carrot (48) Orange (32)
(101: 77 w, 24 m) Banana (3) Tomato (12) Orange juice: natural (23)

45–65 years Green beans (1,5) Spinach (6) concentrated (2)
Tangerine (2) Tangerine (2)

Red pepper (2) Red pepper (3)

2018
[30]

Spain Carrot (95) Carrot (48) Orange (32)
75 (w) Banana (3) Tomato (12) Orange juice: natural (23)

50–70 years Green beans (1,5) Spinach (6) concentrated (2)
Red pepper (1,5) Tangerine (25)

Red pepper (4)

2014
[28]

Spain
(108) Carrot (88) Carrot (34) Orange (20)

20–35 years (27w, 27m) Banana (4) Tomato (14) Orange juice: natural (49),
concentrated (6)

45–65 years (27w, 27m) Green beans (2) Spinach (14) Tangerine (16)

2001
[26,27]

Spain Carrot (60) Spinach (26) Tangerine (53)
(64: 32 w, 32m) Tangerine (17) Carrots (24) Orange (38)

25–45 years
France Carrot (82) Carrot (38) Orange juice (50)

(75: 38w, 37m) Orange (6) Spinach (14) Orange (30)
25-45 years

Northern Ireland Carrot (88) Carrot (53) Orange juice (45)
(65: 33 w, 32 m) Coleslaw (6) Soups (10) Orange (26)

25–45 years
Republic of Ireland Carrot (90) Carrot (60) Orange (42)

(73: 33w, 40 m) Coleslaw (5) Tomato products (13) Tangerine (28)
25–45 years

The Netherlands Carrot (87) Carrot (42) Tangerine (41)
(72: 39 w, 33 m) Orange (5) Spinach (12) Orange juice (33)

25–45 years

2013
[45]

USA Carrot Carrot Orange
n = 1393 Women Banana Broccoli Peach

52–65 years Lettuce Apricot

w: women, m: male.
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4. Discussion

In this study, we approached the bioavailability assessment of the individual provitamin A
carotenoids by means of their dietary intake and concentrations in blood in apparently healthy and
normolipemic adults (age 20–75) and identified their major food contributors in their dietary intake.
Dietary intake showed a wide range of concentrations, mainly for β-carotene, as described in other
studies [8,27,56], and we therefore reported the median intake values to gain a more realistic idea of
the intake. However, in the literature, mean rather than median values are typically reported as can
be observed from the data compiled in Table 2, sometimes making it difficult to draw comparisons.
The proportions of each carotenoid in the dietary intake in these Spanish groups (n = 348, age range
20–75) are 75.5% for β-carotene, 15.3% for β-cryptoxanthin and 9.2% for α-carotene. These values
are practically identical to the ones published in the most recent Spanish National Dietary Intake
Survey (n = 3000, age range 18–64) on β-carotene (71.9%), β-cryptoxanthin (15.3%) and α-carotene
(12.8%) [5]. Similar proportions were obtained from data compiled from other studies in nine countries
around the world, with β-carotene accounting for 79.2% of the provitamin A carotenoid intake and
β-cryptoxanthin and α-carotene 15.3% and 5.5%, respectively. These similarities are despite important
variables that could have had an impact on the dietary carotenoid intake data from the studies compiled
from the literature, as different methods of assessment methods and FCTs [13] were used. In contrast,
in our data from Spanish groups, the results of the same dietary assessment method and the carotenoid
composition tables in all three studies are quite similar, as carotenoid composition data from Spain
were included in the carotenoid food composition data of the European study [27].

These carotenoids profile proportions follow the same pattern in dietary intake as in blood
(β-carotene > β-cryptoxanthin > α-carotene). There was a correlation between α-carotene and
β-carotene in dietary intake and blood concentrations as in other studies [56], as can be expected
because both are supplied by the major dietary food contributors (Table 3) and are often found in the
same foods [3]. In contrast, β-cryptoxanthin is mainly supplied by red-orange fruits and juices [3,5].
In the analysis of carotenoids in blood in the compiled studies, serum or plasma were reported as
matrices for analysis, an irrelevant aspect as an acceptable degree of agreement was described in results
obtained using these two matrices [57]. In Spanish subjects, the β-carotene accounts for 51% of the
total provitamin A carotenoids, β-cryptoxanthin for 37% and α-carotene for 12%. A similar pattern
was found in the mean values of the compiled studies, 60% β-carotene, 25% β-cryptoxanthin and
15% α-carotene. Although the proportions of β-cryptoxanthin and α-carotene in blood are similar
in some studies [39,45,55], in others, β-cryptoxanthin concentration is higher than that of α-carotene
in blood but not in the dietary intake [56], or the percentage of blood β-cryptoxanthin is half that
of α-carotene [48] and β-cryptoxanthin is slightly higher than β-carotene [37]. These differences are
clearly seasonal in some population groups [8,56] but could also be due to factors related to the subjects
included in the studies since, although in general, no characteristics were reported that could affect
carotenoid metabolism, there could be exceptions. For instance, carotenoid concentrations in blood may
be not comparable in normo- or hypercholesterolemic subjects [26,28] or in subjects with deficient or
adequate vitamin A nutritional status, as their conversion into retinol depends on retinol concentration
in the bloodstream, among other factors [14,17]. These two sources of variability could be considered
as negligible in the Spanish study results as all participants were normolipemic and had an adequate
retinol status as assessed by retinol serum concentrations (greater than 1.1 µmol/L) [1]. Blood retinol
concentrations were ≥1.9 µmol/L [26], >1.4 µmol/L (unpublished data, from subjects in Study 3 [30])
and >1, 1 µmol/L (unpublished data, from studies in Studies 2 and 4 [28,29]). Other potential
modifiers of the carotenoid status are weight (subjects were normo- and overweighted in Burrows et
al. [55], in some of the studies from Burri et al. [16] and normoweight [26–29]) and normoweighted
or preobesity [30] in Spanish studies, and diabetes [50] as higher concentrations of provitamin A
carotenoids in insulin-dependent diabetics have been reported [34,35]. The consumption of food
supplements is on the rise, and these foods used to include β-carotene in their formula and thus would
modify its concentration in blood. The consumption of food supplements/vitamins was an exclusion
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criterion in the studies involving Spanish subjects [26–29] but not in those from Burri et al. [16] where
subjects could have consumed a daily multivitamin supplement containing up to 1–2 mg of β-carotene.

The α-carotenebio/β-carotenebio ratios (medians of 1.63 and 1.35, from our lab and from literature,
respectively) and β-cryptoxanthinbio/β-carotenebio (medians of 4.72 and 8.38, from our lab and from
literature, respectively) were obtained from a larger group of subjects than those analyzed in the
studies done by Burri et al. [16] (n = 633 vs. 229) and in more than a half of the compiled studies
from the literature (since year 2010), and similar results were obtained as eating similar amounts
of α-carotene and β-carotene from different dietary patterns around the world (Table 2) resulted in
about 62% (1.62, CI95% 1.35, 1.90) higher α-carotene blood concentrations (vs. 53% [16]) and 686%
(7.86, CI95% 5.56, 10.16) higher β-cryptoxanthin blood concentrations (vs. 725% [16]). This greater
apparent bioavailability for these two provitamin A carotenoids was found despite a number of
methodological factors that could account for differences in the data obtained, mainly from the dietary
assessment as carotenoids concentrations in blood were, in all studies, analyzed by HPLC, thus making
them comparable.

Dietary carotenoid intake estimation involves two important aspects which make it hard to draw
a comparison between studies and lead to a poor reliability in terms of intake. These are the dietary
carotenoid assessment method and the FCTs used. From among the carotenoid intake assessment
methods, the FFQ and the 24-h food records/recalls were the one most frequently used, but even within
each method, there were differences such as a variable number of items included and the different
number of recorded days. These and other differences, such as the validity of the questionnaires,
the food coding/identification and the conversion of the dietary intake into grams, have an impact on
the comparability of the results [13]. Thus, as dietary carotenoid intake is usually overestimated when
using FFQ compared with the three-day food record [16,35,43], except β-cryptoxanthin [35], for the
statistical analysis, we selected the results obtained from food records when more than one dietary
assessment method was applied to the same subjects. As most of the compiled studies provide no
information with regard to carotenoid FCTs/databases, it is impossible to know whether carotenoid
content data were obtained by HPLC or spectrophotometrically or if the xanthophyll content refers
to free or total forms. These are some of the relevant topics affecting data reliability that need to be
considered when selecting a carotenoid FCT [3,58].

Thus, in many studies, the greater apparent bioavailability of α-carotene over β-carotene could be
the result of underestimating intake because data are lacking on foods found in smaller concentrations
than β-carotene and in fewer foods [3,16]. However, the α-carotenebio/β-carotenebio ratio for Spanish
subjects (n = 348, ratio 2.1) was not affected by this potential underestimation or was affected only
slightly, as the same database of carotenoid content in foods was used in all of those studies and
contains data on the six major dietary carotenoids in frequently consumed Spanish foods [2,31,32].
However, physiological mechanisms cannot be ruled out as interactions between β-carotene and
α-carotene have been described, suggesting that these carotenes could follow similar pathways to
cellular uptake and/or incorporation into chylomicrons [59].

Although β-carotene is considered the major contributor to the vitamin A intake, and half
of this capacity is attributable to α-carotene and β-cryptoxanthin [14], in different types of studies,
β-cryptoxanthin appears to be more efficiently absorbed and converted into retinol than the carotenes [9,
60], probably because xanthophyll esters, from fruit and vegetables, are more bioaccessible than
carotenes [61] or free forms [62]. Moreover, dietary intake of β-cryptoxanthin has probably also been
underestimated in most studies as it is mainly present as ester forms, and few FCT have included its
concentrations in foods. Indeed, the presence of carotenoid esters has often been overlooked [3,62]
despite their higher stability during food processing and the fact that these ester forms facilitate
solubilization and extraction (bioaccessibility) during digestion [63,64]. Methodological issues could
account for a portion of the highβ-cryptoxanthinbio/β-carotenebio ratio obtained from the data compiled
from the literature (median: 8.4) but are less likely to totally account for that found among Spanish
subjects (median: 3.4), as in our studies, this underestimation is expected to be minimal because in
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the dietary intake assessment, we used a common carotenoid food content database of Spanish foods,
and xanthophylls esters were taken into account in the analysis of the total content. Other factors that
should be taken into account are the seasonal variation in the serum concentrations of some carotenoids
(i.e., β-cryptoxanthin) [3,62] and their potentially different half-life in serum.

Lastly, as the carotenoid bioavailability to reach the bloodstream depends in part on the type of
carotenoid and the food matrix [11], we identified the food contributors and the percentage of their
contribution to the dietary intake of each of these carotenoids. In the Spanish subjects, the major
food contributors were two vegetables (carrots, spinach) and four fruits (tomato, orange, tangerine,
red pepper), five out of the six of which are red-orange-colored fruit and vegetables. This color
group of food plants was the major contributor to dietary provitamin A in the last National Spanish
Survey of dietary intake [5] that included mainly fruits [65]. Carotenoids in fruits are found mainly
in chromoplasts and are more efficiently released by digestion than carotenoids in green vegetables,
which are mainly located in chloroplasts [62].

β-cryptoxanthin is present in our diet in both free form and esterified with fatty acids, and although
there is very little information on those ester forms, dietary xanthophylls are ingested in a much
higher percentage as ester forms (two or three times higher than the free form [11,64,66]), for which
higher bioavailability and higher conversion to retinol have been described [62]. In our studies,
β-cryptoxanthin is supplied mainly by red-orange foods (orange, tangerine and red peppers), and its
bioaccessibility/bioavailability have been the topic of several studies, with quite different results mainly
due to the use of methods that vary widely in their use of the factors involved in the simulation of
the digestion process and in the way in which results are expressed [18]. Thus, bioaccessibility of
6–10% [67] and 42% [11] is reported for orange and 53% for orange juice [68]. In pepper, it ranges from
2% to 17% [69,70], 44.5% [71], 98% [11] and in mandarine 20% [67].

Regarding α-carotene, although there are fewer data regarding carrots, its major contributor,
bioaccessibilities of 25%, 38% and 72% have been reported [11,72,73], and for banana, the percentage of
bioaccessibity is in the range of 14–41% [74]. Red-orange fruits and vegetables contain α-carotene in
similar percentages as β-cryptoxanthin in the Spanish diet [5]. A greater variety of foods contribute to
the dietary intake of β-carotene, and they are mainly red-orange fruits and vegetables, as previously
reported in the Spanish diet, in which they supply 64% [5]. Different bioaccessibility percentages have
been reported for β-carotene contained in carrot (12% [72], 37% [73], 77% [11]), in tomato (62% [73]),
red pepper (0.4–13% [69,71], 30% [72] and 71% [11]) and spinach (12% [72], 25% [11]).

Estimation of the bioavailability of dietary provitamin A carotenoids based on dietary intake
data and concentrations in blood has several limitations, the most relevant probably being the
disparity in the dietary intake assessment methods and FCT (referred to above), and the fact that
it is impossible to estimate their conversion into retinol in the human intestine and other tissues.
The extent of this conversion varies widely among individuals, depending on diverse host related
factors, such as the vitamin A nutritional status, the nucleotide polymorphisms (SNPs) within the
b-carotene 15,15′-monoxygenase and specific binding proteins involved in their metabolism, presence
of disease, seasonal variation in the food intake, sex, age and body mass index [12,14,75–77]. Strengths
of this study include the homogeneous characteristics of the subjects in our four studies with respect
to (normal) cholesterolemia and to (adequate) retinol nutritional status. However, we found no
information on these two variables in the articles from the literature that we used to calculate apparent
bioavailability, either in general on in the FCT. Nonetheless, apparent bioavailabilities of the three
provitamin A carotenoids showed similar results obtained from studies in very different groups of
people, with different dietary intake patterns, age, sex, race, etc. Another limitation related to the
dietary intake of these carotenoids is that none of the studies assessed the intake of the commercial
foods fortified/enriched with vitamin A (mainly added as β-carotene), meaning that dietary intake
may be underestimated. Lastly, it should be recalled that none of the studies from which we calculated
the apparent bioavailability were designed for this purpose.
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5. Conclusions

Currently, the vitamin A intake is expressed as RE or RAE, and it is assumed that α-carotene
and β-cryptoxanthin contribute in the same proportion to this intake, and these account for half
the contribution of β-carotene [14]. This study looks into the contribution made by α-carotene and
β-cryptoxanthin to the dietary intake of vitamin A considering that the apparent bioavailability of
α-carotene and, to a greater extent, that of β-cryptoxanthin are greater than that of β-carotene and differ
from one another in subjects with cholesterolemia within the normal range and an adequate level of
blood retinol. Use of RAE and RE appears to lead to underestimation of the contribution of two of the
three major dietary provitamin A carotenoids in subjects around the world. More intervention studies
in subjects with different vitamin A nutritional status, mainly involving foods rich in β-cryptoxanthin,
are needed to verify whether this is really more efficiently absorbed and/or converted into retinol
than β-carotene. Preliminary evaluation of their bioaccessibility from different food matrices could be
helpful in the selection of foods to be used in the intervention studies.

The following four fruits and two vegetables contribute more than 50% of the dietary intake of the
three provitamin A carotenoids in European subjects: tomato, orange and orange juice, tangerine and
red pepper, on the one hand, and carrot and spinach on the other. Therefore, any variation or
culinary/manufacturing process applied to these foods resulting in an increase in their bioavailability
would have a great impact in the vitamin A nutritional status of populations with presumably different
dietary patterns.
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