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Abstract: In the presented analysis, a heterogeneous diffusion is introduced to a magnetohydrody-
namics (MHD) Darcy–Forchheimer flow, leading to an extended Darcy–Forchheimer model. The
introduction of a generalized diffusion was proposed by Cohen and Murray to study the energy gra-
dients in spatial structures. In addition, Peletier and Troy, on one side, and Rottschäfer and Doelman,
on the other side, have introduced a general diffusion (of a fourth-order spatial derivative) to study
the oscillatory patterns close the critical points induced by the reaction term. In the presented study,
analytical conceptions to a proposed problem with heterogeneous diffusions are introduced. First, the
existence and uniqueness of solutions are provided. Afterwards, a stability study is presented aiming
to characterize the asymptotic convergent condition for oscillatory patterns. Dedicated solution
profiles are explored, making use of a Hamilton–Jacobi type of equation. The existence of oscillatory
patterns may induce solutions to be negative, close to the null equilibrium; hence, a precise inner
region of positive solutions is obtained.

Keywords: existence; uniqueness; asymptotic; Darcy–Forchheimer; instability

1. Introduction

The mathematical formulation of non-Newtonian fluids is of relevance to model
complex scenarios emerging in engineering and physics. Such a formulation gives rise
to additional difficulties when analyzing a general mathematical framework to describe
the associated constitutive equations. Unlike in Newtonian fluids, there is not a single
constitutive equation that can describe the rheological characteristics of all non-Newtonian
fluids. As a consequence, the non-Newtonian fluids are considered under dedicated
descriptions subjected to particular applications. This is the case of the Darcy–Forchheimer
model that arises in MHD. Other particular applications related with energy, radiation, and
convective phenomena of non-Newtonian fluids can be consulted in [1–5].

Non-Newtonian descriptions are typical of fluids in porous medium. Such descriptions
apply to different fluid conceptions, depending on their applications: porous catalysis,
nuclear reactors cooling, tumor growth dynamics, soil pollution, water movement in
reservoirs, oil enhanced recovery, fuel cells, combustion technology, fermentation, or grain
storage (see [6–14] for a mathematical approach together with the respective applications).

In the present analysis, we start with the Darcy–Forchheimer second-order flow,
given by:

V = (u1(y, t), 0, 0) and ∇ ·V = 0 (1)

∂u1

∂t
= −1

ρ

∂P
∂x

+ v
∂2u1

∂y2 −
(

σB2
0

ρ
+

φν

K

)
u1 −

F
ρ

u2
1, (2)

u1(y, 0) = u1,0(y),
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where (x, y) represent two classical Cartesian coordinates, P refers to the pressure field,
v = µ

ρ is the kinematic viscosity, F the nonuniform inertia coefficient of porous medium, ρ

the density, µ the dynamic viscosity, φ the porosity and K the permeability of the medium.
Typically, the diffusive term is associated to a spatial second-order operator derived

from the classical linear gradient Fick’s law. Nonetheless, some alternative approaches to
diffusions were considered to account for heterogeneous solutions with oscillatory charac-
ters in the proximity of the equilibrium states. As an example of this approach to biological
applications, in [15], the authors study a diffusive structure, accounting for a diffusive
gradient. Such a diffusive gradient was obtained from a generalized Landau–Ginzburg
free energy model that ends in a fourth-order diffusion. The fourth-order diffusion has
been widely considered in different applications, to study heterogeneities in the proximity
of the equilibrium solutions. As an example, a similar approach was pursued in [16,17]
to introduce a generalization of a classical second-order diffusion to account for oscilla-
tory profiles.

Note that the intention along this analysis is to study some heterogeneous patterns
close to the critical points for a MHD flow of the Darcy–Forchheimer type. To this end, a
perturbation term, in the form of third-order diffusion, was introduced ad-hoc, so that (2)
becomes:

∂u1

∂t
= −1

ρ

∂P
∂x
− ε

∂4u1

∂y3 + v
∂2u1

∂y2 −
(

σB2
0

ρ
+

φν

K

)
u1 −

F
ρ

u2
1, (3)

with 0 < ε << 1. After making the first derivative with x, the following holds:

−1
ρ

∂2P
∂x2 = 0; −1

ρ

∂P
∂x

= K1.

Then (2) becomes:

∂u1

∂t
= K1 − ε

∂4u1

∂y4 + v
∂2u1

∂y2 −
(

σB2
0

ρ
+

φν

K

)
u1 −

F
ρ

u2
1 (4)

u1(y, 0) = u0(y).

Furthermore, other approaches have tried to model heterogeneities in a media via an
advection coefficient that precludes the existence of a generalized diffusion (see [18] for a
biological interaction application). In [19], the author analyzes the existence of minimal
heteroclinic orbits for a class of fourth-order diffusive system with variational terms. In
addition, the analysis in [20] develops numerical and analytical approaches to characterize
heteroclinic solutions in the traveling wave domain with heterogeneous diffusion for a
cooperative system. In the cited analysis, the existence of oscillatory patterns closing
the critical points is shown and a characterization is provided. As a consequence, the
presented analysis provides insight into the characterization of such oscillatory profiles for
an extended Darcy–Forchheimer flow with a non-homogeneous diffusive perturbation.

First, analysis of existence and uniqueness of solutions are provided, based on the
use of a normed generalized space shown to be Banach. Afterwards, solutions are shown
to be bounded by global initial data over the defined general space. Such solutions are
shown to be oscillatory based on a shooting method approach that defines a conservation
principle for a Hamiltonian. Solutions are shown to be unique and asymptotic profiles are
analytically obtained. Finally, a region of validity for positive solutions with monotone
behavior is explored.

2. Analysis of Existence and Uniqueness of Solutions

Firstly, the following generalized norm is defined based on previous similar exercises
in [21,22]:

‖u1‖2
ρ =

∫
R

ρ(x)∑4
k=0

∣∣∣Dku1(x)
∣∣∣2dx, (5)
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where D = d
dx , u1 ∈ H2

ρ(R) ⊂ L1
ρ(R) ⊂ L1(R) and the weight ρ is defined as :

ρ(x) = e
c0|x|

4
3− 1

xqta

∫ t

0

(∥∥∥ ∂u1
∂x

∥∥∥q
+1
)

ds
. (6)

Note that c0 is a small positive constant and a > q + 1.

Lemma 1. The functional space of functions u1 ∈ H4
ρ(R) ⊂ L1

ρ(R) ⊂ L1(R) with norm ‖u1‖ρ is
a Banach space.

Proof. Let u∗1 , u∗∗1 ∈ H4
ρ(R) ⊂ L1

ρ(R) ⊂ L1(R), then :

‖u∗1 + u∗∗1 ‖
2
ρ =

∫
R

ρ(x)∑4
k=0

∣∣∣Dk(u∗1 + u∗∗1 )(x)
∣∣∣dx

≤
∫

R
ρ(x)∑4

k=0

∣∣∣Dku∗1(x)
∣∣∣dx +

∫
R

ρ(x)∑4
k=0

∣∣∣Dku∗∗1 (x)
∣∣∣dx

= ‖u∗1‖ρ + ‖u
∗∗
1 ‖ρ.

To prove the space completeness, admit a Cauchy sequence of functions {u∗n1
(x) :

n1 ∈ N} ∈ H4
ρ under the norm ‖·‖ρ. Suppose that for ε ≥ 0, there exists m ∈ N such that

for every n1, n2 > m,
∥∥u∗n1

+ u∗n2

∥∥
ρ
≤ ε. The convergence is shown as follows:∣∣u∗n1

(x)− u∗n2
(x)
∣∣ =

∣∣(u∗n1
− u∗n2

)
(x)
∣∣

≤
∣∣u∗n1
− u∗n2

∣∣|x|
≤ ∑4

k=0

∣∣∣Dk(u∗n1
− u∗n2

)
(x)
∣∣∣|x|

≤ ρ(x)∑4
k=0

∣∣∣Dk(u∗n1
− u∗n2

)
(x)
∣∣∣|x|

≤
∫

R
ρ(x)∑4

k=0

∣∣∣Dk(u∗n1
− u∗n2

)
(x)
∣∣∣|x|dx

=
∥∥u∗n1

− u∗n2

∥∥
ρ
|x| ≤ ε|x|,

where ρ(x) ≥ 1. After taking ε→ 0 :∣∣u∗n1
(x)− u∗n2

(x)
∣∣→ 0,

which shows the convergence of any Cauchy sequence under the norm (5).

2.1. Primary Assessments

Admit the operator L = −ε ∂4

∂x4 + ν ∂2

∂y2 to define the following homogeneous problem:

∂u1

∂t
= Lu1. (7)

Then, the following Lemma is shown:

Lemma 2. Given u0 ∈ L1(R), then:

‖u1‖L1 ≤ ‖u0‖L1.

Let u0 ∈ Hn(R) ∩ L1(R), where n ∈ R+, then the following inequalities hold:

‖u1‖Hn ≤ ‖u0‖Hn ,

‖u1‖Hn ≤ ‖u0‖L1 .
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Furthermore:
‖u1‖ρ ≤ ‖u1‖Hn ≤ ‖u0‖L1 .

Proof. Admit that the solution of expression (7) is expressed as:

u1(y, t) = etLu0(y).

After Fourier transformation:

û1 = e(−εw4−νw2)tû0(w).

Now, we shall show that ‖u‖L1 ≤ ‖u0‖L1 . For this purpose:

‖u1‖L1 =
∫ ∞

−∞

∣∣∣e(−εw4−νw2)t
∣∣∣|û0(w)|dw

≤ sup
w∈R
{e(−εw4−νw2)t}

∫ ∞

−∞
|û0(w)|dw = ‖u0‖L1 .

For n ∈ R+ and 0 ≤ t < ∞, the following norm is defined (satisfying the Ap-condition
for p = 1 [23]):

‖u1‖Hn =
∫ ∞

−∞
enw2 |û1(w)|dw

=
∫ ∞

−∞
enw2

∣∣∣e(−εw4−νw2)tû0(w)
∣∣∣dw

≤ sup
w∈R
{e(−εw4−νw2)t}

∫ ∞

−∞
enw2 |û0(w)|dw = ‖u0‖Hn .

Let u0 ∈ L1(R), then:

‖u1‖Hn =
∫ ∞

−∞
enw2 |û1(w)|dw

=
∫ ∞

−∞
enw2

∣∣∣e(−εw4−νw2)tû0(w)
∣∣∣dw

≤ sup
w∈R
{enw2−εw4t−νw2t}

∫ ∞

−∞
|û0(w)|dw.

An elementary assessment leads to:

‖u1‖Hn ≤ |
( n

εt
− ν

ε

) 1
2 | ‖u0‖L1 ,

so we have:
‖u1‖Hn ≤ ‖u0‖L1 ,

for t ≥ n
ν . Finally:

‖u1‖ρ =
∫

R
ρ(x)∑4

k=0

∣∣∣Dku1(x)
∣∣∣dx

≤
∫

R
enx2

∑4
k=0

∣∣∣Dku1(x)
∣∣∣dx

≤
∫

R
enx2 |u1(x)|dx ≤ ‖u1‖Hn ≤ ‖u0‖L1 .
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Assuming now the single parameter (t) representation for expression (7), the follow-
ing holds:

Q(y, t) = e−ε∆2t. (8)

For t > 0, the operator ε∆2 is the infinitesimal generator of a strongly continuous
semigroup, so that the following abstract evolution holds:

u1(t) = e−ε∆2tu0 +
∫ t

0

[
K1e−ε∆2(t−s) + ν∆e−ε∆2(t−s)

−e−ε∆2(t−s)u(s)
(

σB2
0

ρ + φν
K + F

ρ u(s)
)]

ds.
(9)

After application of the Fourier transformation on expression (7) with u(y, 0) = δ(y),
the following holds:

û = e−εw4tû0(w).

To obtain a fundamental solution, the following kernel for expression (7) is obtained as:

Q(y, t) = F−1
(

e−εw4t
)
=

1
2π

∫
R

e−εw4t−iwydw =
∫

R
e−νw2t cos(wy)dw, (10)

by using integration with respect to w over R, it is possible to conclude on the existence of
a finite mass kernel. Consequently, we can rewrite the abstract evolution in (9) in terms of
such kernel. To this end, consider the following operator in H4

ρ(R) :

Tu0,t : H4
ρ(R)→ H4

ρ(R),

defined as

Tu0,t(u) = Q(y, t) ∗ u0(y) +
∫ t

0
[K1Q(y, t− s) + ν∆Q(y, t− s) ∗ u(y, s)]ds

−
∫ t

0
Q(y, t− s) ∗ u(s)

(
σB2

0
ρ

+
φν

K
+

F
ρ

u(s)

)
ds, (11)

so that the following lemma holds.

Lemma 3. The operator Tu0,t of single parameter (t), is bounded in H4
ρ(R) with the norm (5)

Proof. Firstly, we need to show the following inequality:

d0‖u0‖ρ ≤ ‖u1‖ρ.

To this end:

‖u1‖ρ =
∫

R
ρ(w)∑4

k=0

∣∣∣Dkû1(w)
∣∣∣dw

=
∫

R
ρ(w)∑4

k=0

∣∣∣Dk
(

e(−εw4−νw2)tû0

)∣∣∣dw

≥
∫

R
ρ(w)∑4

k=0

∣∣∣Dke(−εw4−νw2)t
∣∣∣∑4

k=0

∣∣∣Dkû0

∣∣∣dw

≥ d0

∫
R

ρ(w)∑4
k=0

∣∣∣Dkû0

∣∣∣dw = d0‖u0‖ρ,

where
a0 = inf

x∈Br

{
ρ(w)∑2

k=0

∣∣∣Dke(−εw4−νw2)t
∣∣∣} > 0,

and r > 0 is sufficiently small in Br = {w, |w| < r}.
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Now, considering the operator Tu0,t, the following holds:

‖Tu0,t(u1)‖ρ ≤ ‖Tu0,t‖ρ‖u1‖ρ

≤ ‖Q‖ρ‖u0‖ρ +
∫ t

0

[
K1‖Q‖ρ + ν‖∆Q‖ρ‖u1‖ρ

]
ds

+
∫ t

0
‖Q‖ρ‖u1‖ρ

∥∥∥∥∥−σB2
0

ρ
− φν

K
− F

ρ
u1

∥∥∥∥∥
ρ

ds

≤
[
‖Q‖ρ

1
d0t

+
∫ t

0

[
K1‖Q‖ρ

d0t‖u0‖ρ

+ ν‖∆Q‖ρ

]
ds

]
t‖u‖ρ

+

∫ t

0
‖Q‖ρ

∥∥∥∥∥σB2
0

ρ
+

φν

K

∥∥∥∥∥
ρ

− Fd0

ρ
‖u0‖ρ

t‖u‖ρ,

which implies that

‖Tu0,t(u)‖ρ ≤

‖Q‖ρ

1
d0t

+
∫ t

0

 K1‖Q‖ρ

d0t‖u0‖ρ

+ ‖Q‖ρ

∥∥∥∥∥σB2
0

ρ
+

φν

K

∥∥∥∥∥
ρ

− Fb0
ρ
‖u0‖ρ

ds

t. (12)

This last inequality permits showing the operator boundness for each value of t > 0.

2.2. Existence and Uniqueness of Solutions

To analyze the existence of solutions to expression (4), a step like initial condition is
admitted:

u0(y) = H(−y), (13)

where H is the Heaviside step function. We can justify the choice of a Heaviside step
function to study the asymptotic behavior of solutions when y→ ∞ as H(−y) = 0.

The following lemma, based on a shooting method approach, is shown to account for
the existence of solutions analysis.

Lemma 4. Oscillatory solutions to expression (4) with the Heaviside initial condition (13) do exist.

Proof. Admit the following Navier pseudo-boundary conditions at |y| → ∞:

u1(|y| → ∞, t) = u′′1 (|y| → ∞, t) = 0, (14)

so that the first and third derivatives are given by two parametric conditions:

u′1(|y| → ∞, t) = α ∈ R,

u′′′1 (|y| → ∞, t) = β ∈ R. (15)

Consider the stationary equation of (4):

− ε
∂4u1

∂y4 + v
∂2u
∂y2 −

(
σB2

0
ρ

+
φν

K

)
u− F

ρ
u2 = 0, (16)

where K1 = 0, as the effect of pressure gradient is neglected at y→ ∞. A Hamiltonian for
the stationary equation is defined as (see [24]):

H(u) = εu′′′1 u′1 −
(

1
2
− ν

)(
u′1
)2 −

(
σB2

0
ρ

+
φν

K

)
u2

1
2
− F

3ρ
u3

1 + K2. (17)

Since Hamiltonian is an energy functional, it must satisfy the null condition when
|y| → ∞, so that:
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Lim
|y|→∞

H
(
u1(y), u′1(y), u′′1 (y), u′′′1 (y)

)
= 0.

Note that u1 = 0 and u1 = ρ
F

(
σB2

0
ρ + φν

K

)
are constant solutions of expression (16). For

the sake of simplicity, we make use of u1 = ρ
F

(
σB2

0
ρ + φν

K

)
in expression (16) to obtain:

K2 =
ρ2

6F2

(
σB2

0
ρ

+
φν

K

)3

.

Therefore expression (17) becomes:

H(u) = εu′′′1 u′1 −
(

1
2
− ν

)(
u′1
)2 −

(
σB2

0
ρ

+
φν

K

)
u2

1
2
− F

3ρ
u3

1 +
ρ2

6F2

(
σB2

0
ρ

+
φν

K

)3

. (18)

Any stationary solution, either u1 = 0 or u1 = ρ
F

(
σB2

0
ρ + φν

K

)
preserve the Hamiltonian.

In addition, these stationary constant solutions represent the energy state of any orbit acting
asymptotically to such equilibrium solutions. Consequently and after applying the Navier
pseudo boundary conditions on Hamiltonian expression (18), the following holds:

α = −
ρ2
(

σB2
0

ρ + φν
K

)3

6F2εβ
. (19)

Given the Navier conditions expressed, it is possible to conclude on the opposite sign
for the first and third derivatives. Additionally, any solution shall satisfy:

Lim
y→∞

(
u1(y), u′1(y), u′′1 (y), u′′′1 (y)

)
= (0, 0, 0, 0).

To show the existence of oscillations close the stationary, we define the localization
variable ζ given by:

ζ(α) = sup
{

y > 0, u′1 < 0 in (0, y)
}

.

In addition we define:

α∗ = sup
{

u′1, u1(α, β(α), ζ(α)) < 1
}

, β∗ = sup
{

u′′′1 , u1(α, β(α), ζ(α)) < 1
}

.

The intention is to obtain a finite value of ζ(α). To this end, admit α of the form:

α = − 1
ζ(α)

. (20)

The negative sign in expression (20) shows that for the supreme value of α, the
maximum value of ζ is achieved. Now, using expression (20), into (19), the following holds:

− 1
ζ(α)

= −
ρ2
(

σB2
0

ρ + φν
K

)3

6F2εβ
.

Taking α = α∗ and β = β∗, then the above expression can be written as:

ζ(α∗) =
6F2εβ∗

ρ2
(

σB2
0

ρ + φν
K

)3 . (21)
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Any heteroclinic orbit between u1 = 0 and u1 = 1 shows that β∗ is finite and the
stationary solutions satisfy:

Lim
y→∞

(
u1(y), u′1(y), u′′1 (y), u′′′1 (y)

)
= (0, 0, 0, 0),

Lim
y→∞

(
u1(y), u′1(y), u′′1 (y), u′′′1 (y)

)
=

(
ρ

F

(
σB2

0
ρ

+
φν

K

)
, 0, 0, 0

)
.

Then, any non-trivial continuous solution shall have a maximum. Therefore β∗ (which
represent third derivative) shall be finite. Consequently ζ(α∗) is finite as well. The same
process shall be followed to obtain another locating variable satisfying y > ζ(α∗), so that
the first derivative is positive in the interval (ζ(α∗), y). Based on this, we define:

η(α) = sup
{
(y− η(α∗)) > 0 , u′1(α, β(α), ·) > 0 in (ζ(α∗), y)

}
,

and

α∗∗ = inf
{

u′1 , u1(α, β(α), η(α)) > 0
}

, β∗∗ = inf
{

u′′′1 , u1(α, β(α), η(α)) > 0
}

.

We can choose the value of α in such a way that the orbit is non-decreasing in the
interval (ζ(α∗), y). This implies that the value of α is positive, and by the expression (20),
the value of β is negative. Assuming the finite step function δ in interval (ζ(α∗), y), the
following holds:

α =
δ

η − ζ
.

Making use of the expression (20):

δ

η − ζ
β = −

ρ2
(

σB2
0

ρ + φν
K

)3

6F2εβ
,

which implies that

η = ζ − 6F2εδβ2

ρ2
(

σB2
0

ρ + φν
K

)3 .

To get the highest value of η, consider α = α∗∗, then we obtain the infimum of the
possible rates of growth. Further, admit the infimum value of the third derivative β∗∗ so
that the following finite maximum value of η in spatial location holds:

η(α∗∗) = ζ − 6F2εδ(β∗∗)2

ρ2
(

σB2
0

ρ + φν
K

)3 .

This last expression shows that the stationary orbits, close to the solutions u1 = 0

and u1 = − ρ
F

(
σB2

0
ρ + φν

K

)
, have non-increasing behavior and non-decreasing conditions

in spatial intervals (0, ζ(α∗)) and (ζ(α∗), η(α∗∗)), respectively, where ζ(α∗) and η(α∗∗) are
finite. Repeating the same process permits concluding on the presence of oscillating orbits
closing the critical points.

2.3. Uniqueness

For the uniqueness analysis, it is required to show that Tu0,t (defined in (11)) has a
unique fix point u1(y, t) = Tu0,t(u1(y, t)). For this purpose:
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‖Tu0,t(u
∗
1)− Tu0,t(u

∗∗
1 )‖ρ ≤

∫ t

0
‖ν∆Q(y, t− s) ∗ (u∗1 − u∗∗1 )

−Q(y, t− s) ∗
[

u∗1

(
σB2

0
ρ + φν

K + F
ρ u∗1

)
− u∗∗1

(
σB2

0
ρ + φν

K + F
ρ u∗∗1

)]∥∥∥∥
ρ

ds

≤
∫ t

0

∥∥∥∥ ∫ t

s
ν∆Q(y, t− s)(u∗1 − u∗∗1 )

−Q(y, t− s− r)
[

u∗1

(
σB2

0
ρ + φν

K + F
ρ u∗1

)
− u∗∗1

(
σB2

0
ρ + φν

K + F
ρ u∗∗1

)]
dr
∥∥∥∥

ρ

ds

≤
∫ t

0

∫ t

s
‖ν∆Q(y, t− s)(u∗1 − u∗∗1 )

−Q(y, t− s− r)
[

u∗1

(
σB2

0
ρ + φν

K + F
ρ u∗1

)
− u∗∗1

(
σB2

0
ρ + φν

K + F
ρ u∗∗1

)]
dr
∥∥∥∥

ρ

ds

≤
∫ t

0

∫ t

s
‖ν∆Q(y, t− s)(u∗1 − u∗∗1 )‖ρdrds

+
∫ t

0

∫ t

s
‖Q(y, t− s− r)‖ρ

∥∥∥∥u∗1

(
σB2

0
ρ + φν

K + F
ρ u∗1

)
−u∗∗1

(
σB2

0
ρ + φν

K + F
ρ u∗∗1

)
‖ρdrds ≤

∫ t

0

∫ t

s
‖ν∆Q(y, t− s− r)‖ρ‖u∗1 − u∗∗1 ‖ρdrds

+
∫ t

0

∫ t

s
‖Q(y, t− s− r)‖ρ

∥∥∥∥ σB2
0

ρ + φν
K −

F
ρ (u
∗
1 + u∗∗1 )

∥∥∥∥
ρ

‖u∗1 − u∗∗1 ‖ρdrds.

(22)

Note that from expression (10), Q and ∆Q are bounded. Therefore we can choose:

A = sup

‖ν∆Q‖ρ, ‖Q‖ρ

∥∥∥∥∥σB2
0

ρ
+

φν

K
− F

ρ
(u∗1 + u∗∗1 )

∥∥∥∥∥
ρ

; ∀t > 0, y ∈ R


Then, the following holds:

∥∥Tu0,t(u
∗
1)− Tu0,t(u

∗∗
1 )
∥∥

ρ
≤ 2A

∫ t

0

∫ t

s
‖u∗1 − u∗∗1 ‖ρdrds

= 2At(t− s)‖u∗1 − u∗∗1 ‖ρ.

For any ball centered in t, and with radium proportional to t− s, the uniqueness is
proved in the limit with u1↙ u2, which provides a contractive mapping Tu0,t in the defined
space H4

ρ .

3. Solution Profiles

Solution profiles are obtained based on the conservation of the Hamiltonian as intro-
duced in Lemma 4. When the Hamiltonian is preserved, the proposed equation can be
expressed in the complex plane, keeping the same conservation principle. This approach
has been widely followed to obtain a solution for a Schrödinger equation in physics. The
fact of operating in the complex space is of relevance to solve the proposed Equation (4) as
any behavior exhibited (either oscillatory or monotone) can be treated, making use of the
complex exponential notation (see [25] for a complete discussion). Similar approaches have
been followed in [26–28]. In addition, in these last references, the authors develop the whole
formalism of the exponential scaling. The extension of the exponential complex function
into generalized diffusive problems has been tracked in [29] and further discussed to blow
up profiles in [30]. Based on the cited references, the following scaling is considered:

u = ew1 , (23)
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so that w1 satisfies the following Hamilton–Jacobi equation:

H4(w1) = −ε

(
∂w1

∂y

)2(∂w1

∂y

)2
+ ν

∂w1

∂y
∂w1

∂y
+

(
K1 −

σB2
0

ρ
− φν

K

)
− F

ρ
ew1 . (24)

Considering only the leading terms and after replacement in (4):

∂w1

∂t
= −ε

(
∂w1

∂y

)2(∂w1

∂y

)2
+ ν

∂w1

∂y
∂w1

∂y
+

(
K1 −

σB2
0

ρ
− φν

K

)
− F

ρ
ew1 .

Note that existence and uniqueness of solutions to a Hamilton–Jacobi equation ex-
tended to non-homogeneous diffusion were analyzed in [29,30]. Based on this, admit that a
solution to (4) can be expressed as separated variables:

w1(y, t) = (τ + t)−
1
3 η(y), (25)

where τ < t < T. In the asymptotic approach with t → ∞, it holds that F
ρ ew1 =

F
ρ e(τ+t)−

1
3 η(y) → F

ρ . Introducing (25) into (24):

−1
3

η = −εη4
y + ν(τ + t)

2
3 η2

y +

(
K1 −

σB2
0

ρ
− φν

K
− F

ρ

)
,

where t→ ∞. Again, considering the leading terms:

−1
3

η = ν(τ + t)
2
3 η2

y +

(
K1 −

σB2
0

ρ
− φν

K
− F

ρ

)
.

Solving by standard separation of variable techniques, we obtain:

η(y) = 3

(
σB2

0
ρ

+
φν

K
− F

ρ
− K1

)
− 1

12ν2(τ + t)2 y2.

In the asymptotic approximation, t is large enough so as to take η → 0. Consequently,
the above expression can be written as:

y = 6νt

√
σB2

0
ρ

+
φν

K
− F

ρ
− K1.

Balancing the first derivatives η2
y << (τ + t), the following holds:

−1
3

η = −εη4
y +

(
K1 −

σB2
0

ρ
− φν

K
− F

ρ

)
.

After solving:

η(y) = 3
(

1
4ε

y
) 4

3
+ 3

(
σB2

0
ρ

+
φν

K
+

F
ρ
− K1

)
.

Setting the value of η(y) into (25):

w1(y, t) = 3t−
1
3

[(
1
4ε

y
) 4

3
+

(
σB2

0
ρ

+
φν

K
+

F
ρ
− K1

)]
.
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After using (23):

u1(y, t) = e
3t−

1
3

[
( 1

4ε y)
4
3 +

(
σB2

0
ρ +

φν
K + F

ρ−K1

)]
.

The obtained solution profile to u1 behaves monotonically. The intention now is to
determine a region in the domain to ensure that such monotone behavior holds.

Assessment of a Region with Positive Solutions

The objective in this section is to determine a ball region expressed as |y| ∈ Bk(t), such
that in the inner domain no instabilities occur, i.e., solutions are purely monotone. To this
end, the following lemma holds:

Lemma 5. There exists a ball-region Bk(t) such that for |y| << k(t) with k(t) > t
1
4 |ln t|, any

solution is purely monotone, i.e., solutions do not exhibit oscillatory behavior.

Proof. Let us consider the following variable scaling

x =
y

t
1
4

; τ = ln t→ −∞ if t→ 0+. (26)

As previously expressed, the effect of the pressure gradient is neglected when x → ∞.
As a consequence, the expression (4) reads:

∂u1

∂τ
=

(
B− 1

4
I
)

u1 + νe
1
2 τ ∂2u1

∂x2 − eτu1

(
σB2

0
ρ

+
φν

K
+

F
ρ

u1

)
, (27)

where B = −ε ∂4

∂x4 +
1
4 x ∂

∂x + 1
4 I.

Consider that any stationary solution is expressed as:(
B− 1

4
I
)

u1e = 0, u1e(∞) = 0, u1e(−∞) = 1. (28)

Then, any solution to (27) close the stationary is given by:

u1(x, τ) = u1e(x) + L(x, τ). (29)

Note that in the proximity of the stationary solution |L| << 1. Making use of (29) into
(27), the following holds:

Lτ =

(
B− 1

4
I
)

L + νe
1
2 τ ∂2L

∂x2 + νe
1
2 τ ∂2u1e

∂x2 νe
1
2 τ ∂2u1e

∂x2 − eτu1e

(
σB2

0
ρ

+
φν

K
+

F
ρ

u1e

)
. (30)

Admit the following asymptotic separation of variables:

L(x, τ) = f (x)g(τ). (31)

Putting (31) in (30), the following holds:

g′(τ)
g(τ)

=

(
B− 1

4 I
)

f + νe
1
2 τ d2 f

dx2 +
νe

1
2 τ

g(τ)
∂2u1e
∂x2 + eτu1e

g(τ)

(
σB2

0
ρ + φν

K + F
ρ u1e

)
f

= β, (32)

which implies that
g(τ) = eτ , (33)

for simplicity, we take β = 1.
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To find a solution for f , we apply the asymptotic condition u1e(∞) = 0 in (32):(
B− 1

4
I
)

f ++νe
1
2 τ d2 f

dx2 = f . (34)

As exposed in the previous section and based on a solution proposal in [29], a solution
to (34) can be expressed as:

f (x) = eαx. (35)

Introducing the last expression into (34) and after balancing the leading terms:

α4 = −1
ε

. (36)

Provided that
1
4

x + νe
1
2 τ << 1. (37)

Note that, ν > 0 as it represents the kinematic viscosity. Therefore:

1
4

x << 1,

which implies that

t ≥ 1
4
|y|. (38)

This last expression shows the validity region for the exponential representation in
(35). Finally, the solutions given by the two main real roots of α are given by:

f+ = eαx, x → −∞; f− = e−αx, x → ∞.

So that:
L(x, τ) = eτ

(
eαx + e−αx). (39)

The expression (39) becomes:

u1(x, τ) = u1e(x) + eτ
(
eαx + e−αx).

Upon recovery of the original variables (y, t):

u1(y, t) = u1e

(
y

t
1
4

)
+ t
(

eα
y

t1/4 + e−α
y

t1/4

)
.

In the asymptotic approach, y→ ∞ then |L| << 1, therefore:∣∣∣∣te−α
y

t1/4

∣∣∣∣ << 1,

which implies that:
|y| >> t

1
4 ln t.

As ln t < 0, then:
|y| << t

1
4 ln t = k(t). (40)

Combining expressions (38) and (40), the following holds:

|y| < 4t << t
1
4 ln t,

for t→ 0+.
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Finally, the same assessment can be followed for any t = t0 > 0 with the re-scaling
τ = ln(t− t0). Hence, given any t = t0 > 0, the inner region, where positivity in the
solution holds, is defined as:

|y| << (t− t0)
1
4 |ln(t− t0)|.

A simple estimation can be obtained assuming that t ∼ 2t0 for t0 is sufficiently small:

|y| << t
1
4
0 |ln t0|.

4. Conclusions

The proposed generalized diffusion to a classical second-order Darcy–Forchheimer
flow was treated in the presented study, leading to an fourth-order operator, defining the
extended Darcy–Forchheimer flow. The main advantage of the introduction of a generalized
diffusion is to account for oscillatory patterns close the equilibrium conditions induced
by the reaction terms. Such patterns have been shown to exist, and even when being
important features of the postulated fourth-order operators, they provided uniqueness and
stability of solutions given certain condition in the initial data. Afterwards, solution profiles
were obtained with asymptotic expansion leading to a Hamilton–Jacobi equation. Such
equation was solved based on separation of variable techniques leading to a monotone
solution. Finally, as monotone solutions do not hold close the critical points (due to the
oscillations induced), a region of positive and, hence, validity for such monotone solutions,
was precisely determined.

Author Contributions: Conceptualization, J.L.D.; methodology, J.L.D., S.R., J.M.G.-H.; validation,
J.L.D., S.R., J.M.G.-H.; formal analysis, J.L.D., S.R.; investigation, J.L.D., S.R.; resources, J.L.D.,
J.M.G.-H.; data curation, J.L.D., S.R., J.M.G.-H.; writing—original draft preparation, J.L.D., S.R.;
writing—review and editing, J.L.D., S.R., J.M.G.-H.; supervision, J.L.D.; project administration, J.L.D.;
funding acquisition, J.L.D., J.M.G.-H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is funded by the University Francisco de Vitoria School of Engineering.

Data Availability Statement: This research has not associated data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ara, A.; Khan, N.A.; Khan, H.; Sultan, F. Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially

shrinking sheet. Ain-Shams Eng. J. 2014, 5, 1337–1342. [CrossRef]
2. Hayat, T.; Iqbal, Z.; Qasim, M.; Obaidat, S. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary

conditions. Int. J. Heat Mass Transfer. 2012, 55, 1817–1822. [CrossRef]
3. Khan, J.A.; Mustafa, M.; Hayat, T.; Farooq, M.A.; Alsaedi, A.; Liao, S.J. On model for three-dimensional flow of nanofluid: An

application to solar energy. J. Mol. Liq. 2014, 194, 41–47. [CrossRef]
4. Javed, T.; Abbas, Z.; Ali, N.; Sajid, M. Flow of an Eyring–Powell non-newtonian fluid over a stretching sheet. Chem. Eng. Commun.

2013, 200, 327–336. [CrossRef]
5. Rasool, G.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G. Entropy generation and consequences of binary chemical

reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 2020, 22, 18.
[CrossRef] [PubMed]

6. Saif, R.S.; Muhammad, T.; Sadia, H. Significance of inclined magnetic field in Darcy–Forchheimer flow with variable porosity and
thermal conductivity. Phys. A Stat. Mech. Its Appl. 2020, 551, 124067. [CrossRef]

7. Rasool, G.; Shafiq, A.; Khan, I.; Baleanu, D.; Nisar, K.S.; Shahzadi, G. Entropy generation and consequences of MHD in
DarcyForchheimer nanofluid flow bounded by non-linearly stretching surface. Symmetry 2020, 12, 652. [CrossRef]

8. Sadiq, M.A.; Hayat, T. DarcyForchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet. Results Phys.
2016, 6, 884–890. [CrossRef]

9. Sajid, T.; Sagheer, M.; Hussain, S.; Bilal, M. Darcy–Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation
and activation energy. AIP Adv. 2018, 8, 035102. [CrossRef]

http://doi.org/10.1016/j.asej.2014.06.002
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.046
http://dx.doi.org/10.1016/j.molliq.2013.12.045
http://dx.doi.org/10.1080/00986445.2012.703151
http://dx.doi.org/10.3390/e22010018
http://www.ncbi.nlm.nih.gov/pubmed/33285793
http://dx.doi.org/10.1016/j.physa.2019.124067
http://dx.doi.org/10.3390/sym12040652
http://dx.doi.org/10.1016/j.rinp.2016.10.019
http://dx.doi.org/10.1063/1.5019218


Mathematics 2022, 10, 20 14 of 14

10. Hayat, T.; Rafique, K.; Muhammad, T.; Alsaedi, A.; Ayub, M. Carbon nanotubes significance in Darcy–Forchheimer flow. Results
Phys. 2018, 8, 26–33. [CrossRef]

11. Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A. On Darcy–Forchheimer flow of carbon nanotubes due to a rotating disk. Int. J.
Heat Mass Transf. 2017, 112, 248–254. [CrossRef]

12. Saif, R.S.; Hayat, T.; Ellahi, R.; Muhammad, T.; Alsaedi, A. Darcy–Forchheimer flow of nanofluid due to a curved stretching
surface. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 2–20.

13. Kieu, T. Existence of a solution for generalized Forchheimer flow in porous media with minimal regularity conditions. J. Math.
Phys. 2020, 61, 013507. [CrossRef]

14. Jawad, M.; Shah, Z.; Islam, S.; Bonyah, E.; Khan, A.Z. Darcy–Forchheimer flow of MHD nanofluid thin film flow with Joule
dissipation and Naviers partial slip. J. Phys. Commun. 2018, 2, 115014. [CrossRef]

15. Cohen, D.; Murray, J.D. A Generalized Diffusion Model for Growth and Dispersal in a Population. J. Math. Biol. 1981, 12, 237–249.
[CrossRef]

16. Peletier, L.A.; Troy, W.C. Spatial Patterns. Higher order models in Physics and Mechanics. In Progress in Non Linear Differential
Equations and Their Applications; Springer: Berlin/Heidelberg, Germany, 2001; Volume 45.

17. Rottschäfer, V.; Doelman, A. On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation.
Physica D 1998, 118, 261–292. [CrossRef]

18. Perumpanani, J.; Sherratt, A.; Norbury, J.; Byrne, H.M. A two parameter family of travelling waves with a singular barrier arising
from the modelling of extracellular matrix mediated cellular invasion. Physica D 1999, 126, 145–159. [CrossRef]

19. Panayotis, S. Minimal heteroclinics for a class of fourth-order O.D.E. systems. Nonlinear Anal. 2018, 173, 154–163.
20. Díaz Palencia, J.L. Characterization of Traveling Waves Solutions to an Heterogeneous Diffusion Coupled System with Weak

Advection. Mathematics 2021, 9, 2300. [CrossRef]
21. Galaktionov, V. Towards the KPP Problem and Log-Front Shift for Higher-Order Nonlinear PDEs I. Bi-Harmonic and Other

Parabolic Equations. arXiv 2012, arXiv:1210.3513.
22. Montaru, A. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear

sensitivity. Discret. Contin. Dyn. Syst. D 2014, 19, 231–256. [CrossRef]
23. Goldshtein, V.; Ukhlov, A. Weighted Sobolev Spaces and embeddings Theorems. Trans. Am. Math. Soc. 2009, 361, 3829–3850.

[CrossRef]
24. Bonheure, D.; Sanchez, L. Heteroclinics Orbits for some classes of second and fourth-order differential equations. Handb. Differ.

Equ. 2006, 3, 103–202.
25. Bracken, P. The quantum Hamilton–Jacobi formalism in complex space. Quantum Stud. Math. Found. 2020, 7, 389–403. [CrossRef]
26. Leacock, R.A.; Padgett, M.J. Hamilton–Jacobi theory and quantum action variables. Phys. Rev. Lett. 1983, 50, 3. [CrossRef]
27. Leacock, R.A.; Padgett, M.J. Hamilton–Jacobi action angle quantum mechanics. Phys. Rev. 1983, D28, 2491. [CrossRef]
28. Bhalla, R.S.; Kapov, A.K.; Panigrahi, P.K. Quantum Hamilton–Jacobi formalism and its bound state spectra. Am. J. Phys. 1997, 65,

1187. [CrossRef]
29. Chavez, M.; Galaktionov, V. Regional blow up for a higher-order semilinear parabolic equation. Eur. J. Appl. Math. 2001, 12,

601–623. [CrossRef]
30. Galaktionov, V.A.; Williams, J. Blow-up in a fourth-order semilinear parabolic equation from explosion-convection theory. Eur. J.

Appl. Math. 2004, 14, 745–764. [CrossRef]

http://dx.doi.org/10.1016/j.rinp.2017.11.022
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.123
http://dx.doi.org/10.1063/1.5085004
http://dx.doi.org/10.1088/2399-6528/aaeddf
http://dx.doi.org/10.1007/BF00276132
http://dx.doi.org/10.1016/S0167-2789(98)00035-9
http://dx.doi.org/10.1016/S0167-2789(98)00272-3
http://dx.doi.org/10.3390/math9182300
http://dx.doi.org/10.3934/dcdsb.2014.19.231
http://dx.doi.org/10.1090/S0002-9947-09-04615-7
http://dx.doi.org/10.1007/s40509-020-00224-8
http://dx.doi.org/10.1103/PhysRevLett.50.3
http://dx.doi.org/10.1103/PhysRevD.28.2491
http://dx.doi.org/10.1119/1.18773
http://dx.doi.org/10.1017/S0956792501004685
http://dx.doi.org/10.1017/S0956792503005321

	Introduction
	Analysis of Existence and Uniqueness of Solutions
	Primary Assessments
	Existence and Uniqueness of Solutions
	Uniqueness

	Solution Profiles
	Conclusions
	References

