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Abstract 50 

Background: There are several prognostic models to estimate the risk of mortality after 51 

surgery for active infective endocarditis (IE). However, these models incorporate different 52 

predictors and their performance is uncertain.  53 

Objective: We systematically reviewed and critically appraised all available prediction 54 

models of post-operative mortality in patients undergoing surgery for IE, and aggregated them 55 

into a meta-model. 56 

Data sources: We searched Medline and EMBASE databases from inception to June 2020.  57 

Study eligibility criteria: We included studies that developed or updated a prognostic model 58 

of post-operative mortality in patient with IE.  59 

Methods: We assessed the risk of bias of the models using PROBAST (Prediction model Risk 60 

Of Bias ASsessment Tool) and we aggregated them into an aggregate meta-model based on 61 

stacked regressions and optimized it for a nationwide registry of IE patients. The meta-model 62 

performance was assessed using bootstrap validation methods and adjusted for optimism.  63 

Results: We identified 11 prognostic models for post-operative mortality. Eight models had a 64 

high risk of bias. The meta-model included weighted predictors from the remaining three 65 

models (i.e., EndoSCORE, specific ES-I and specific ES-II), which were not rated as high 66 

risk of bias and provided full model equation. Additionally, two variables (i.e., age and 67 

infectious agent) which had been modelized differently across studies, were estimated based 68 

on the nationwide registry. The performance of the meta-model was better than the original 69 

three models, with the corresponding performance measures: C-statistics 0.79 (95% CI 0.76 70 

to 0.82), calibration slope 0.98 (95% CI 0.86 to 1.13) and calibration-in-the-large -0.05 (95% 71 

CI -0.20 to 0.11).  72 

Conclusions: The meta-model outperformed published models and showed a robust predictive 73 

capacity for predicting the individualized risk of post-operative mortality in patients with IE.  74 
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Protocol Registration: PROSPERO (registration number CRD42020192602) 75 

Key words: Prognostic models, systematic review, meta-model, aggregation, validation, 76 

infective endocarditis. 77 
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Background 79 

Infective endocarditis (IE) is an uncommon but severe disease with a high mortality rate. Its 80 

current estimated incidence is 3-10 episodes per 100.000 person-years, while its in-hospital 81 

mortality rate ranges between 15% and 40% (1,2). Management of IE is often complex and, 82 

the decision whether to perform surgery remains a challenge because of the high mortality 83 

rate associated with the procedure. For that reason, it is estimated than less than half of the 84 

patients with surgical indication finally undergo cardiac surgery (3); which leads to a 85 

significantly decreased chance of survival (4). In this context, there has been a great interest in 86 

modeling prognosis of patients with IE to accurately estimate the risk of mortality in patients 87 

undergoing surgery for IE, and to help in the decision-making processes.  88 

Prognostic models are mathematical equations that relates multiple variables for a particular 89 

individual to the probability of post-operative mortality. In the last decade, several IE 90 

prognostic models using preoperative patient´s-related and IE-specific factors, have been 91 

proposed. Unfortunately, these models have not been implemented in guidelines or are rarely 92 

applied in clinical practice. The poor adoption of these models could be a consequence of a 93 

shared perception of their limited validity because they have usually been built in relatively 94 

small cohorts and lack of external validation. Consequently, researchers carry on developing 95 

new models using their own data without considering prior knowledge, which leads to a 96 

scenario with multiple prognostic models of dubious validity. Therefore, we aimed to 97 

systematically review and critically appraise all available prediction models for post-operative 98 

mortality after cardiac surgery in patients with IE. We also aimed to aggregate those models 99 

with low risk of bias into a meta-model based on stacked regressions.  100 

  101 
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Methods 102 

The protocol for this study was registered on PROSPERO (registration number 103 

CRD42020192602). We designed this systematic review according to the recent 104 

guidance(5,6),  and reported its results following PRISMA (Preferred Reporting Items for 105 

Systematic Reviews and Meta-Analyses) (7) and TRIPOD (Transparent Reporting of a 106 

Multivariable Prediction Model for Individual Prognosis or Diagnosis) (8,9) 107 

recommendations.  108 

Literature search 109 

We searched Medline through Ovid and Embase through Elsevier from inception to 110 

01/06/2020. We conducted a literature search to identify all potential studies for inclusion, 111 

without any language or publication dates restriction. We used the methodologic filter 112 

developed by Geersing et al. for prediction models research in MEDLINE (10), which was 113 

adapted for EMBASE. We added terms related to cardiac surgery and endocarditis. We 114 

further searched bibliographic references of included articles to identify other potential 115 

eligible studies. Complete search strings are shown in Supplementary Material: S1.  116 

Eligibility criteria 117 

We included original studies that developed prognostic models, with or without external 118 

validation, to predict the risk of post-operative mortality after cardiac surgery in patients with 119 

IE, as well as studies that updated previously published models. We accepted the authors` 120 

definition of post-operative mortality (either 30 days and/or in-hospital mortality), but 121 

excluded models that predicted mortality as part of a composite adverse outcome. Titles, 122 

abstracts, and full texts were screened for eligibility in pairs by three reviewers independently 123 

(BMFF, LVB, ACP) using EPPI-Reviewer 4 (11). Discrepancies were resolved by consensus.  124 
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Data extraction 125 

Data extraction of included articles was done by three reviewers independently (pairs from 126 

BMFF, LVB, ACP). Discrepancies were solved by consensus. Reviewers used a standardized 127 

data extraction form based on CHARMS (CHecklist for critical Appraisal and data extraction 128 

for systematic Reviews of prediction Modelling Studies) (6). We extracted data on the 129 

following items: general information of the study, source of data, participants´ characteristics, 130 

outcome definition and time of occurrence, candidate predictors, and analysis methods. 131 

(Supplementary Material: S2). When the completed model equation or relevant data were 132 

not provided, we contacted the correspondence authors to require this information. 133 

Risk of bias assessment 134 

We used a standardized form based on PROBAST (PRediction model risk of Bias 135 

ASsessment Tool) (12,13) to evaluate risk of bias (RoB) and applicability. We used the 136 

PROBAST definition of RoB. Concerns regarding the applicability of a primary study would 137 

arise when the population, predictors, or outcomes of the study differed from those specified 138 

in our review question. RoB and applicability were assessed by two independent reviewers 139 

(pairs from BMFF, LVB, ACP). We evaluated the relevant items on the following domains: 140 

Participants, predictors, outcome and analysis. Each domain was rated as a high, low or 141 

unclear RoB, and as providing high, low or unclear concerns regarding applicability. Any 142 

discrepancies were discussed between reviewers and resolved through discussion. The 143 

supplementary material provides details on critical appraisal and applicability 144 

(Supplementary Material: S3). 145 

GAMES registry 146 

We used the nationwide GAMES – Grupo de Apoyo al Manejo de la Endocarditis infecciosa 147 

en España – (14) registry as the validation dataset, to estimate existing models` weights for 148 

the meta-model development and its validation, and to externally validate the previously 149 
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published models. Since January 2008, all consecutive episodes of IE in 34 Spanish hospitals 150 

were prospectively registered in GAMES using a standardized form. Regional and local ethics 151 

committees approved the study, and patients gave their informed consent in each center. For 152 

the present study, we selected all the infective episodes (n=1,453) registered in the GAMES 153 

cohort involving adult patients (aged ≥18 years) who had undergone cardiac surgery with 154 

preoperative diagnosis of active IE. From these, 354 (24.4%) died after surgery (273 in the 155 

first 30 days and the remaining 81 during hospitalization). Assessment of predictors was done 156 

in an unblinded manner (i.e. with knowledge of the participant's outcome). Supplementary 157 

Material: Table S1 shows the main descriptive characteristic of patients in the validation 158 

nationwide registry.  159 

Statistical analyses 160 

Model aggregation was based on stacked regressions (15). This methodology allows the 161 

synthesis of models collated in a systematic review into a meta-model using a validation 162 

dataset (16,17). We did not consider for aggregation the models that did not report the full 163 

equation or the models that were classified as high risk of bias. Stacked regressions used the 164 

linear predictor of each model as a co-variable in the meta-model, to subsequently created a 165 

linear combination of model predictions. That is, the original coefficients of each model are 166 

weighted by an independent parameter estimated in the meta-model, so that the models with 167 

worse performance in the validation dataset are penalized more. When aggregation of the 168 

coefficients was not possible, either because the definition of the predictor from primary 169 

studies was too heterogeneous or because predictors had been modeled differently in the 170 

published models (for instance, a numerical variable treated as a continuous predictor in one 171 

model and being categorized at different cut-points in the others), these predictors were 172 

dropped, and were included in the meta-model as independent covariables to re-estimate their 173 
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coefficients entirely from scratch based on the validation dataset. Non-linear relationships for 174 

continuous predictors were tested using fractional polynomials (18). 175 

Predictors with missing data in the validation dataset were imputed under the missing at 176 

random assumption using multiple imputation with chained equations (19). We included all 177 

predictors and the outcome in the imputation models to ensure compatibility. 178 

(Supplementary Material: S4). Imputations checks were completed by looking at the 179 

distributions of imputed values to ensure plausibility. We generated 10 multiple imputed 180 

datasets and all primary analyses were performed in each imputed dataset. Pooled parameters 181 

were estimated both in the aggregation and validation processes using Rubin’s rules (20). 182 

The meta-model validation was assessed in terms of discrimination (i.e., through the use of 183 

the C-statistic, with values from 1 indicating perfect discrimination to 0.5 no discrimination) 184 

and calibration (i.e., through the calibration slope and calibration-in-the-large [CITL], with 1 185 

and 0 as ideal values, respectively; as well as with calibration plots). Calibration plots 186 

represent the average predicted probability for risk groups categorized using deciles of 187 

predicted probability against observed proportion in each group, and fitting a lowess smoother 188 

to show calibration across the entire range of predicted probabilities at the individual-level 189 

(21,22). For the calibration plots we used the average predicted probabilities for individuals 190 

by pooling the imputed datasets using Rubin’s rules (20). Because the meta-model was 191 

optimized to the validation dataset, we assessed its optimism-corrected performance measures 192 

by applying bootstrap validation with 500 replicates. As sensitivity analyses, we tested all 193 

model performance regardless of their critical appraisal. In addition, the meta-model 194 

performance was assessed only for 30-days mortality to investigate the meta-model 195 

robustness. To facilitate the use of the model, an online version of the prognostic tool was 196 

implemented in Evidencio (https://www.evidencio.com/). All analyses were performed using 197 

Stata software version 16 (23). 198 

https://www.evidencio.com/
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 199 

Results 200 

Search results and study selection 201 

We retrieved 4,862 titles through our systematic search combining Medline and Embase. 202 

From these, 684 duplicate references were identified. Of 4,178 titles assessed by title and 203 

abstract, 34 studies were retained for full text screening, and 2 additional studies were 204 

detected in the bibliographic references of these articles. Nine studies describing 11 prediction 205 

models met the inclusion criteria (Figure 1 and Supplementary Table S2).  206 

Source of data and participants 207 

All included prognostic model development studies were published between 2011 and 2018. 208 

Six used data from a study cohort (three of them from a single center (24–26) and three from 209 

multiple centers (27–29)); two studies used data from multicenter registries (30,31); and one 210 

study used data from both a multicenter cohort and a local clinical registry (32). Eight studies 211 

used data from patients in Europe (Spain, Italy, France or Portugal) and one from patients in 212 

North America. Participants were recruited between 1980 and 2015. (Supplementary Table 213 

S3).  214 

Outcomes 215 

Three models were developed to predict any death occurring before discharge or within 30 216 

days of surgery (24,26,30), five models to predict any death occurring before discharge 217 

(25,29,31,32), and the remaining three as death within 30 days of surgery (28, 29). The 218 

incidence of deaths varied between 8.2% and 29.2% (Table 1).  219 

Predictors 220 

The number of candidate predictors considered in the models ranged from 15 to 57 and 221 

included patient-, clinical-, surgery- and IE-related factors. The number of parameters 222 
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retained in the final models ranged from 2 to 15 (Table 1): The most common factors were 223 

critical preoperative state (n=9), renal failure (n = 7), age (n = 6), New York Heart 224 

Association (NYHA) classification of functional status (n=6), paravalvular complications (n = 225 

6) and infection etiology (n = 5). The predictor definitions and the models’ composition are 226 

shown in the Supplementary Table S4 and Table S5. 227 

Model development and presentation 228 

Sample sizes for models’ development varied between 128 and 13,617 patients, and the 229 

number of events ranged from 21 to 1,117. Only two models from the same study adequately 230 

informed the handling of missing data (28), and these used complete data analyses. Logistic 231 

regression analysis was the most common modelling technique (n = 9), while logistic mixed 232 

effects (27) and logistic Generalized Estimating Equation (GEE) models (30) were only used 233 

in one model development each. Nine models used univariable analyses to select the 234 

candidate predictors. In nine out of eleven models the number of events per parameter (EPP) 235 

assessed for inclusion in the final model was lower than the minimum required for 236 

development of a new prediction model, based on the sample size estimation proposed by 237 

Riley et al.(33,34) (Supplementary Table S6). The method of predictors selection during 238 

multivariable modelling was backward selection in three models (25,32), stepwise selection in 239 

two models (29,31), and an automatic algorithm based on Akaike information criteria in 240 

multiple bootstrap samples in the other two models, with predictors selected in at least 70% of 241 

the bootstrapped samples being included in the final model (28). Four models did not inform 242 

about the method used to select predictors. (Table 1) 243 

In seven out of 11 models the authors omitted the complete model equation (in five of them 244 

correspondence authors did not respond when were asked for further details) 245 

(Supplementary Table S7). Nine models were presented as a scoring system, and two of 246 

them included nomograms.  247 
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Model performance 248 

The model performance was assessed in terms of discrimination through the C-statistic in all 249 

models. Nevertheless calibration was often wrongly assessed using the Hosmer-Lemeshow 250 

test (35) in six models. Only three models (26,28) used calibration slopes and CITL. Eight 251 

models were internally validated: three models were evaluated by bootstrapping with 252 

correction for optimism (27,28), one was assessed through the 0.632 bootstrap method (25), 253 

two used temporal split samples (32) and two used random split samples (29,30). Three 254 

models only estimated the apparent performance (24,26,31). Three models were externally 255 

validated in the same development study using very small sample sizes, with only 18 events 256 

in the Olmos’ model (29) and 21 in the Gatti’s models (32). Clinical utility of the models was 257 

never assessed. 258 

Risk of bias 259 

The RoB was high in eight models, unclear in one (27) and low in the remaining two (28) 260 

(Table 1, Supplementary Table S8 and Figure S1). Two of the eight models with high RoB 261 

scored at “high risk” in the participants domain. Eight models scored at “high risk” in the 262 

analysis domain. Most of the models had small sample sizes and even the number of EPP was 263 

close to 1 in several models, increasing the risk of overfitting (34). Many studies decided 264 

model predictors based on univariable analysis, three reported only the apparent performance 265 

and two used random splitting validation. The calibration was sub-optimally assessed in all 266 

models classified as high risk of bias, with most of them using the Hosmer-Lemeshow test.   267 

Derivation of the Meta-model 268 

The eight models with high RoB were excluded from the statistical synthesis so that only the 269 

EndoScore, Specifics EuroSCORE-I (Specific ES-I) and EuroSCORE-II (Specific ES-II) 270 

models were aggregated in the meta-model. The model developed by Di Mauro 271 

(EndoSCORE) (27) included 15 parameters, while the other two (Specific ES-I and Specific 272 



13 
 

ES-II) developed by Fernández-Hidalgo (28), presented 10 and 9 parameters respectively, 273 

from the EuroSCORE models predictors (35, 36) and IE-related factors (Table 2 and 274 

Supplementary Table S7). The dependent variable for the meta-model was mortality (either 275 

30-days or in-hospital).  276 

To construct the meta-model, we first calculated the linear predictors (LP) from EndoSCORE, 277 

Specific ES-I and Specific ES-II for each observation in the validation dataset, after dropping 278 

the parameters for age and infection etiology because these variables were modelized 279 

differently in the different studies. Subsequently, we adjusted the meta-model using a logistic 280 

regression model, which incorporated the LPs as co-variables, to estimate the models’ weights 281 

for aggregation, as well as the predictors for age (treated as continuous) and infection etiology 282 

(categorized into three groups: Staphylococcus spp., fungi and other microorganisms) to re-283 

estimate the coefficients from scratch. The meta-model included the predictors considered in 284 

at least one of the three original models. These are patient-related factors (i.e. age, gender, 285 

renal failure, prior cardiac surgery, chronic pulmonary disease, pulmonary hypertension and 286 

left ventricular ejection fraction), clinical presentation-related factors (i.e. critical preoperative 287 

state, New York Heart Association (NYHA) classification of functional status), surgery-288 

related factors (i.e. presence of paravalvular complications (abscess and/or fistulae), urgency 289 

of procedure and number of treated valves/prostheses) and finally IE-related factors (i.e.  290 

valve location and infection etiology) (Supplementary Table S5). The magnitude of the 291 

associations of the predictive factors with mortality is shown in Table 2. 292 

Validation of the models 293 

The three prediction models considered for aggregation and the meta-model were validated in 294 

the GAMES registry. The C-statistics and their 95% confidence intervals (95%CI) for the 295 

published models were: 0.759 (95% CI 0.731 to 0.788) for EndoSCORE, 0.758 (95% CI 296 

0.731 to 0.786) for Specific ES-I, and 0.762 (95% CI 0.735 to 0.789) for Specific ES-II. The 297 
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optimism adjusted C-statistic for the meta-model was 0.79 (95% CI 0.76 to 0.82) (Figure 2). 298 

Calibration slopes were < 1 for all published models: 0.80 (95% CI 0.69 to 0.92) for 299 

EndoScore, 0.82 (95% CI 0.70 to 0.94) for Specific ES-I, and 0.76 (95% CI 0.65 to 0.87) for 300 

Specific ES-II. CITL was 0.58 (95% CI 0.44 to 0.71) for EndoSCORE and 0.62 (95% CI 0.48 301 

to 0.76) for Specific ES-II, and -0.02 (95% CI -0.16 to 0.11) for Specific ES-I. Optimism 302 

adjusted calibration measures for the meta-model were 0.98 (95% CI 0.86 to 1.13) for the 303 

slope and -0.05 (95% CI -0.20 to 0.11) for CITL (Figure 2). The calibration plots for the 304 

three previously published models and the meta-model are shown in Figure 3.  305 

Sensitivity analysis showed that the meta-model had better overall performance than all 306 

published models regardless of their quality assessment (Supplementary Figure S2). 307 

Moreover, even though the meta-model was not fitted for the 30-days mortality outcome, it 308 

outperformed the three models used for model aggregation. (Supplementary Figure S3) 309 

  310 
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Discussion 311 

Summary of findings 312 

In this systematic review of prediction models for post-operative mortality in patients with 313 

infective endocarditis, we identified and critically appraised 11 models developed in 9 studies. 314 

The predicted outcome varied between studies (in-hospital, 30-days or both in-hospital or 30-315 

days mortality). Of the eleven prognostic models, only two had low RoB and one unclear; the 316 

remaining eight models had high RoB mainly owing to poor statistical methods used, which 317 

suggests that their predictive performance when used in practice is probably lower than that 318 

reported. The sample sizes used to develop the models were limited and this is a well-known 319 

problem that leads to inaccurate predictions and consequently incorrect healthcare decisions 320 

in practice (34). 321 

Four out of the 11 published models reported the full model equation required for a models’ 322 

aggregation and a complete independent external validation as recommended by reporting 323 

guidelines (8,9). Two models’ equations were recovered after request to the corresponding 324 

authors. Three models that were flagged as low or unclear RoB were aggregated to build the 325 

meta-model.  326 

Our meta-model included as predictors age, gender, renal failure, prior cardiac surgery, 327 

chronic pulmonary disease, pulmonary hypertension, left ventricular ejection fraction, critical 328 

preoperative state, New York Heart Association (NYHA) classification of functional status 329 

presence of paravalvular complications (abscess and/or fistulae), urgency of procedure, 330 

number of treated valves/prostheses, valve location and infection etiology. It showed better 331 

performance than the original models. We investigated the internal validity of the meta-model 332 

using bootstrap validation, and the results indicate there was no substantial over-optimism and 333 

that the validation sample was sufficiently large to combine and update the published models. 334 

Therefore, the meta-model is likely less prone to over-optimism and more generalizable to 335 
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new patient populations or settings, because it was built from the evidence of several patient 336 

cohorts and optimized to a nationwide registry. 337 

Strengths and limitations 338 

To our knowledge, this is the first systematic review with specific focus on prediction models 339 

of post-operative mortality in patients with infective endocarditis, with a thorough evaluation 340 

of the RoB, and using an external validation cohort to build a meta-model. We only combined 341 

the prediction models with low or unclear RoB and adjusted them to a new patient population. 342 

We used multiple imputation of predictors to avoid loss of useful information. The resulting 343 

meta-model incorporated prior knowledge optimally and outperformed previously published 344 

models. 345 

Our study has some limitations. The outcome definition in the validation dataset was either 346 

30-days or in-hospital post-operative mortality, and the outcome definition in the three 347 

models used for aggregation was 30-days mortality. Despite this difference a sensitivity 348 

analysis showed that the meta-model outperformed all published models when we explored its 349 

performance for the 30-days mortality. Two out of the three models considered for 350 

aggregation were developed in the same cohort. This circumstance increases the probability 351 

that the same predictors were included in both models and, therefore, it could magnify their 352 

associations with the outcome in the meta-model. However, we think that the impact of this 353 

magnification is limited because the weight of the ES-I model is relatively small compared to 354 

the other two models. Unfortunately, although we identified 11 prediction models in our 355 

systematic review, we were only able to validate the models for which the complete model 356 

equation was available. We cannot rule out the presence of publication bias in our review. 357 

Unpublished studies are likely to be of poor quality (small, overfitted, and with poor 358 

predictive performance). Therefore, it is very likely that they would have been excluded from 359 

our meta-model due to their high risk of bias. So the impact of this bias is expected to be low. 360 
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Although the definition of predictors in GAMES registry was standardized, these could differ 361 

from definitions of published studies. 362 

Comparison to existing studies 363 

Most studies to develop new prediction models are based on small sample sizes and the 364 

modelling strategies are excessively driven by available data without considering the previous 365 

knowledge, leading to inefficient models. Other authors carried out external validation studies 366 

but none of them made a critical appraisal (37–40). In a previous study, Varela et. al. 367 

developed a prognostic model based on a systematic review of factors related to in-hospital 368 

mortality. The model was built using a series of univariate meta-analyses that pooled adjusted 369 

and unadjusted estimates altogether without taking into consideration the correlation among 370 

these factors. These pooled univariate estimates were then transformed into risk points to 371 

create a risk score (41,42). Our proposal includes more factors and our analysis included only 372 

estimates from low risk of bias studies. All estimates are from multivariate adjusted models 373 

and the weight each model has to build the meta-model is determined by their predictive 374 

performance in a validation cohort. This statistical methodology is in concordance with 375 

current recommendations (16,43). 376 

Implications for practice  377 

The decision whether to perform surgery for IE remains a challenge in clinical practice and it 378 

should come after a careful balance between the procedural risk and its estimated benefit. 379 

Critical preoperative state and priority of the procedure (urgent or emergency) are the most 380 

salient risk factors included in our meta-model. Patients with depressed LVEF, NYHA, renal 381 

failure have also worse prognosis. In addition, the aggressiveness of the IE infection as well 382 

as the technical difficulties of the surgery also implied higher risk of mortality. We expect a 383 

worse outcome in patients with IE caused by Staphylococcus or fungi or in patients with 384 

paravalvular abscesses, fistulae or previous cardiac surgery because in these patients the 385 
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surgery is challenging. Although risk scores for predicting mortality do not offer help in terms 386 

of establishing the burdens of surgical futility, they add a great value helping endocarditis 387 

teams to manage this complex disease and lead toward more personalized assistance based on 388 

individual patient characteristics. Moreover, the meta-model can be used to determine the 389 

case-mix of surgical hospitals and compare their performance adjusted for their case-mix. 390 

Although in the 2015 IE guidelines (44) the score created by De Feo-Cotrufo et al for native 391 

IE is the only one recommended, it would be expected to change with the creation of several 392 

new IE specific scores and the generation of a meta-model that outperformed existing models. 393 

The interpretation of the meta-model coefficients should be interpreted with caution because 394 

coefficients have been shrunk, related to “Stein’s paradox” (45). Shrinkage introduces bias in 395 

the multivariable regression coefficients, but if we shrunk properly ensure better predictions 396 

(46) 397 

Challenges and opportunities 398 

Further external validation studies are necessary to confirm the improvement in predictive 399 

ability of the meta-model. We will develop an online calculator to allow a simple and 400 

effective use of the meta-model. Given the low incidence of infective endocarditis, 401 

sufficiently large sample sizes for the adequate development of new predictive models are 402 

difficult to come by. We encourage authors to make their data available in order to allow 403 

building model based on available data (47). 404 

Conclusions 405 

The meta-model is a robust prognostic model to calculate the individualized risk of post-406 

operative mortality in patients with infective endocarditis. It was developed based on the 407 

previous evidence using aggregation methods of the existing models identified from a 408 

systematic review and after critical being appraised. The meta-model outperformed existing 409 



19 
 

models; therefore, this preoperative tool can help guide individually tailored choices made by 410 

patients and clinicians.  411 
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